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1 Introduction

This is a collection of notes, mostly of an expository nature, giving background
and explanation for the notion of “Dirac cohomology” and its relation to the
BRST formalism for handling quantum gauge symmetry. It is currently being
actively updated, check back for additional material in the near future.

2 Quantum Mechanics and Representation The-
ory

A quantum mechanical physical system is given by the following mathematical
structure:

• A Hilbert space H, the ”space of states”. A state of the physical system is
determined by a vector |ψ〉 ∈ H, with unit norm (i.e. ||ψ||2 = 〈ψ|ψ〉 = 1).

• An algebra O that acts on H. To each physical observable corresponds
a self-adjoint operator O ∈ O. Eigenvectors in H of this operator corre-
spond to states where the observable has a well-defined value, which is the
eigenvalue.

If a physical system has a symmetry group G, there is a unitary represen-
tation (Π,H) of G on H. This means that for each g ∈ G we get a unitary
operator Π(g) satisfying

Π(g3) = Π(g2)Π(g1) if g3 = g1g2

i.e. the map Π from group elements to unitary operators is a homomorphism.
The Π(g) act on O by taking an operator O to its conjugate Π(g)O(Π(g))−1.

When G is a Lie group with Lie algebra (g, [·, ·]), differentiating Π gives a
unitary representation (π,H) of g on H. This means that for each X ∈ g we
get a skew-Hermitian operator π(X) on H, satisfying

π(X3) = [π(X1), π(X2)] if X3 = [X1, X2]

i.e. the map π taking Lie algebra elements X (with the Lie bracket in g) to
skew-Hermitian operators (with commutator of operators) is a homomorphism.
On O, g acts by the differential of the conjugation action of G, this action is
just that of taking the commutator with π(X).
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The Lie bracket is not associative, but to any Lie algebra g, one can construct
an associative algebra U(g) called the universal enveloping algebra for g. If
one identifies X ∈ g with left-invariant vector fields on G, which are first-
order differential operators on functions on G, then U(g) is the algebra of left-
invariant differential operators on G of all orders, with product the composition
of differential operators. A Lie algebra representation is precisely a module over
U(g), i.e. a vector space with an action of U(g).

So, the state space H of a quantum system with symmetry group G carries
not only a unitary representation of G, but also a unitary representation of g,
or equivalently, an action of the algebra U(g). X ∈ g acts by the operator
π(X). In this way a representation π gives a sub-algebra of the algebra O
of observables. Most of the important observables that show up in practice
come from a symmetry in this way. An interesting philosophical question is
whether the quantum system that governs the real world is purely determined
by symmetry, i.e. such that ALL its observables come from symmetries in this
manner.

2.1 Some Examples

Much of the structure of common quantum mechanical systems is governed by
the fact that they carry space-time symmetries. In our 3-space, 1-time dimen-
sional world, these include:

• Translations in space: G = R3, g = R3, Lie Bracket is trivial. For each
basis element ej ∈ g one gets a momentum operator π(ej) = iPj

• Translations in time: G = R, g = R. If e0 is a basis of g, iπ(e0) = H,
the Hamiltonian operator. The fact that this operator generates time-
translations is just Schrödinger’s equation.

• Rotations in 3-space: G = SO(3), or its double cover G = Spin(3) =
SU(2), g = R3, with bracket given by the vector product. For each ba-
sis element ej ∈ g one gets an angular momentum operator π(ej) = iJj .
These operators do not commute, so cannot be simultaneously diagonal-
ized.

• Another example is the symmetry of phase transformations of the state
space H. Here G = U(1), g = R, and one gets an operator Qe that can
be normalized to have integral eigenvalues.

This last example also comes in a local version, where we make independent
phase transformations at different points in space-time. This is an example of
a ”gauge symmetry”, and the question of how it gets represented on the space
of states is what will lead us into the BRST story.
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3 Gauge Symmetry

My initial plan was to have this section of these notes be about gauge symmetry
and the problems physicists have encountered in handling it, but as I started
writing it quickly became apparent that explaining this in any detail would take
me into various issues that are quite interesting, but far afield from what I want
to get to. So, I hope to get back to this at some point, but for now will just
assume that most of my readers know what gauge symmetry is, and that the
rest just need to know that:

• The gauge group is an infinite dimensional Lie group. Locally (on space-
time), it looks like a group of maps into a finite dimensional Lie group.

• The conventional assumption is that physics is invariant under the gauge
group, so the gauge group and its Lie algebra should act trivially on phys-
ical states.

The actual situation is quite a bit more complicated than this, but for now we’ll
focus on the simplest version of the mathematical problem that comes up here,
and see how the BRST formalism deals with it.

4 Lie Algebra Cohomology, Physicist’s Version

This section will begin explaining one part of this story, starting with the sim-
plest version of BRST cohomology, in a language familiar to physicists. Later
sections will deal with Lie algebra cohomology in a more general mathemati-
cal context and work out some examples. For more about the material in this
section, see, for instance, [1] Volume I, section 3.2.1, or [2].

Physicists always begin by choosing a basis, in this case a basis Xi of g
satisfying [Xi, Xj ] = fkijXk, where fkij are called the structure constants of g. A
representation (π, V ) is then a set of linear operators Ki = π(Xi) on V satisfying
[Ki,Kj ] = fkijKk. Let αi be a basis of the dual space g∗, dual to the basis Xi.

Now, extend V to =V ⊗Λ∗(g∗), where Λ∗(g∗) is the exterior algebra on g∗.
On this space, define the “ghost” operator ci to be wedge-product with αi, and
“anti-ghost” operator bi to be contraction (interior product) with Xi. These
operators satisfy “fermionic” anti-commutation relations

{ci, cj} = {bi, bj} = 0, {ci, bj} = δij

and one can get all vectors in H from linear combinations of decomposable
elements of H (those given by repeated application of the ci to the “vacuum
vector” V ⊗ 1).

The ghost number operator N = cibi on H has eigenvectors the decompos-
able elements, with integer eigenvalues from 0 to dim g, given by the number of
ghost operators needed to produce the eigenvector from a vacuum vector.

The BRST operator is given by

Q = ciKi −
1
2
fkijc

icjbk
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which increases the ghost number by one, and has the crucial property of Q2 = 0
(this comes from the fact that the fkij satisfy the Jacobi identity). The BRST
cohomology is given by considering the space ker Q of elements χ of H that
are “BRST-closed”, i.e. satisfy Qχ = 0, and identifying two such elements if
they are “BRST-exact”, i.e. differ by Qλ for some λ. So BRST cohomology is
defined by

H∗Q(V ) =
ker Q

im Q
|V⊗Λ∗(g∗)

with Hj
Q(V ) the component of the BRST cohomology of ghost number j.

A vector χ = v ⊗ 1 of ghost number zero satisfies Qχ = 0 iff and only if
Kiv = 0 for all i, so we can identify H0

Q(V ) with the space V g of g - invariant
vectors in V .

The essence of the BRST method is to replace the problem of finding the
invariant subspace V g of a representation V by the problem of finding the degree
zero BRST cohomology H0

Q(V ).
There are two different ways of putting an inner product on Λ∗(g∗) and thus

getting an inner product on H ((π, V ) is assumed to be unitary, so preserves a
given inner product on V ).

• Given ω1, ω2 ∈ Λ∗(g∗), one can define

< ω1, ω2 >=
∫
ω1ω2 ≡ coeff. of α1 ∧ · · · ∧ αdim g in ω1 ∧ ω2

(this uses the “fermionic” or “Berezin” integral
∫

, although I have not
properly dealt with signs here). This inner product is indefinite, but it
makes the BRST operator Q and ghost-operator ci self-adjoint.

• Use an inner product on g, e.g. the Killing form for a semi-simple Lie
algebra, to identify g and g∗. This gives a Hodge operator ∗Hodge on
Λ∗(g∗) that takes Λi(g∗) to Λdim g−i(g∗), and one can define

< ω1, ω2 >=
∫
G

ω1 ∧ ∗Hodgeω2

(Note, here the integral sign is not Berezin integration, but the usual
integration of differential forms over a compact manifold, in this case G)

With this inner product Q and ci are not self-adjoint on H. To get some-
thing self-adjoint, one can consider the operator Q + Q† where Q† is the
adjoint of Q, but this operator does not have a definite ghost-number.

5 Lie Algebra Cohomology

The last section discussed one of the simplest incarnations of BRST cohomol-
ogy, in a formalism familiar to physicists. This fits into a much more abstract
mathematical context, and that’s what we’ll turn to now.
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5.1 The Invariants Functor

Given a Lie algebra g, we’ll consider Lie algebra representations as modules
over U(g). Such modules form a category Cg: what is interesting is not just
the objects of the category (the equivalence classes of modules), but also the
morphisms between the objects. For two representations V1 and V2 the set of
morphisms between them is a linear space denoted HomU(g)(V1, V2). This is
just the set of linear maps from V1 to V2 that commute with the action of g:

HomU(g)(V1, V2) = {φ ∈ HomC(V1, V2) : π(X)φ = φπ(X) ∀X ∈ g}

Another conventional name for this is the space of intertwining operators be-
tween the two representations.

For any representation V , its g-invariant subspace V g can be identified with
the space HomU(g)(C, V ), where here C is the trivial one-dimensional repre-
sentation. Having a way to pick out the invariant piece of a representation
also allows one to solve the more general problem of picking out the subspace
that transforms like a specific irreducible W : just find the invariant subspace of
V ⊗W ∗.

The map V → V g that takes a representation to its g-invariant subspace is a
functor: it takes the category Cg to CC, the category of vector spaces and linear
maps (C - modules and C - homomorphisms). If, instead of taking

V → V g

one takes
V → V h

where h is a Lie subalgebra of g, one again gets a functor. If h is an ideal in
g (so that g/h is a Lie algebra), then this functor takes Cg to Cg/h. This is a
simple version of the situation of interest in the case of gauge theory: if V is
a state space with h acting as a gauge symmetry, then V h will be the physical
subspace, carrying an action of the algebra of operators U(g/h).

5.2 Some Homological Algebra

It turns out that when one has a category of modules like Cg, these can use-
fully be studied by considering complexes of modules, and this is the subject
of homological algebra. A complex of modules is a sequence of modules and
homomorphisms

· · · ∂−→ U
∂−→ V

∂−→W
∂−→ · · ·

such that ∂ ◦ ∂ = 0. If the complex satisfies im ∂ = ker ∂ at each module, the
complex is said to be an “exact complex”.

To motivate the notion of exact complex, note that

0 −→ V0 −→ V −→ 0
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is exact iff V0 is isomorphic to V , and an exact sequence

0 −→ V1 −→ V0 −→ V −→ 0

represents the module V as the quotient V0/V1. Using longer complexes, one
gets the notion of a resolution of a module V by a sequence of n modules Vi.
This is an exact complex

0 −→ Vn −→ · · · −→ V1 −→ V0 −→ V −→ 0

The deviation of a sequence from being exact is measured by its homology,
H∗ = ker ∂

im ∂ . Note that if one deletes V from its resolution, the sequence

0 −→ Vn −→ · · · −→ V1 −→ V0 −→ 0

is exact except at V0. Indexing the homology in the obvious way, one has Hi = 0
for i > 0, and H0 = V . A sequence like this whose only homology is V at H0 is
another manifestation of a resolution of V .

The reason this construction is useful is that, for many purposes, it allows
us to replace a module whose structure we may not understand by a sequence
of modules whose structure we do understand. In particular, we can replace a
U(g) module V by a sequence of free modules, i.e. modules that are just sums
of copies of U(g) itself. This is called a free resolution, and more generally one
can work with projective modules (direct summands of free modules).

A functor that takes exact complexes to exact complexes is called an exact
functor. Homological invariants of modules come about in cases where one has
a functor on a category of modules that is not exact. Applying such a functor
to a free or projective resolution gives the homological invariants.

5.3 The Koszul Resolution and Lie Algebra Cohomology

There are many possible choices of a free resolution of a module. For the case
of U(g) modules, one convenient choice is known as the Koszul (or Chevalley-
Eilenberg) resolution. To construct a resolution of the trivial module C, one
uses the exterior algebra on g to make free modules

Yk = U(g)⊗C Λk(g)

and get a resolution of C

0 −→ Ydim g
∂dim g−1−→ · · · ∂1−→ Y1

∂0−→ Y0
ε−→ C −→ 0

The maps are given by

ε : u ∈ Y0 = U(g)→ ε(u) = const. term of u

and

∂k−1(u⊗X1 ∧ · · · ∧Xk) =
k∑
i=1

(−1)i+1(uXi ⊗X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xk)

+
∑
i<j

(−1)i+j(u⊗ [Xi, Xj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xk)
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To get Lie algebra cohomology, we apply the invariants functor

V −→ V g = HomU(g)(C, V )

replacing the trivial representation by its Koszul resolution. This gives us a
complex with terms

Ck(g, V ) = HomU(g)(Yk, V ) = HomU(g)(U(g)⊗ Λk(g), V )

= HomU(g)(U(g), HomC(Λk(g), V ))

= HomC(Λk(g), V ) = V ⊗ Λk(g∗)

and induced maps di

0 −→ C0(g, V ) d0−→ C1(g, V ) · · · ddim g−1−→ Cdim g(g, V ) −→ 0

The Lie algebra cohomology H∗(g, V ) is just the cohomology of this complex,
i.e.

Hi(g, V ) =
ker di
im di−1

|Ci(g,V )

This is exactly the same definition as that of the BRST cohomology defined in
physicist’s formalism in the last section with H = C∗(g, V ).

One has H0(g, V ) = V g and so gets the g-invariants as expected, but in
general the cohomology will be non-zero also in other degrees.

This is all rather abstract, so in the next section some examples will be
worked out, as well as the relationship of all this to the de Rham cohomology of
the group. Anthony Knapp’s book Lie Groups, Lie Algebras, and Cohomology
[3] is an excellent reference for details on Lie algebra cohomology.

6 Lie Algebra Cohomology for Semi-simple Lie
Algebras

In this section I’ll work out some examples of Lie algebra cohomology, still for
finite dimensional Lie algebras and representations.

If G is a compact, connected Lie group, it can be thought of as a compact
manifold, and as such one can define its de Rham cohomology H∗deRham(G) as
the cohomology of the complex

0 −→ Ω0(G) d−→ Ω1(G) d−→ · · · d−→ Ωdim G(G) −→ 0

where Ωi(G) are the differential i-forms on G (note, we’ll use complex-valued
forms), and d is the deRham differential.

For a compact group, one has a bi-invariant Haar measure
∫
G

, and can use
this to “average” over an action of the group on a space. For a representation
(π, V ), we get a projection operator

∫
g

Π(g) onto the invariant subspace V G.
This projection operator gives explicitly the invariants functor on Cg. It is an
exact functor, taking exact sequences to exact sequences.
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The differential forms Ω∗(G) give a representation of G in two ways, taking
the induced action on forms by pullback, using either left or right translation
on the group. If (Π(g),Ω∗(G)) is the representation by left translations, we can
use this to apply our “averaging over G” projection operator to the de Rham
complex. This action commutes with the de Rham differential, so we get a
sub-complex of left-invariant forms

0 −→ Ω0(G)G d−→ Ω1(G)G d−→ · · · d−→ Ωdim G(G)G −→ 0

Since elements of the Lie algebra g are precisely left-invariant 1-forms, it
turns out that this complex is nothing but the Chevalley-Eilenberg complex
considered last time to represent Lie algebra cohomology, for the case of the
trivial representation. This means we have C∗(g,R) = Λ∗(g∗) = Ω∗(G)G, and
the differentials coincide. So, what we have shown is that

H∗(g,C) = H∗deRham(G)

If one knows the cohomology of G, the Lie algebra cohomology is thus known,
but this identity is normally used in the other direction, to find the cohomology
of G from that of the Lie algebra. To compute the Lie-algebra cohomology, we
can exploit the right-action of G on the group, averaging over the induced action
on the left-invariant forms Λ∗(g), which again commutes with the differential.
We end up with a complex

0 −→ (Λ0(g∗))G −→ (Λ1(g∗))G −→ · · · −→ (Λdim g(g∗))G −→ 0

where all the differentials are zero, so the cohomology is given by

H∗(g,C) = (Λ∗(g∗))G = (Λ∗(g∗))g

the adjoint-invariant pieces of the exterior algebra on g∗. Finding the cohomol-
ogy has now been turned into a purely algebraic problem in invariant theory.

For G = U(1), g = R, and we have shown that H∗(R,C) = Λ∗(C), this is
C in degrees 0, and 1, as expected for the de Rham cohomology of the circle
U(1) = S1. For G = U(1)n, we get

H∗(Rn,C) = Λ∗(Cn)

Note that complexifying the Lie algebra and working with gC = g ⊗ C
commutes with taking cohomology, so we get

H∗(gC,C) = H∗(g,C)⊗C

Complexifying the Lie algebra of a compact semi-simple Lie group gives a com-
plex semi-simple Lie algebra, and we have now computed the cohomology of
these as

H∗(gC,C) = (Λ∗(gC))gC
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Besides H0, one always gets a non-trivial H3, since one can use the Killing
form < ·, · > to produce an adjoint-invariant 3-form

ω3(X1, X2, X3) =< x1, [X2, X3] >

For G = SU(n), gC = sl(n,C), and one gets non-trivial cohomology classes
ω2i+1 for i = 1, 2, · · ·n, such that

H∗(sl(n,C)) = Λ∗(ω3, ω5, · · · , ω2n+1)

the exterior algebra generated by the ω2i+1.
To compute Lie algebra cohomology H∗(g, V ) with coefficients in a repre-

sentation V , we can go through the same procedure as above, starting with
differential forms on G taking values in V , or we can just use exactness of the
averaging functor that takes V to V G. Either way, we end up with the result

H∗(g, V ) = H∗(g,C)⊗ V g

The H0 piece of this is just the V g that we want when we are doing BRST, but
we also get quite a bit else: dim V g copies of the higher degree pieces of the Lie
algebra cohomology H∗(g,C). The Lie algebra cohomology here is quite non-
trivial, but doesn’t interact in a non-trivial way with the process of identifying
the invariants V g in V .

7 Highest Weight Theory

In the last section we discussed the Lie algebra cohomology H∗(g, V ) for g a
semi-simple Lie algebra. Because the invariants functor is exact here, this tells
us nothing about the structure of irreducible representations in this case. In this
section we’ll consider a different sort of example of Lie algebra cohomology, one
that is intimately involved with the structure of irreducible g-representations.

7.1 Structure of semi-simple Lie algebras

A semi-simple Lie algebra is a direct sum of non-abelian simple Lie algebras.
Over the complex numbers, every such Lie algebra is the complexification gC of
some real Lie algebra g of a compact, connected Lie group. The Lie algebra g
of a compact Lie group G is, as a vector space, the direct sum

g = t⊕ g/t

where t is a commutative sub-algebra (the Cartan sub-algebra), the Lie algebra
of T , a maximal torus subgroup of G.

Note that t is not an ideal in g, so g/t is not a subalgebra. g is itself a
representation of g (the adjoint representation: π(X)Y = [X,Y ]), and thus a
representation of the subalgebra t. On any complex representation V of g, the
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action of t can be diagonalized, with eigenspaces V λ labeled by the correspond-
ing eigenvalues, given by the weights λ. These weights λ ∈ t∗C are defined by
(for v ∈ V λ, H ∈ t):

π(H)v = λ(H)v

Complexifying the adjoint representation, the non-zero weights of this rep-
resentation are called roots, and we have

gC = tC ⊕ ((g/t)⊗C)

The second term on the right is the sum of the root spaces V α for the roots
α. If α is a root, so is −α, and one can choose decompositions of the set of roots
into “positive roots” and “negative roots” such that:

n+ =
⊕

+roots α

(gC)α, n− =
⊕

−roots α
(gC)α

where n+ (the ”nilpotent radical”) and n− are nilpotent Lie subalgebras of gC.
So, while g/t is not a subalgebra of g, after complexifying we have decomposi-
tions

(g/t)⊗C = n+ ⊕ n−

The choice of such a decomposition is not unique, with the Weyl group W (for
a compact group G, W is the finite group N(T )/T , N(T ) the normalizer of T
in G) permuting the possible choices.

Recall that a complex structure on a real vector space V is given by a
decomposition

V ⊗C = W ⊕W

so the above construction gives |W | different invariant choices of complex struc-
ture on g/t, which in turn give |W | invariant ways of making G/T into a complex
manifold.

The simplest example to keep in mind is G = SU(2), T = U(1), W = Z2,
where g = su(2), and gC = sl(2,C). One can choose T to be the diagonal
matrices, with a basis of t given by

i

2
σ3 =

1
2

(
i 0
0 −i

)
and bases of n+, n− given by

1
2

(σ1 + iσ2) =
(

0 1
0 0

)
,

1
2

(σ1 − iσ2) =
(

0 0
1 0

)
(here the σi are the Pauli matrices). The Weyl group in this case just inter-
changes n+ ↔ n−.
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7.2 Highest weight theory

Irreducible representations V of a compact Lie group G are finite dimensional
and correspond to finite dimensional representations of gC. For a given choice
of n+, such representations can be characterized by their subspace V n+

, the
subspace of vectors annihilated by n+. Since n+ acts as “raising operators”,
taking subspaces of a given weight to ones with weights that are more positive,
this is called the “highest weight” space since it consists of vectors whose weight
cannot be raised by the action of gC. For an irreducible representation, this
space is one dimensional, and we can label irreducible representations by the
weight of V n+

. The irreducible representation with highest weight λ is denoted
Vλ. Note that this labeling depends on the choice of n+.

Getting back to Lie algebra cohomology, while H∗(g, V ) = 0 for an irre-
ducible representation V , the Lie algebra cohomology for n+ is more interest-
ing, with H0(n+, V ) = V n+

, the highest weight space. t acts not just on V ,
but on the entire complex C(n+, V ), in such a way that the cohomology spaces
Hi(n+, V ) are representations of t, so can be characterized by their weights.

For an irreducible representation Vλ, one would like to know which higher
cohomology spaces are non-zero and what their weights are. The answer to this
question involves a surprising ”ρ - shift”, a shift in the weights by a weight ρ,
where

ρ =
1
2

∑
+roots

α

half the sum of the positive roots. This is a first indication that it might be
better to work with spinors rather than with the exterior algebra that is used in
the Koszul resolution used to define Lie algebra cohomology. Much more about
this in a later section.

One finds that dimH∗(n+, Vλ) = |W |, and the weights occuring inHi(n+, Vλ)
are all weights of the form w(λ+ ρ)− ρ, where w ∈ W is an element of length
i. The Weyl group can be realized as a reflection group action on t∗, generated
by one reflection for each ”simple” root. The length of a Weyl group element
is the minimal number of reflections necessary to realize it. So, in dimension 0,
one gets H0(n+, Vλ) = V n+

with weight λ, but there is also higher cohomology.
Changing one’s choice of n+ by acting with the Weyl group permutes the differ-
ent weight spaces making up H∗(n+, V ). For an irreducible representation, to
characterize it in a manner that is invariant under change in choice of n+, one
should take the entire Weyl group orbit of the ρ - shifted highest weight λ, i.e.
the set of weights

{w(λ+ ρ), w ∈W}

In our G = SU(2) example, highest weights can be labeled by non-negative
half integral values (the ”spin” s of the representation)

s = 0,
1
2
, 1,

3
2
, 2, · · ·
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with ρ = 1
2 . The irreducible representation Vs is of dimension 2s + 1, and

one finds that H0(n+, Vs) is one-dimensional of weight s, while H1(n+, Vs) is
one-dimensional of weight −s− 1.

The character of a representation is given by a positive integral combination
of the weights

char(V ) =
∑

weights ω

(dim V ω)ω

(here V ω is the ω weight space). The Weyl character formula expresses this as a
quotient of expressions involving weights taken with both positive and negative
integral coefficients. The numerator and denominator have an interpretation in
terms of Lie algebra cohomology:

char(V ) =
χ(H∗(n+, V ))
χ(H∗(n+,C))

Here χ is the Euler characteristic: the difference between even-dimensional coho-
mology (a sum of weights taken with a + sign), and odd-dimensional cohomology
(a sum of weights taken with a - sign). Note that these Euler characteristics are
independent of the choice of n+.

The material in this last section goes back to Bott’s 1957 paper Homogeneous
Vector Bundles[4], with more of the Lie algebra story worked out by Kostant in
his 1961 Lie Algebra Cohomology and the Generalized Borel-Weil Theorem[5].
For an expository treatment with details, showing how one actually computes
the Lie algebra cohomology in this case, for U(n) see chapter VI.3 of Knapp’s Lie
Groups, Lie Algebras and Cohomology[3], or for the general case see chapter IV.9
of Knapp and Vogan’s Cohomological Induction and Unitary Representations[6].

8 Casimir Operators

For the case of G = SU(2), it is well-known from the discussion of angular
momentum in any quantum mechanics textbook that irreducible representations
can be labeled either by j, the highest weight (here, highest eigenvalue of J3 ),
or by j(j+1), the eigenvalue of J · J. The first of these requires making a choice
(the z-axis) and looking at a specific vector in the representation, the second
doesn’t. It was a physicist (Hendrik Casimir), who first recognized the existence
of an analog of J · J for general semi-simple Lie algebras, and the important role
that this plays in representation theory.

Recall that for a semi-simple Lie algebra g one has a non-degenerate, invari-
ant, symmetric bi-linear form (·, ·), the Killing form, given by

(X,Y ) = tr(ad(X)ad(Y ))

If one starts with g the Lie algebra of a compact group, this bilinear form is
defined on gC, and negative-definite on g. For a simple Lie algebra, taking the
trace in a different representation gives the same bilinear form up to a constant.
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As an example, for the case gC = sl(n,C), one can show that

(X,Y ) = 2n tr(XY )

here taking the trace in the fundamental representation as n by n complex
matrices.

One can use the Killing form to define a distinguished quadratic element Ω
of U(g), the Casimir element

Ω =
∑
i

XiX
i

where Xi is an orthonormal basis with respect to the Killing form and Xi is the
dual basis. On any representation V , this gives a Casimir operator

ΩV =
∑
i

π(Xi)π(Xi)

Note that, taking the representation V to be the space of functions C∞(G) on
the compact Lie group G, ΩV is an invariant second-order differential operator,
(minus) the Laplacian.

Ω is independent of the choice of basis, and belongs to U(g)g, the subalgebra
of U(g) invariant under the adjoint action. It turns out that U(g)g = Z(g), the
center of U(g). By Schur’s lemma, anything in the center Z(g) must act on
an irreducible representation by a scalar. One can compute the scalar for an
irreducible representation (π, V ) as follows:

Choose a basis (Hi, Xα, X−α) of gC with Hi an orthonormal basis of the
Cartan subalgebra tC, and X±α elements of n± in the ±α root-spaces of gC,
orthonormal in the sense of satisfying

(Xα, X−α) = 1

Then one has the following expression for Ω:

Ω =
∑
i

H2
i +

∑
+ roots

(XαX−α +X−αXα)

To compute the scalar eigenvalue of this on an irreducible representation
(π, Vλ) of highest weight λ, one can just act on a highest weight vector v ∈
V λ = V n+

. On this vector the raising operators π(Xα) act trivially, and using
the commutation relations

[Xα, X−α] = Hα

(Hα is the element of tC satisfying (H,Hα) = α(H)) one finds

Ω =
∑
i

H2
i +

∑
+roots

Hα =
∑
i

H2
i + 2Hρ
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where ρ is half the sum of the positive roots, a quantity which keeps appearing
in this story. Acting on v ∈ V λ one finds

ΩVλv = (
∑
i

λ(Hi)2 + 2λ(Hρ))v

Using the inner-product < ·, · > induced on t∗ by the Killing form, this eigen-
value can be written as:

< λ, λ > +2 < λ, ρ >= ||λ+ ρ||2 − ||ρ||2

In the special case g = su(2), gC = sl(2,C), there is just one positive root,
and one can take

H1 = h =
(

1 0
0 −1

)
, Xα = e =

(
0 1
0 0

)
, X−α = f =

(
0 0
1 0

)
Computing the Killing form, one finds

(h, h) = 8, (e, f) = 4

and
Ω =

1
8
h2 +

1
4

(ef + fe) =
1
8
h2 +

1
4

(h+ 2fe)

On a highest weight vector Ω acts as

Ω =
1
8
h2 +

1
4
h =

1
8
h(h+ 2) =

1
2

(
h

2
(
h

2
+ 1))

This is 1/2 times the physicist’s operator J · J, and in the irreducible represen-
tation Vn of spin j = n/2, it acts with eigenvalue 1

2j(j + 1).
In the next section we’ll discuss the Harish-Chandra homomorphism, and

the question of how the Casimir acts not just on V n+
= H0(n+, V ), but on all

of the cohomology H∗(n+, V ). After that, taking note that the Casimir is in
some sense a Laplacian, we’ll follow Dirac and introduce Clifford algebras and
spinors in order to take its square root.

9 The Harish-Chandra Homomorphism

The Casimir element discussed in the last section is a distinguished quadratic
element of the center Z(g) = U(g)g (note, here g is a complex semi-simple Lie
algebra), but there are others, all of which will act as scalars on irreducible rep-
resentations. The information about an irreducible representation V contained
in these scalars can be packaged as the so-called infinitesimal character of V , a
homomorphism

χV : Z(g)→ C

defined by zv = χV (z)v for any z ∈ Z(g), v ∈ V . Just as was done for the
Casimir, this can be computed by studying the action of Z(g) on a highest-
weight vector.
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Note: this is not the same thing as the usual (or global) character of a
representation, which is a conjugation-invariant function on the group G with
Lie algebra g, given by taking the trace of a matrix representation. For infinite
dimensional representations V , the character is not a function on G, but a
distribution ΘV . The link between the global and infinitesimal characters is
given by

ΘV (zf) = χV (z)ΘV (f)

i.e. ΘV is a conjugation-invariant eigendistribution on G, with eigenvalues for
the action of Z(g) given by the infinitesimal character. Knowing the infinitesimal
character gives differential equations for the global character.

The Poincare-Birkhoff-Witt theorem implies that for a simple complex Lie
algebra g one can use the decomposition (here the Cartan subalgebra is h = tC)

g = h⊕ n+ ⊕ n−

to decompose U(g) as

U(g) = U(h)⊕ (U(g)n+ + n−U(g))

and show that If z ∈ Z(g), then the projection of z onto the second factor is in
U(g)n+∩n−U(g). This will give zero acting on a highest-weight vector. Defining
γ′ : Z(g) → Z(h) to be the projection onto the first factor, the infinitesimal
character can be computed by seeing how γ′(z) acts on a highest-weight vector.

Remarkably, it turns out that one gets something much simpler if one com-
poses γ′ with a translation operator

tρ : U(h)→ U(h)

corresponding to the mysterious ρ ∈ h∗, half the sum of the positive roots.
To define this, note that since h is commutative, U(h) = S(h) = C[h∗], the
symmetric algebra on h, which is isomorphic to the polynomial algebra on h∗.
Then one can define

tρ(φ(λ)) = φ(λ− ρ)

where φ ∈ C[h∗] is a polynomial on h∗, and λ ∈ h∗.
The composition map

γ = tρ ◦ γ′ : Z(g)→ U(h) = C[h∗]

is also homomorphism, known as the Harish-Chandra homomorphism. One can
show that the image is invariant under the action of the Weyl group, and the
map is actually an isomorphism

γ : Z(g)→ C[h∗]W

It turns out that the ring C[h∗]W is generated by dim h independent homoge-
neous polynomials. For g = sl(n,C) these are of degree 2, 3, · · · , n (where the
first is the Casimir).
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To see how things work in the case of g = sl(2,C), where there is one
generator, the Casimir Ω, recall that

Ω =
1
8
h2 +

1
4

(ef + fe) =
1
8
h2 +

1
4

(h+ 2fe)

so one has
γ′(Ω) =

1
4

(h+
1
2
h2)

Here tρ(h) = h− 1, so

γ(Ω) =
1
4

((h− 1) +
1
2

(h− 1)2) =
1
8

(h2 − 1)

which is invariant under the Weyl group action h→ −h.
Once one has the Harish-Chandra homomorphism γ, for eachλ ∈ h∗ one has

a homomorphism

χλ : z ∈ Z(g)→ χλ(z) = γ(z)(λ) ∈ C

and the infinitesimal character of an irreducible representation of highest weight
λ is χλ+ρ.

9.1 The Casselman-Osborne Lemma

We have computed the infinitesimal character of a representation of highest
weight λ by looking at how Z(g) acts on V n+

= H0(n+, V ). On V n+
, z ∈ Z(g)

acts by
z · v = χV (z)v

This space has weight λ, so U(h) = C[h∗] acts by evaluation at λ

φ · v = φ(λ)v

These two actions are related by the map γ′ : Z(g)→ U(h) and we have

χV (z) = (γ′(z))(λ) = (γ(z))(λ+ ρ)

It turns out that one can consider the same question, but for the higher coho-
mology groups Hk(n+, V ). Here one again has an action of Z(g) and an action
of U(h). Z(g) acts on k-cochains Ck(n+, V ) = HomC(Λkn+, V ) just by acting
on V , and this action commutes with d so is an action on cohomology. U(h)
acts simultaneously on n+ and on V , again in a way that descends to cohomol-
ogy. The content of the Casselman-Osborne lemma is that these two actions
are again related in the same way by the Harish-Chandra homomorphism. If µ
is a weight for the h action on Hk(n+, V ), then

χV (z) = (γ′(z))(µ) = (γ(z))(µ+ ρ)
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Since χV (z) = (γ(z))(λ + ρ), one can use this equality to show that the
weights occurring in Hk(n+, V ) must satisfy

(µ+ ρ) = w(λ+ ρ)

and thus
µ = w(λ+ ρ)− ρ

for some element w ∈ W . Non zero elements of Hk(n+, V ) can be constructed
with these weights, and the Casselman-Osborne lemma used to show that these
are the only possible weights. This gives the computation of Hk(n+, V ) as an h
- module referred to earlier in these notes, which is known as Kostant’s theorem
(the algebraic proof was due to Kostant[5], an earlier one using geometry and
sheaf cohomology was due to Bott[4]).

For more details about this and a proof of the Casselman-Osborne lemma,
see Knapp’s Lie Groups, Lie Algebras and Cohomology[3], where things are
worked out for the case of g = gl(n,C) in chapter VI.

9.2 Generalizations

So far we have been considering the case of a Cartan subalgebra h ⊂ g, and its
orthogonal complement with a choice of splitting into two conjugate subalgebras,
n+ ⊕ n−. Equivalently, we have a choice of Borel subalgebra b ⊂ g, where
b = h⊕ n+. At the group level, this corresponds to a choice of Borel subgroup
B ⊂ G, with the space G/B a complex projective variety known as a flag
manifold. More generally, much of the same structure appears if we choose
larger subgroups P ⊂ G containing B such that G/P is a complex projective
variety of lower dimension. In these cases Lie P = l ⊕ u+, with l (the Levi
subalgebra) a reductive algebra playing the role of the Cartan subalgebra, and
u+ playing the role of n+.

In this more general setting, there is a generalization of the Harish-Chandra
homomorphism, now taking Z(g) to Z(l). This acts on the cohomology groups
Hk(u+, V ), with a generalization of the Casselman-Osborne lemma determin-
ing what representations of l occur in this cohomology. The Dirac cohomology
formalism to be discussed later generalizes this even more, to cases of a reduc-
tive subalgebra r with orthogonal complement that cannot be given a complex
structure and split into conjugate subalgebras. It also provides a compelling
explanation for the continual appearance of ρ, as the highest weight of the spin
representation.

10 Clifford Algebras

Clifford algebras are well-known to physicists, in the guise of matrix algebras
generated by the γ -matrices first used in the Dirac equation. They also have
a more abstract formulation, which will be the topic of this posting. One way
to think about Clifford algebras is as a “quantization” of the exterior algebra,
associated with a symmetric bilinear form.
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Given a vector space V with a symmetric bilinear form (·, ·), the associated
Clifford algebra Cliff(V, (·, ·)) can be defined by starting with the tensor algebra
T ∗(V ) (T k(V ) is the k-th tensor power of V ), and imposing the relations

v ⊗ w + w ⊗ v = −2(v, w)1

where v, w ∈ V = T 1(V ), 1 ∈ T 0(V ). Note that many authors use a plus
instead of a minus sign in this relation. The case of most interest in physics
is V = R4, (·, ·) the Minkowski inner product of signature (3,1). The theory
of Clifford algebras for real vector spaces V is rather complicated. Here we’ll
stick to complex vector spaces V , where the theory is much simpler, partially
because over C there is, up to equivalence, only one non-degenerate symmetric
bilinear form. We will suppress mention of the bilinear form in the notation,
writing Cliff(V ) for Cliff(V, (·, ·)).

For a more concrete definition, one can choose an orthonormal basis ei of V .
Then Cliff(V ) is the algebra generated by the ei, with multiplication satisfying
the relations

e2
i = −1, eiej = −ejei (i 6= j)

One can show that these complex Clifford algebras are isomorphic to matrix
algebras, more precisely

Cliff(C2n) 'M(C, 2n), Cliff(C2n+1) 'M(C, 2n)⊕M(C, 2n)

10.1 Clifford Algebras and Exterior Algebras

The exterior algebra Λ∗(V ) is the algebra of anti-symmetric tensors, with prod-
uct the wedge product ∧. This is also exactly what one gets if one takes the Clif-
ford algebra Cliff(V ), with zero bilinear form. Multiplying a non-degenerate
symmetric bilinear form (·, ·) by a parameter t gives for non-zero t a Clifford
algebra Cliff(V, t(·, ·)) that can be thought of as a deformation of the exterior
algebra Λ∗(V ). Thinking of the exterior algebra on V of dimension n as the
algebra of functions on n anticommuting coordinates, the Clifford algebra can
be thought of as a ”quantization” of this, taking functions (elements of Λ∗(V ))
to operators (elements of Cliff(V ), matrices in this case).

While Λ∗(V ) is a Z graded algebra, Cliff(V ) = Cliffeven(V )⊕Cliffodd(V )
is only Z2-graded, since the Clifford product does not preserve degree but can
change it by two when multiplying generators. The Clifford algebra is filtered
by a Z degree, taking Fp(Cliff(V )) ⊂ Cliff(V ) to be the subspace of elements
that can be written as sums of ≤ p generators. The exterior algebra is naturally
isomorphic to the associated graded algebra for this filtration

Λp(V ) ' Fp(Cliff(V ))/Fp−1(Cliff(V ))
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and Λ∗(V ) and Cliff(V ) are isomorphic as vector spaces. One choice of such
an isomorphism is given by composing the skew-symmetrization map

v1 ∧ v2 ∧ · · · ∧ vp =
1
p!

∑
s∈Sp

sgn(s)vs(1) ⊗ vs(2) ⊗ · · · ⊗ vs(p)

with the projection T ∗(V )→ Cliff(V ).
Denoting this map by q, it is sometimes called the “quantization map”.

Using an orthonormal basis ei, q acts as

q(ei1 ∧ ei2 ∧ · · · ∧ eip) = ei1ei2 · · · eip

The inverse σ = q−1 : Cliff(V )→ Λ∗(V ) is sometime called the “symbol map”.
This identification as vector spaces is known as the “Chevalley identifica-

tion”. Using it, one can think of the Clifford algebra as just an exterior algebra
with a different product.

10.2 Clifford Modules and Spinors

Given a Clifford algebra, one would like to classify the modules over such an
algebra, the Clifford modules. Such a module is given by a vector space M and
an algebra homomorphism

π : Cliff(V )→ End(M)

To specify π, we just need to know it on generators, and see that it satisfies

π(v)π(w) + π(w)π(v) = −2(v, w)Id

One such Clifford module is M = Λ∗V , with

π(v)ω = v ∧ ω − ivω

where iv is contraction by v. This gives the inverse to the quantization map
(the symbol map σ) as

σ : a ∈ Cliff(V )→ π(a)1 ∈ Λ∗(V )

Λ∗(V ) is not an irreducible Clifford module, and we would like to decom-
pose it into irreducibles. For dimCV = 2n even, there will be a single such
irreducible S, of dimension 2n, and the module map π : Cliff(V )→ End(S) is
an isomorphism. In the rest of this posting we’ll stick to the this case, for the
odd dimensional case see the references mentioned at the end.

To pick out an irreducible module S ⊂ Λ∗(V ), one can begin by choosing
a linear map J : V → V such that J2 = −1 and J is orthogonal ((Jv, Jw) =
(v, w)). Then let WJ ⊂ V be the subspace on which J acts by +i, W J be
the subspace on which J acts by −i. Note that V is a complex vector space,
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and now has two linear maps on it that square to −1, multiplication by i, and
multiplication by J . WJ is an isotropic subspace of V , since

(v1, v2) = (Jv1, Jv2) = (iv1, iv2) = −(v1, v2)

for any v1, v2 ∈ WJ . We now have a decomposition V = Wj ⊕W J into two
isotropic subspaces. Since the bilinear form is zero on these subspaces, we get
two subalgebras of the Clifford algebra, Λ∗(WJ) and Λ∗(WJ). It turns out that
one can choose S ' Λ∗(WJ).

One can make this construction very explicit by picking a particular J , for
instance the one that acts on the element of an orthonormal basis by Je2j−1 =
e2j , Je2j = −e2j−1 for j = 1, · · ·n. Letting wj = e2j−1 + ie2j we get a basis of
WJ . To get an explicit representation of S as a Cliff(V ) module isomorphic
to Λ∗(Cn), we will use the formalism of fermionic annihilation and creation
operators. These are the operators on an exterior algebra one gets from wedging
by or contracting by an orthonormal vector, operators a+

i and ai for i = 1, · · · , n
satisfying

{ai, aj} = {a+
i , a

+
j } = 0

{ai, a+
j } = δij

In terms of these operators on Λ∗(Cn), Cliff(n) acts by

e2j−1 = a+
j − aj

e2j = −i(a+
j + aj)

10.3 The Spin Representation

The group that preserves (·, ·) is O(n,C), and its connected component of the
identity SO(n,C) has compact real form SO(n). SO(n) has a non-trivial double
cover, the group Spin(n). One can construct Spin(n) explicitly as invertible
elements in Cliff(V ) for V = Rn, and its Lie algebra using quadratic elements
of Cliff(V ), with the Lie bracket given by the commutator in the Clifford
algebra.

For the even case, a basis for the Cartan subalgebra of Lie Spin(2n) is given
by the elements

1
2
e2j−1e2j

These act on the spinor module S ' Λ∗(Cn) as

1
2
e2j−1e2j = −i1

2
(a+
j − aj)(a

+
j + aj) = i

1
2

[aj , a+
j ]

with eigenvalues (± 1
2 , · · · ,±

1
2 ). S is not irreducible as a representation of

Spin(2n), but decomposes as S = S+⊕S− into two irreducible half-spin repre-
sentations, corresponding to the even and odd degree elements of Λ∗(Cn).
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With a standard choice of positive roots, the highest weight of S+ is

(+
1
2
,+

1
2
· · · ,+1

2
,+

1
2

)

and that of S− is
(+

1
2
,+

1
2
· · · ,+1

2
,−1

2
)

Note that the spinor representation is not a representation of SO(2n), just of
Spin(2n). However, if one restricts to the U(n) ⊂ SO(2n) preserving J , then the
Λ∗(WJ) are the fundamental representations of this U(n). These representations
have weights that are 0 or 1, shifted by + 1

2 from those of the spin representation.
One can’t restrict from Spin(2n) to U(n), but one can restrict to Ũ(n), a double
cover of U(n). On this double cover the notion of Λn(Cn)

1
2 makes sense and

one has, as Ũ(n) representations

S ⊗ Λn(Cn)
1
2 ' Λ∗(Cn)

So, projectively, the spin representation is just Λ∗(Cn), but the projective
factor is a crucial part of the story.

The above has been a rather quick sketch of a long story. For more details,
a good reference is the book Spin Geometry[7] by Lawson and Michelsohn.
Chapter 12 of Segal and Pressley’s Loop Groups[8] contains a very geometric
version of the above material, in a form suitable for generalization to infinite
dimensions. My notes for my graduate class also have a bit more detail, see
http://www.math.columbia.edu/˜woit/notes19.pdf.

11 Clifford Algebras and Lie Algebras

When a Lie group with Lie algebra g acts on a manifold M , one gets two sorts of
actions of g on the differential forms Ω∗(M). For each X ∈ g one has operators:

• LX : Ωk(M) → Ωk(M), the Lie derivative along the vector field on M
corresponding to X.

• iX : Ωk(M) → Ωk−1(M), contraction by the vector field on M corre-
sponding to X.

These operators satisfy the relation diX + iXd = LX where d is the de Rham
differential d : Ωk(M) → Ωk+1(M), and the operators d, iX ,LX are (super)-
derivations. In general, an algebra carrying an action by operators satisfying
the same relations satisfied by d, iX ,LX will be called a g-differential algebra.
It will turn out that the Clifford algebra Cliff(g) of a semi-simple Lie algebra
g carries not just the Clifford algebra structure, but the additional structure of
a g-differential algebra, in this case with Z2, not Z grading.

Note that in this section the commutator symbol will be the supercommuta-
tor in the Clifford algebra (commutator or anti-commutator, depending on the
Z2 grading). When the Lie bracket is needed, it will be denoted [·, ·]g.

22



To get a g-differential algebra on Cliff(g) we need to construct super-
derivations iClX , LClX , and dCl satisfying the appropriate relations. For the first
of these we don’t need the fact that this is the Clifford algebra of a Lie algebra,
and can just define

iClX (·) = [−1
2
X, ·]

For LClX , we need to use the fact that since the adjoint representation pre-
serves the inner product, it gives a homomorphism

ãd : g→ spin(g)

where spin(g) is the Lie algebra of the group Spin(g) (the spin group for the inner
product space g), which can be identified with quadratic elements of Cliff(g),
taking the commutator as Lie bracket. Explicitly, if Xa is a basis of g, X∗a the
dual basis, then

ãd(X) =
1
4

∑
a

X∗a [X,Xa]g

and we get operators acting on Cliff(g)

LClX (·) = [ãd(X), ·]

Remarkably, an appropriate dCl can be constructed using a cubic element
of Cliff(g). Let

γ =
1
24

∑
a,b

X∗aX
∗
b [Xa, Xb]g

then
dCl(·) = [γ, ·]

dCl ◦ dCl = 0 since γ2 is a scalar which can be computed to be − 1
48 trΩg,

where Ωg is the Casimir operator in the adjoint representation.
The above constructions give Cliff(g) the structure of a filtered g-differential

algebra, with associated graded algebra Λ∗(g). This gives Λ∗(g) the structure
of a g-differential algebra, with operators iX ,LX , d. The cohomology of this
differential algebra is just the Lie algebra cohomology H∗(g,C).

Cliff(g) can be thought of as an algebra of operators corresponding to the
quantization of an anti-commuting phase space g. Classical observables are
anti-commuting functions, elements of Λ∗(g∗). Corresponding to iX ,LX , d one
has both elements of Λ∗(g∗) and their quantizations, the operators in Cliff(g)
constructed above.

For more details about the above, see [9],[10],[11], and [12]
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12 Equivariant Cohomology and the Weil Alge-
bra

13 The Quantum Weil Algebra and the Kostant
Dirac Operator

14 Dirac Cohomology

15 Semi-infinite Cohomology
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