
Topics in Representation Theory: The Killing
Form, Reflections and Classification of Root

Systems

1 Roots and the Killing Form

So far we have just used the combinatorial structure coming from the roots and
the action of the Weyl group. To go further with this theory, in particular to
define explicitly the reflections that generate the Weyl group, we need to fix an
inner product on t∗. This can be done using the Killing form, and since this
provides an adjoint-invariant inner product, it will turn out that the Weyl group
acts by isometries.

Recall that we defined the Killing form on g as

K(X, Y ) = Tr(ad(X) ◦ ad(Y ))

and it is invariant under the adjoint action of G on g. If g has an abelian ideal,
then there will be directions on which ad is zero and the bilinear form will be
degenerate. One can show that for semi-simple Lie algebras the Killing form is
non-degenerate.

For semi-simple Lie groups the Killing form can be used to define an inner
product which in general may not be positive definite. Non-compact groups such
as SL(2,R) have an indefinite Killing form. For compact groups the Killing form
will be negative definite since

Theorem 1. For g the Lie algebra of a compact semisimple Lie group, the
Killing form K is strictly negative definite on g, i.e. for any X 6= 0, K(X, X) <
0.

Proof:
If g is the Lie algebra of a semi-simple compact Lie group G, one can choose

a G-invariant inner product on (·, ·) on g by averaging an arbitrary one. Then
Ad is an orthogonal representation and elements ad(X) of its Lie algebra are
skew-symmetric (ad(X)t = −ad(X)). So

K(X, X) = Tr(ad(X)ad(X)) = −Tr((ad(X))tad(X))

But for any real matrix

Tr(AtA) =
∑
i,j

(aij)2 > 0

for A 6= 0.
The Killing form K can be extended to a bilinear form on gC. Recall that

the real elements of g sit inside gC as the purely imaginary elements. Thus K
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will be positive definite on these elements and we can define the inner product
we want to use as

< ·, · >= K(·, ·)

This inner product will be Ad-invariant and positive-definite for non-zero real
elements of gC. If we restrict it to tC and use the fact that for H ∈ tC, ad(H)
is diagonal with eigenvalues given by the roots αi(H) we see that

< H, H >=
∑
i∈R

(αi(H))2

where R is the set of roots, containing both the positive and negative ones.
Note that these are now the complex roots, and that we will be interested in
H ∈ it ⊂ tC, and on these the inner product is positive.

For the example of G = SU(n), recall that tC consists of the diagonal ma-
trices of trace 0, and the roots are

αij(Hλ) = λi − λj

for i 6= j, so

< Hλ,Hλ > =
∑
i 6=j

(λi − λj)2

= 2(n− 1)
∑

i

λi
2 + 2

∑
i 6=j

λiλj

= (2(n− 1) + 2)
∑

i

λi
2 + 2(

∑
i

λi)2

= 2n
∑

i

λi
2

We see that the Killing form gives a positive definite inner product < ·, · >
on t, and this can be used to identify t and t∗ in the standard way

v ∈ t →< v, · >∈ t∗

With this identification, we can also interpret the inner product as an inner
product on t∗.

2 Weyl Group Elements as Reflections

We have seen that elements of the Weyl group W (G, T ) act on the roots by
permuting them. It turns out that associated to each root α there is a distin-
guished element sα ∈ W (G, T ). sα acts on T leaving invariant the space Uα,
and on the Lie algebra t leaving invariant the diagram of the group. Since Weyl
group elements come from elements in N(T ) acting by conjugation, the action
is an isometry when we use the Ad-invariant inner product defined using the
Killing form.
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Using the inner product to identify t and t∗ we will study the action of the
sα as reflection transformations in t∗, where sα is a reflection in the hyperplane
orthogonal to the root α and takes the root α to the root −α. For a proof that
these reflection maps are actually elements of the Weyl group, see [3] Theorem
VIII.8.1. We need this theorem to know that these reflection maps always take
roots to roots. The theorem tells us also that the element of N(T ) that gives
the reflection sα is

exp(
π

2
(Xα −X−α))

where Xα is an element of gα, and X−α a conjugate element in g−α.
If we want to reflect an element x ∈ t∗ in the hyperplane perpendicular to

α, the formula for the reflection map is

sα(x) = x− 2
< α, x >

< α,α >
α

Since the Weyl group acts on roots by permuting them, if β and α are simple
roots, then

sα(β) = β − 2
< α, β >

< α,α >
α

is a root and must be expressible as a linear combination of α and β with integer
coefficients. So

2
< x,α >

< α,α >

must be an integer.
Defining

Definition 1 (Cartan Matrix). For a rank r group, the r by r matrix A of
integers

nαβ = 2
< x,α >

< α,α >

is called the Cartan matrix and its entries are called the Cartan numbers.

Note that the diagonal entries nαα of the Cartan matrix must be equal to 2.
This integrality condition puts very tight constraints on the relative config-

urations of two roots. Using the formula for the inner product of two vectors in
terms of their lengths and the angle between them

nαβ = 2
√

< α,α >
√

< β, β > cos(θαβ)
< α,α >

where θαβ is the angle between the roots α and β, we have

nαβnβα = 4 cos2(θαβ)

and since this must be integral it can only take on the values 0, 1, 2, 3, 4. The
case 4 correspond to collinear roots, and there are a total of 7 possible choices
of ways to satisfy this integrality condition for two non-collinear roots.
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nαβ nβα θαβ
<β,β>
<α,α>

0 0 π/2
1 1 π/3 1
-1 -1 2π/3 1
1 2 π/4

√
2

-1 -2 3π/4
√

2
1 3 π/6

√
3

-1 -3 5π/6
√

3

3 An Example: SU(3)

We will work out in detail what happens for perhaps the simplest non-trivial
case, that of G = SU(3). Here the rank is two and t∗ is spanned by two simple
roots

α12(Hλ) = λ1 − λ2 and α23(Hλ) = λ2 − λ3

The reflection sα12 is just the Weyl group transformation interchanging = λ1

and λ2. so
sα12(α23) = α13 = α12 + α23

and the reflection sα23 similarly interchanges = λ2 and λ3, so

sα23(α12) = α13 = α12 + α23

This shows that
nα12α23 = nα23α12 = −1

which implies that the Cartan matrix for SU(3) is

A =
(

2 −1
−1 2

)
and the angle between α12 and α23 is 2π/3.

We can thus draw the configuration of the simple roots as follows
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Configuration of Simple Roots for SU(3)

Note that the two reflection maps sα12 and sα23 generate the entire Weyl
group S3 of six elements as follows

1, sα12 , sα23 , sα23sα12 , sα12sα23 , sα12sα23sα12

The six Weyl chambers can be labelled by the sequence of reflections necessary
to take the fundamental Weyl chamber to the given Weyl chamber.

Diagram 2: Weyl Chambers and Reflections for SU(3)

4 Dynkin Diagrams and the Classification of Semi-
simple Lie Algebra

The system of roots for a simple complex Lie algebra can be generated from the
simple roots by acting with the reflections that generate the Weyl group. The
possible configurations of systems of simple roots are limited by the constraints
derived in the previous section. One can construct a list of all possible systems
of simple roots, how this is done is outlined in [3] and in [2] (see chapter 2 of
the article by Carter). We won’t go through this derivation, but the end result
is that one can associate to each possible system of simple root a diagram and
then classify all possible diagrams.

Definition 2 (Dynkin Diagram). The Dynkin diagram of a system of simple
roots is a graph with one node for each simple root α. The nodes corresponding
to two different simple roots α and β are joined together by nαβnβα bonds. If α
and β are of different length, the bond between them contains an arrow pointing
to the longer one.
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The Dynkin diagram for SU(3) contains two nodes, connected by a sin-
gle bond. The full classification theorem shows that there are four infinite
families of Dynkin diagrams that correspond to the the families of classical
groups SU(n), SO(2n), SO(2n + 1), Sp(n), and five exceptional cases called
G2, F4, E6, E7, E8, where the subscript is the rank of the group. The group
G2 can be interpreted as the automorphism group of the octonions, the others
have no simple geometrical interpretation.

For more details on the exceptional groups, see [1]. For more details on the
root systems of the classical groups, see [3]. We have already seen a little bit
about SU(n) and will study the orthogonal groups SO(n) in detail later on in
the course using Clifford algebras and the spin double covers Spin(n).
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