
Topics in Representation Theory: SU(n),
Weyl Chambers and the Diagram of a Group

1 Another Example: G = SU(n)

Last time we began analyzing how the maximal torus T of G acts on the adjoint
representation, defining the roots of G as the non-trivial irreducibles that occur
in this representation. The analysis proceeds by complexifying the Lie algebra,
after which the adjoint actions of all H ∈ tC are diagonalizable, with eigenvalues
the complex roots and eigenvectors the root spaces. In general we have the
commutation relations

[H,Eαi
] = αi(H)Eαi

Here H ∈ tC, the complex root is a complex linear map

αi : tC → C

and
Eαi

⊂ gC

is one of the root spaces.
In the case G = SU(2), gC = sl(2,C), we can take elements of the Cartan

subalgebra tC to be 2 by 2 diagonal matrices of the form

Hλ = λσ3 =
(

λ 0
0 −λ

)
and the two root spaces consist of matrices with entries proportional to

X+ =
1
2
(σ1 + iσ2) =

(
0 1
0 0

)
with root

α(Hλ) = 2λ

and

X− =
1
2
(σ1 − iσ2) =

(
0 0
1 0

)
with root −α.

The theory of roots and root spaces is one part of representation theory where
the SU(2) example is too trivial to be useful since here the rank is one, and there
is only one root (and its conjugate). We need to begin looking at higher rank
examples, and will begin with the case of G = SU(n), gC = sl(n,C). Note that
while some formulas are simpler for the case of G = U(n), gC = gl(n,C), this
is not a semi-simple group and one needs to analyze its normal U(1) subgroups
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separately. For this case T can be chosen to be the diagonal matrices D with
entries

Djj = eiθj ,
∏

j=1,n

eiθj = 1

and the corresponding Cartan subalgebra consists of diagonal matrices Hλ with
entries

(Hλ)jj = λj ,
n∑

j=1

λj = 0

Here the subscript λ now refers to the entire set of n numbers λi. The root
spaces are labelled by pairs j, k, j 6= k of integers from 1 to n and correspond
to matrices proportional to the matrix Ejk all of whose entries are 0 except for
the j, k’th which is 1. Since

[Hλ, Ejk] = (λj − λk)Ejk

the complex roots are given by

αjk(Hλ) = λj − λk

The Weyl group in this case is the group Sn, acting on T by permuting the
Djj .

Note that roots come in pairs of opposite sign. Making a choice of one of
each pair is a choice of which roots are “positive”. One could for example choose
in this example positive roots to be the

αjk, j < k

but note that this choice is not invariant under the Weyl group. The Weyl group
acts on the set of roots, but does not respect the decomposition into positive
and negative roots.

A specific example to continually keep in mind, one where we can easily draw
things, is the case of G = SU(3). Here the rank is two, and G/T is a complex
manifold of six real dimensions or three complex dimensions. There are a total
of six roots

α12(Hλ) = λ1 − λ2

α23(Hλ) = λ2 − λ3

α13(Hλ) = λ1 − λ3

and their negatives. The three positive roots are not independent, they satisfy
the relation

α13 = α12 + α23

We will draw these as vectors in a plane that can be identified with

it ⊂ tC

Wel’ll see a little later that the Killing form gives a natural inner product on
this space, but for now we’ll avoid using this, just dealing with the parts of the
theory of roots that don’t actually need the inner product.
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2 Weyl Chambers and the Diagram of a Group

Recall that we defined the Weyl group W (G, T ) to be N(T )/T , this is a group
of automorphisms of T that come from conjugation by an element of G.

We saw in our example that the Weyl group Sn of SU(n) permutes its
roots. In general the Weyl group acts on the set of roots since a root θα is a
homomorphism

θα : T → GL(g)

and an element w ∈ W (G, T ) corresponds to a homomorphism

w : t ∈ T → xtx−1 ∈ T

for some x ∈ G. Composing these two maps gives a new root w(α).
Elements t ∈ T for which the group

N(t) = {g ∈ G : gtg−1 = t}

has dimension greater than dim T are said to be singular, those with dimension
equal to dim T are said to be regular. In our example of G = SU(n), the
regular elements are those where all the diagonal elements in T are distinct,
the singular ones are those where two or more diagonal elements are identical.
To understand the structure of the set of singular points in T , for each root θα

define

Definition 1. For each root θα, there is a codimension one subgroup of T

Uα = ker(θα) = ker(θ−α)

The point t ∈ Uα is a singular points of T , since the root space gα generates
a one-parameter subgroup of G, not in T , of elements that commute with t, so
the the dimension of N(T ) is greater than the dimension of T . Note that the
intersection of all the Uα consists of elements that commute with all of G, the
center Z(G) of G.

The Stiefel diagram of a group is the set consisting of all exp−1Uα and will
consist of infinite sets of parallel hyperplanes in t.

If we pass to the Lie algebra (now α will be thought of as elements of t∗)
and just look at those that go through zero we can define

Definition 2 (Diagram of G). The infinitesimal diagram or diagram of G
consists of the hyperplanes

Lie(Uα) = ker α ⊂ t

i.e. those elements v ∈ t such that α(v) = 0.
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Diagram for SU(3)

The hyperplanes of the diagram divide t into finitely many convex regions

Definition 3 (Weyl Chambers). Given a choice of positive roots, a Weyl
chamber is a set of the form

{v ∈ t : εiαi(v) > 0}

for all positive roots αi and some choice of signs εi = ±1.
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Weyl Chambers for SU(3)
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The roots are not independent, we can express some in terms of others. A
set of roots that form a basis are called simple roots

Definition 4 (Simple Roots). A subset S of the set R of roots is called a
system of simple roots if the roots in S are linearly independent and every root
β ∈ R can be written as

β =
∑
α∈S

mα · α

with mα integers all ≥ 0 or ≤ 0.

In the case of SU(3), a set of simple roots will have two elements. One
possible choice of the set S of simple roots is

S = {α12, α23}

A choice of a set S of simple roots is equivalent to a choice of positive roots.
Positive roots are those where all mα are positive, negative roots ones where
all mα are negative. Corresponding to each choice of S there is a distinguished
Weyl chamber

Definition 5. The fundamental Weyl chamber corresponding to a set S of
simple roots is

K(S) = {v ∈ t : αi(v) > 0}

for all αi in S.

α

α

12

23

U

U α

α

23

12

Fundamental Weyl Chamber

Simple Roots and Fundamental Weyl Chamber for G = SU(3)

We will not go into much more detail about the general theory of the Weyl
group and how it acts on the diagram of G, referring to extensive discussions in
the texts [1],[2],[3]. but there are two basic facts that will be of importance.

1. The Weyl group acts simply transitively on the set possible choices of S.

2. The Weyl group is generated by reflections in the hyperplanes correspond-
ing to simple roots in S.
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