
Topics in Representation Theory: Maximal
Tori and the Weyl Group

The next part of this course will be concerned with compact, connected Lie
groups and their representations. Our goal is to

• Classify compact connected Lie groups

• Classify all irreducible representations of such groups

• Calculate the characters of these irreducible representations

Recall that the Peter-Weyl theorem tells one that the matrix elements of
irreducible representations form an orthonormal basis of L2(G) for G a compact
Lie group. Equivalently, there is an isomorphism of Hilbert spaces

L2(G) = ⊕π∈ĜVπ ⊗ V ∗
π

where the Hilbert space direct sum is over all irreducible representations of G.
Under the left action of G, the infinite dimensional representation on L2(G)
breaks up into finite dimensional representation spaces Vπ with multiplicity
dim Vπ. What the Peter-Weyl theorem doesn’t do is tell us what the represen-
tations are and how to tell them apart. We would like to know how to project
from L2(G) onto each of the Vπ ⊗ V ∗

π . This requires classifying the irreducible
representations and finding their characters.

1 Maximal Tori

For the case of G = U(1), Fourier analysis of functions on the circle tells us that
irreducible representations are all one dimensional, labelled by an integer n and
have character

χ(eiθ) = einθ

A group consisting of a finite product of k copies of U(1) will be called a torus
and its irreducible representations are labelled by k integers. For compact,
connected G, we will approach the problem of determining its irreducible rep-
resentations by considering a torus subgroup T of G that is as large as possible
and relating the representation theory of G (which we don’t understand) and
that of T (which we do understand). This will involve the space G/T of T cosets
of G. The geometry and topology of G/T is quite interesting and intimately
involved in the problem of finding the representations of G.

The spaces G/T have several different characterizations that we will explore
later. They are not only Kähler manifolds, but projective algebraic varieties and
so can be studied with the methods of algebraic geometry. They are sometimes
called “flag manifolds”, since in the case of G = U(n), G/T is the space of
complex “flags” in Cn, i.e chains of inclusions

C ⊂ C2 ⊂ · · · ⊂ Cn
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Another important way of characterizing these spaces is as orbits of elements
in g under the adjoint action of G. They are symplectic manifolds and can be
thought of as possible phase spaces of classical mechanical systems, systems
whose quantization leads to a quantum theory with finite dimensional Hilbert
space given by a representation of G.

Topologically, the cohomology ring of G/T turns out to be quite simple to
describe, with all cohomology in even degrees.

We’ll begin with the following definition:

Definition 1 (Maximal Torus). A torus T of G is a subgroup of G isomorphic
to a product of U(1) factors. A maximal torus T is a torus such that there is
no torus H in G such that

T ⊂ H

is a proper inclusion.

Note that a maximal torus is an abelian subgroup of G. It can be shown that
it is a maximal abelian subgroup of G, but not all maximal abelian subgroups
of G are torii.

A maximal torus T comes with the action of a group on it, the Weyl group:

Definition 2 (Weyl Group). Given a maximal torus T in a connected, com-
pact Lie group G, the normalizer of T is the subgroup

N(T ) = {g ∈ G : gT = Tg} = {g ∈ G : gTg−1 = T}

T is a normal subgroup of N(T ) and the quotient group

W (G, T ) = N(T )/T

is called the Weyl group of G.

We will later see that all choices of T are conjugate, so different T lead to
isomorphic W (G, T ). W (G/T ) acts on T since N(T ) acts by conjugation

(n, t) ∈ N × T → ntn−1 ∈ T

and its subgroup T acts trivially.
As well as considering the normalizer N(T ) of the entire torus T , for each

element of t ∈ T , one can consider the normalizer N(t) of that element. This
will be of different dimension for different elements.

Definition 3 (Regular and Singular Elements). For each t ∈ T , define

N(t) = {g ∈ G : gtg−1 = t}

If dim N(t) = dim T , t is said to be a regular element of T .
If dim N(t) > dim T , t is said to be a singular element of T

2



For the simple example G = SU(2), one can choose T to be the U(1) sub-
group of matrices of the form (

eiθ 0
0 e−iθ

)
The space G/T in this case is S2 = CP1. The map

SU(2) = S3 → SU(2)/U(1) = S2

is the Hopf fibration.
The normalizer N(T ) of T consists of two distinct classes of matrices:(

eiθ 0
0 e−iθ

)
and

(
0 −1
1 0

) (
eiθ 0
0 e−iθ

)
=

(
0 e−iθ

eiθ 0

)
So the Weyl group of SU(2) is the group of two elements, with representatives
in N(T ) given by (

1 0
0 1

)
and

(
0 −1
1 0

)
The non-trivial element of the Weyl group acts by interchanging eiθ and

e−iθ. Elements of T such that θ 6= 0, π are regular elements, θ = 0 and θ = π
are the two singular elements since their normalizer is the entire group.

For a more general class of examples, consider the group G = U(n) of unitary
n by n matrices. In this case the maximal torus T is the subgroup of all diagonal
matrices

T = diag(eiθ1 , eiθ2 , · · · , eiθn)

and the Weyl group is the symmetric group Sn, acting on T by permuting the
θi. Regular elements of T are those for which the θi are all distinct, singular
elements are those for which at least two of the θi are equal.

It is a theorem in linear algebra that given any unitary matrix M , one can
diagonalize it by finding another unitary matrix g such that gMg−1 is diagonal
with entries given by the eigenvalues of M . The choices of how one diagonalizes
leads to different permutations of the eigenvalues along the diagonal.

The fact that any unitary matrix can be diagonalized has a generalization
valid for any compact connected Lie group

Theorem 1. If G is a compact connected Lie group and T is a maximal torus
of G, then any element of G is conjugate to an element of T .

Proof: The simplest proof of this theorem uses a basic result from topology.
For a proof not using topology, see [2], section VIII.1. For a more detailed
version of the topological proof, see [1] Theorem 4.21. One can reformulate the
problem of finding an element x ∈ G such that

x−1gx ∈ T
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i.e.
x−1gx = t so gx = xt

which implies
gxT = xT

the statement that the action of g on the space G/T has a fixed point.
For each element g, one can think of it as a map

fg : yT ∈ G/T → gyT ∈ G/T

This map depends continuously on g and since G is connected, g may be con-
tinuously deformed to the identity element. This implies that fg is homotopic
to the identity map. Given any continuous self-map f of a space X to itself,
there is an induced map f∗ on the cohomology groups of X. One can consider
the Lefschetz number

L(f) =
∑

i

(−1)iTr(f∗Hi(X))

of the map, which is a homotopy invariant. If f can be continuously deformed
to the identity

L(f) = L(Id) =
∑

i

(−1)idim(Hi(X)) = χ(X)

The Lefschetz fixed point formula (for the case of isolated fixed points) identifies
the Lefschetz number of a map with the sum of the degrees of the induced maps
on spheres surrounding the fixed points. In particular, if there are no fixed
points, the Lefschetz number and thus the Euler characteristic must be zero.
So if χ(G/T ) is non-zero, there must be at least one fixed point of the map fg,
and the theorem is proved.

It turns out that all the cohomology of G/T is in even dimensions and the
space is built out of even-dimensional cells. As a result, the Euler characteristic,
which is the sum of the dimensions of the even cohomology groups minus the
dimensions of the odd cohomology groups, must be a non-negative number. It
turns out that χ(G/T ) is |W (G, T )|, the number of elements of the Weyl group.
Later on in this course I hope to discuss the computation of the cohomology
of G/T . This can be done using Morse theory. The Euler characteristic can
also be computed using the formula for the Lefschetz number in terms of local
behavior at the fixed points, for this computation, see [1], page 92.

There are various important corollaries of this theorem.

Corollary 1. Any two maximal torii T1, T2 of G are conjugate

Proof: This can be proved by noting that a torus T always has a generating
element, i.e. an element whose powers are dense in T . If θi are the angular vari-
ables labelling points in the torus, a generating element can be constructed by
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taking exponentiating a linear combination of these variables, with coefficients
independent over Q. If t2 is a generator of T2, then by the theorem

x−1t2x = t

for some x ∈ G and t ∈ T . Thus t2 ∈ xTx−1 and so are all its powers. Since t2
is a generator, this means that T2 ⊂ xTx−1. But since T2 is a maximal torus,
we must have T2 = xTx−1

Two other important corollaries:

Corollary 2. All maximal tori have the same dimension. We will call this
common dimension the rank of G

Corollary 3. For a compact connected Lie group, the exponential map is sur-
jective.

This is true since it is clearly true for elements on a maximal torus, and the
theorem implies that every element of G is on a maximal torus.
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