TopPIiCS IN REPRESENTATION THEORY: OTHER
TorICsS

There are several other topics I hoped to have time to cover in this course
but could not get to. They are:

e Topology of G/T: Flag manifolds G/T have cohomology only in even
degrees, with Euler characteristic the degree of the Weyl group. The
Euler characteristic can be calculated by a Lefschetz fixed point argument
(see Adams [1], pgs. 90-92 for this). Identifying the flag manifold with
a co-adjoint orbit, there is a Morse theory calulation of the cohomology
that goes back to Bott, for an outline of the story, see [2]. This can also
be thought of as a simple example of a torus action on a Kéhler manifold,
exhibiting the phenomenon of the moment map giving a perfect Morse
function.

e Borel-Weil-Bott theorem: Using Lie algebra cohomology, one can show
that for non-dominant weights A, irreducible representations occur not in

Thot(Ly) = H(G/T, Ly)

but in higher cohomology. The crucial step here is “Kostant’s theorem”,
which computes H*(n, V). This calculation seems to be best understood
in terms of spinors and is related to more recent work of Kostant on the
so-called “Kostant Dirac operator”. For Kostant’s original paper, see [3].
For the relation to spinors and the Dirac operator, see [4].

e Theta functions: For an exposition of the theory of theta functions from
the point of view of the Heisenberg algebra and the metaplectic group, see

[5].

e Finally it would be nice to say a bit about automorphic forms and their
relation to the representation theory of SL(2,R), but this is perhaps way
too ambitious for a course like this.
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