
Topics in Representation Theory:
Hamiltonian Mechanics and Symplectic

Geometry

We’ll now turn from the study of specific representations to an attempt to
give a general method for constructing Lie group representations. The idea in
question sometimes is called “geometric quantization.” Starting from a classical
mechanical system with symmetry group G, the corresponding quantum me-
chanical system will have a Hilbert space carrying a unitary representation of
G and the hope is that many if not most irreducible representations can be
constructed in this way. The first step in such a program involves understand-
ing what sort of mathematical structure is involved in a classical mechanical
system with a Lie group G of symmetries. This material is fairly standard and
explained in many places, two references with many more details are [1] and [2].

1 Hamiltonian Mechanics and Symplectic Ge-
ometry

The standard example of classical mechanics in its Hamiltonian form deals with
a single particle moving in space (R3). The state of the system at a given time t
is determined by six numbers, the coordinates of the position (q1, q2, q3) and the
momentum (p1, p2, p3). The space R6 of positions and momenta is called “phase
space.” The time evolution of the system is determined by a single function of
these six variables called the Hamiltonian and denoted H. For the case of a
particle of mass m moving in a potential V (q1, q2, q3),

H =
1

2m
(p2

1 + p2
2 + p2

3) + V (q1, q2, q3)

The time evolution of the state of the system is given by the solution of the
following equations, known as Hamilton’s equations

dpi

dt
= −∂H

∂qi

dqi

dt
=

∂H

∂pi

and there is an obvious generalization of this to a phase space R2n of any even
dimension.

A more obvious set of similar equations is the equations for a gradient flow
in 2n dimensions

dpi

dt
= − ∂f

∂pi

dqi

dt
= − ∂f

∂qi
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These equations correspond to flow along a vector field ∇f which comes from
choosing a function f , taking −df , then using an inner product on R2n to dualize
and get a vector field from this 1-form. In other words we use a symmetric non-
degenerate 2-form (the inner product < ·, · >) to produce a map from functions
to vector fields as follows:

f → ∇f : < ∇f , · >= −df

Hamilton’s equations correspond to a similar construction, with the sym-
metric 2-form coming from the inner product replaced by the antisymmetric
2-form

ω =
n∑

i=1

dpi ∧ dqi

In this case, starting with a Hamiltonian function H, one produces a vector field
XH as follows

H → XH : ω(XH , ·) = iXH
ω = −dH

Hamilton’s equations are then the dynamical system for the vector field XH .
Here ω is called a symplectic form and XH is sometimes called the symplectic
gradient of H. While the flow along a gradient vector field of f changes the
value of f as fast as possible, flow along XH keeps the value of H constant since

dH = −ω(XH , ·)

dH(XH) = −ω(XH , XH) = 0

since ω is antisymmetric.
One can check that the equation

iXH
ω = −dH

implies Hamilton’s equations for XH since equating

−dH = −
n∑

i=1

∂H

∂qi
dqi −

n∑
i=1

∂H

∂pi
dpi

and

iXH

n∑
i=1

dpi ∧ dqi

implies

XH = −
n∑

i=1

∂H

∂qi

∂

∂pi
+

n∑
i=1

∂H

∂pi

∂

∂qi

Another important property of XH is that

LXH
ω = (diXH

+ iXH
d)ω = d(−dH) = 0

since dω = 0 (where LXH
is the Lie derivative with respect to XH . In general
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Definition 1 (Hamiltonian Vector Field). A vector field X that satisfies

LXω = 0

is called a Hamiltonian vector field and the space of such vector fields on R2n

will be denoted V ect(R2n, ω).

Since ω is non-degenerate, the equation

iXf
ω = −df

implies that if Xf = 0, then df = 0 and f = constant. As a result, we have an
exact sequence of maps

0 → R → C∞(R2n) → V ect(R2n, ω)

One can also ask whether all Hamiltonian vector fields (elements of V ect(R2n, ω))
actually come from a Hamiltonian function. The equation

LXω = (diX + iXd)ω = 0

implies
diXω = 0

so iXω is a closed 1-form. Since H1(R2n,R) = 0, this must also be exact, so
one can find a Hamiltonian function f .

Just as we saw that df = 0 along Xf , one can compute the derivative of an
arbitrary function g along Xf as

dg(·) = −ω(Xg, ·)

dg(Xf ) = −ω(Xg, Xf ) = ω(Xf , Xg)

which leads to the following definition

Definition 2 (Poisson Bracket). The Poisson bracket of two functions on
R2n, ω is

{f, g} = ω(Xf , Xg)

The Poisson bracket satisfies

{f, g} = −{g, f}

and
{f1, {f2, f3}}+ {f3, {f1, f2}}+ {f2, {f3, f1}} = 0

where the second of these equations can be proved by calculating

dω(Xf1 , Xf2 , Xf3) = 0
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These relations show that the Poisson bracket makes C∞(R2n) into a Lie alge-
bra. As an exercise, one can show that

[Xf , Xg] = X{f,g}

which is the condition that ensures that the map

f ∈ C∞(R2n) → Xf ∈ V ect(R2n, ω)

is a Lie algebra homomorphism, with the Lie bracket of vector fields the product
in V ect(R2n, ω).

So far we have been considering a classical mechanical system with phase
space R2n. The same structures can be defined on an arbitrary manifold satis-
fying the following definition:

Definition 3 (Symplectic Manifold). A symplectic manifold M is a 2n-
dimensional manifold with a two-form ω satisfying

• ω is non-degenerate, i.e. for each m ∈ M , the identification of Tm and
T ∗

m given by ω is an isomorphism

• ω is closed, i.e. dω = 0.

The two main classes of examples of symplectic manifolds are

• Cotangent bundles: M = T ∗N .

In this case there is a canonical one-form θ defined at a point (n, α) ∈ T ∗N
(n ∈ N, α ∈ T ∗

n(N)) by

θn,α(v) = α(π∗v)

where π is the projection from T ∗N to N . The symplectic two-form on
T ∗N is

ω = dθ

Physically this case corresponds to a particle moving on an arbitrary man-
ifold M . For the special case N = Rn,

θ =
n∑

i=1

pidqi

• Kähler manifolds. Special cases here include the flag manifolds GC/P
used in the Borel-Weil construction of irreducible representation of G.

On a symplectic manifold M , the same arguments as in R2n, ω go through
and we have an exact sequence of Lie algebra homomorphisms

0 → R → C∞(M) → V ect(M,ω) → H1(M,R) → 0

In what follows we will generally be assuming for simplicity that H1(M,R) =
0.
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