
Topics in Representation Theory: The
Heisenberg Algebra

We’ll now turn to a topic which is a precise analog of the previous discussion
of the Clifford algebra and spinor representations. By replacing the symmet-
ric two-form (the inner product) in the earlier discussion by an antisymmetric
two-form, we get a new algebra, the Heisenberg algebra. The group of automor-
phism of this algebra is now a symplectic group, and we again get a projective
representation of this group, called the metaplectic representation. A similar
discussion to ours of these topics can be found in [2] Chapter 17, a much more
detailed one in [1].

1 The Heisenberg Algebra and Heisenberg Group

In classical mechanics the state of a particle at a given time t is determined
by its position vector q ∈ R3 and its momentum vector p ∈ R3. Heisenberg’s
crucial idea that lead to quantum mechanics was to take the components of
these vectors to be operators on a Hilbert space H, satisfying the commutation
relations

[Qi, Qj ] = 0, [Pi, Pj ] = 0, [Pi, Qj ] = −i~δi,j

for i, j = 1, 2, 3.
The constant ~ depends on ones choice of units, we’ll choose ours so that it is

set equal to 1. In quantum mechanics states of a particle at a given time will be
vectors in H. A state which is an eigenvector of the operator pi will be one with
a well-defined valued of the corresponding component of the momentum. At
this point we won’t be doing much real quantum mechanics, just studying the
mathematical structure given by a Hilbert space with an action of 2n operators
satisfying these relations.

An algebra generated by 2n elements {P1, · · · , Pn, Q1, · · · , Qn} satisfying
the relations above will be called a Heisenberg algebra and denoted h(n). A
more invariant formulation of these relations uses the antisymmetric form on
R2n defined by

S =
n∑

i=1

dpi ∧ dqi

where pi, qi are coordinates on R2n. More explicitly this is the antisymmetric
form such that

S((p,q), (p′,q′)) = p · q′ − q · p′

One can write the commutation relations using S as

[
∑

i

(piPi + qiQi),
∑

j

(p′jPj + q′jQj)] = −iS((p,q), (p′,q′))
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Note that this is very much like the relations that define the Clifford algebra.
In that case vectors v, w corresponded to elements of the algebra and satisfied
the relation

{v, w} = −2Q(v, w)

here also v, w ∈ R2n correspond to elements of the algebra and satisfy

[v, w] = −iS(v, w)

anticommutators have been replaced by commutators and the symmetric 2-form
Q is replaced by the antisymmetric 2-form S. One could define the Heisenberg
algebra as the quotient of the tensor algebra T (R2n) by the ideal I generated
by elements of the form v ⊗ w + iS(v, w).

It is better to think of the Heisenberg commutation relations as the defining
relations for a 2n+1 dimensional Lie algebra, so we’ll use the following definition:

Definition 1 (Heisenberg Lie Algebra). The Heisenberg Lie algebra hn is
the 2n + 1 dimensional real Lie algebra with basis elements

{P1, · · · , Pn, Q1, · · · , Qn, C}

and Lie bracket defined by

[Pi, Pj ] = [Qi, Qj ] = [Pi, C] = [Qi, C] = [C,C] = 0, [Pi, Qj ] = Cδij

Here C is a basis vector in the Lie algebra, the relation to our previous
commutation relations is that they correspond to the case of C acting by −i.
The Lie algebra hn is nearly commutative. It is an extension of the commutative
Lie algebra R2n by R, i.e. we have a sequence of homomorphisms

0 → R → hn → R2n → 0

The R is in the center of hn, so this is a central extension.
hn is isomorphic to a Lie algebra of upper triangular matrices. For example

if n = 1, pP + qQ + cC can be identified with0 p c
0 0 q
0 0 0


and the Lie bracket is just the matrix commutator since

[

0 p c
0 0 q
0 0 0

 ,

0 p′ c′

0 0 q′

0 0 0

] =

0 0 pq′ − pq′

0 0 0
0 0 0


One aspect of the Heisenberg algebra story that does not have an analog in

the Clifford algebra case is that since hn is a Lie algebra, one can exponentiate
and get a Lie group. This Lie group is generally called the Heisenberg group by
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mathematicians and denoted Hn. Heisenberg never considered this group since
for most purposes in physics just the Lie algebra relations are needed. It was
first defined by Weyl and physicists often refer to it as the “Weyl group”, but
that name is already taken among mathematicians as we have seen.

We can exponentiate using the Baker-Campbell-Hausdorff formula (which
simplifies since all commutators of order higher than two are zero)

eXeY = eX+Y + 1
2 [X,Y ]

so the group law for Hn can be written

(p,q, c) · (p′,q′, c′) = (p + p′,q + q′, c + c′ +
1
2
S((p,q), (p′,q′)))

2 The Symplectic Group

Since the Heisenberg algebra and group are both defined using the antisym-
metric form S, the group of linear transformations of R2n that leave this form
invariant acts as automorphisms in both cases. This group is called the sym-
plectic group Sp(2n,R) and it is the analog in this case of the orthogonal group
SO(2n) in the Clifford algebra case. Note that this is not the classical compact
group Sp(2n), although there is a relation between the two groups in that the
complexification Sp(2n,C) satisfies

Sp(2n,C) ∩ U(2n) = Sp(n)

.
The group Sp(2n,R) is non-compact, but we can try and produce a pro-

jective representation of it using an analogous construction to the one used
to produce the projective spinor representation of SO(2n). This infinite di-
mensional representation will be called the metaplectic representation and the
double cover Mp(2n,R) = ˜Sp(2n,R) of Sp(2n,R) analogous to the spin double
cover will be called the metaplectic group.

In the Heisenberg case there is no analog of the identification of the Clifford
algebra with a matrix algebra and thus the endomorphisms of a vector space of
spinors. However, at the group level we have the result

Theorem 1 (Stone-von Neumann Theorem). Once one fixes a non-zero
scalar with which the central element C acts, there is a unique irreducible rep-
resentation of the Heisenberg group Hn.

We won’t try and give the proof of this here since the analysis is non-trivial
due to the fact that the representation is infinite dimensional. For the proof, see
[1] chapter 1.5. The importance of this theorem in quantum mechanics is that it
tells us that once we have chosen a non-zero Planck’s constant, there is a unique
irreducible representation of the Heisenberg algebra (at least a unique one that
can be exponentiated). This is why physicists are able to use the Heisenberg
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commutation relations to do calculations, without worry about what they are
being represented on.

If
Ua : a ∈ Hn → U(H)

is the unique irreducible representation by elements of U(H), unitary transfor-
mations on a Hilbert space H , and g ∈ Sp(2n,R) acts via automorphisms

a → g · a

on Hn, then Ug·a must be unitarily equivalent to Ua, so we can find a unitary
operator R(g) such that

Ug·a = R(g)UaR(g)−1

The operators R(g) are only determined up to scalars and give a projective
representation of Sp(2n,R) on H. This will be a true representation of the

metaplectic group, the double cover ˜Sp(2n,R). We will be constructing this
more explicitly later on, but note that the metaplectic group is an example of
a group which is not a matrix group. While the group Spin(n) is not defined
in terms of matrices, it does have a faithful finite-dimensional representation on
the spinor vector space of dimension 2n, so it is a group of 2n by 2n complex
matrices. In the case of the metaplectic group, there are no finite dimensional
representations so one cannot represent it as a group of finite matrices.

3 Canonical Commutation Relations

We will now begin the construction of the metaplectic representation, by analogy
with our previous construction of the spinor representation. Just as in that case,
we begin by choosing a complex structure J on R2n. In this case we need to
choose a J that preserves the symplectic structure, i.e.

S(u, v) = S(Ju, Jv)

. Later we’ll discuss in detail the space of all such choices, but for now, we’ll just
pick a standard one, identifying the holomorphic coordinates as wk = pk + iqk,
the anti-holomorphic ones as w̄k = pk − iqk.

In the case of the spinor representation, we used an algebra generated by
basis elements satisfying the Canonical Anticommutation Relations (CAR). In
this case we will use an analogous algebra with anticommutators replaced by
commutators, this is called the algebra of Canonical Commutation Relations
(CCR). It has 2n generators ak, a†k for k = 1, · · · , n satisfying the relations

[aj , ak] = [a†j , a
†
k] = 0, [aj , a

†
k] = δjk

Just as the Clifford algebra relations could be expressed in terms of the CAR,
the Heisenberg algebra and the CCR have a similar relation. Setting

ak =
1√
2
(Pk − iQk), a†k =

1√
2
(Pk + iQk)
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relates the generators of the CCR to the generators of the Heisenberg algebra.
The CAR algebra is represented on the exterior algebra Λ∗(Cn), similarly

the CCR can be represented on the symmetric algebra S∗(Cn), or, equivalently,
the polynomial ring C[w1, · · · , wn]. Just as in the exterior algebra case our gen-
erators corresponded to exterior and interior multiplication by a basis element,
here a†k acts by multiplication

a†k → wk·

and ak acts by differentiation

ak →
∂

∂wk

We will see that one can put a norm on C[w1, · · · , wn] such that ak and a†k are
adjoints. This representation of the CCR and thus the Heisenberg algebra is
called the Fock (or Bargmann-Fock) representation.

Physically this representation corresponds to n harmonic oscillators, with
the vector 1 ∈ C[w1, · · · , wn] as the vacuum state and a†k the operator that
adds one quantum of type k to the vacuum state. This representation is also
sometimes known as the oscillator representation. As in the spinor case, the
vacuum state depends on the choice of J .
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