
Topics in Representation Theory: Spin Groups

1 Spin Groups

One of the most important aspects of Clifford algebras is that they can be used
to explicitly construct groups called Spin(n) which are non-trivial double covers
of the orthogonal groups SO(n). For a more exhaustive discussion of this than
the simplified one that will follow, there are many possible sources to read, but
two in particular that may be useful are [2] Chapters I.2 and I.6, and [1] Chapter
I.6.

There are several equivalent possible ways to go about defining the Spin(n)
groups as groups of invertible elements in the Clifford algebra.

1. One can define Spin(n) in terms of invertible elements g̃ of Ceven(n) that
leave the space V = Rn invariant under conjugation

g̃V g̃−1 ⊂ V

2. One can show that, for v, w ∈ V ,

v → wvw−1

is reflection in the hyperplane perpendicular to w. Then Pin(n) is defined
as the group generated by such reflections with ||w||2 = 1. Spin(n) is the
subgroup of Pin(n) of even elements. Any rotation can be implemented
as an even number of reflections (Cartan-Dieudonné) theorem.

3. One can define the Lie algebra of Spin(n) in terms of quadratic elements
of the Clifford algebra. This is what we will do here.

The Lie algebra of SO(n) consists of n by n antisymmetric real matrices. A
basis for these is given by

Lij = Eij − Eji

for i < j. The Lij generate rotations in the i − j plane. They satisfy the
commutation relations

[Lij , Lkl] = δilLkj − δikLlj + δjlLik − δjkLil

The generators of ei of the Clifford algebra C(n) satisfy the relations

eiej + ejei = −2δij

and one can use these to show that the 1
2eiej satisfy the same commutation

relations as the Lij .
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This shows that the vector space spanned by quadratic elements of C(n)
of the form eiej , i < j, together with the operation of taking commutators,
is isomorphic to the Lie algebra so(n). To get the group Spin(n), we can
exponentiate these quadratic elements of C(n). Since (to show this, just use the
defining relation of C(n))

(
1
2
eiej)2 = −1

4
one can calculate these exponentials to find

eθ( 1
2 eiej) = cos(

θ

2
) + eiej sin(

θ

2
)

As θ goes from 0 to 4π this gives a U(1) subgroup of Spin(n). One can check
that, acting on vectors by

v → eθ( 1
2 eiej)v(eθ( 1

2 eiej))−1

rotates the vector v by an angle θ
2 in the i−j plane. As we go around this circle

in Spin(n) once, we go around the the circle of SO(n) rotations in the i − j
plane twice. This is a reflection of the fact that Spin(n) is a double-covering of
the group SO(n).

Just as the adjoint action of the Lie algebra of Spin(n) on itself is given by
taking commutators, the Lie algebra representation on vectors is also given by
taking commutators in the Clifford algebra. One can check that an infinitesimal
rotation in the i− j plane of a vector v is given by

v → [eiej , v]

This is the infinitesimal version of the representation at the group level

v → g̃v(g̃)−1

where g̃ ∈ Spin(n) is gotten by exponentiating eiej .

2 Maximal Tori

For the even-dimensional case of Spin(2n), one can proceed as follows to identify
its maximal torus, which we’ll call T̃ . Fixing an identification Cn = R2n, we
have

T ⊂ U(n) ⊂ SO(2n)

where T is a maximal torus of both U(n) and SO(2n). T can be taken to be
the group of diagonal n by n complex matrices with k-th diagonal entry eiθk .
As an element of SO(2n) these become 2 by 2 block diagonal real matrices with
blocks (

cos θk − sin θk

sin θk cos θk

)
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These blocks rotate by an angle θk in the (2k− 1)− 2k plane, and all commute.
For the odd-dimensional case of SO(2n+1), which is of the same rank, the same
T can be used, but one has to add in another diagonal entry, 1 as the 2n + 1’th
entry, to embed this in 2n + 1 by 2n + 1 real matrices.

The double covering of U(n) that is the restriction of the double covering of
SO(2n) by Spin(2n) can be described in various ways. One is to define it as

Ũ(n) = {(A, u) ∈ U(n)× S1 : u2 = detA}

The maximal torus T̃ of Spin(2n) can be given explicitly in terms of n angles
θ̃k as ∏

k

(cos(θ̃k) + e2k−1e2k sin(θ̃k)

and is a double cover of the group T .

3 Spinc(n)

A group related to Spin(n) that has turned out to be of great interest in topology
is the group Spinc(n). This can be defined as

Spin(n)×{±1} S1

i.e. by considering pairs (A, u) ∈ Spin(n) × S1 and identifying (A, u) and
(−A,−u). This group can also be defined as the subgroup of invertible elements
in the complexified Clifford algebra C(n)⊗C generated by Spin(n) and S1 ⊂ C.

A Riemannian manifold M of dimension 2n comes with a bundle of or-
thonormal frames. This is a principal bundle with group SO(2n). Locally it
is possible to choose a double-cover of this bundle such that each fiber is the
Spin(2n) double cover, but globally there can be a topological obstruction to
the continuous choice of such a cover. When such a global cover exists M is
said to have a spin-structure. If M is Kähler, its frame bundle can be chosen
to be a U(n) bundle, but such an M will often not have a spin structure and
one can’t consider the spinor geometry of M . However, one reason for the im-
portance of considering Spinc(2n) is that Kähler manifolds will always have a
Spinc geometry, i.e the obstruction to a spin-structure can be unwound within
Spinc(2n). This is because while there is no homomorphism

U(n) ⊂ SO(2n) → Spin(2n)

there is a homomorphism

f : U(n) → Spinc(2n)

that covers the inclusion

A ∈ U(n) → (A,detA) ∈ SO(2n)× U(1)

given on diagonal matrices in T by

f(diag(eiθ1 , · · · , eiθn)) =
∏
k

(cos(
θk

2
) + e2k−1e2k sin(

θk

2
))× ei
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