
Topics in Representation Theory: Clifford
Algebras

So far in this course we have given a very general theory of compact Lie
groups and their representations, but the only examples we have considered in
any detail concern the unitary groups SU(n). Here we have seen that there is a
set of n−1 fundamental representations and that these can be explicitly realized
as the defining representation of SU(n) on Cn and the corresponding represen-
tations on exterior powers Λk(Cn) for k = 1, 2, · · ·n− 1. Other representations
of SU(n) are on symmetric powers Sk(Cn), these are the representations on
homogeneous polynomials of n variables. Later on in this course we will study
more generally the issue of the representation of SU(n) on general tensors (el-
ement of Cn ⊗ Cn ⊗ · · · ⊗ Cn). The geometric picture of Borel-Weil theory
relates each of these fundamental representations to a line bundle over a space
SL(n,C)/P , with Λk(Cn) related to a line bundle over Gr(k, n), the Grassma-
nian of k-planes in Cn. Furthermore, each of these is related to a node on the
Dynkin diagram.

The three other infinite classes of classical groups are Sp(n), SO(2n) and
SO(2n + 1). We will not work out what happens for Sp(n), but will now turn
to the case of the orthogonal groups SO(n). For these groups, one again has
irreducible fundamental representations on Λk(Rn), but there are new repre-
sentations which cannot be constructed using tensors, called the spinor repre-
sentations. These are only projective representations of SO(n), but are true
representations of the double cover Spin(n). To understand these representa-
tions it is convenient to introduce a new algebraic structure called a Clifford
algebra, a structure which will include the groups Spin(n), but much else be-
sides.

1 Clifford Algebras

A Clifford algebra is associated to a vector space V with inner product, in much
the same way as the exterior algebra Λ∗V is associated to V . The multiplication
in the Clifford algebra is different, taking into account the inner product. One
way of thinking of a Clifford algebra is as Λ∗V , with a different product, one
that satisfies

v · v = − < v, v > 1 = −||v||21

for v ∈ V . More generally, one can define a Clifford algebra for any vector space
V with a quadratic form Q(·, ·) (we will be interested in the quadratic form
associated to an inner product Q(·, ·) =< ·, · >)

Definition 1. The Clifford algebra C(V,Q) associated to a real vector space V
with quadratic form Q can be defined as

C(V,Q) = T (V )/I(V,Q)
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where T (V ) is the tensor algebra

T (V ) = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·

and I(V,Q) is the ideal in T (V ) generated by elements

v ⊗ v +Q(v, v)1

(where v ∈ V ).

The tensor algebra T (V ) is Z-graded, and since I(V,Q) is generated by
quadratic elements the quotient C(V,Q) retains only a Z2 grading

C(V,Q) = Ceven(V,Q)⊕ Codd(V,Q)

Note the following facts about the Clifford algebra:

• If Q = 0, one recovers precisely the definition of the exterior algebra, so

Λ∗(V ) = C(V,Q = 0)

• Applying the defining relation for the Clifford algebra to a sum v + w of
two vectors gives

(v + w) · (v + w) = v2 + vw + wv + w2 = −Q(v + w, v + w)
= −Q(v2)− 2Q(v, w)−Q(w2)

so the defining relation implies

vw + wv = −2Q(v, w)

which could be used for an alternate definition of the algebra. Also note
that in our case where Q =< ·, · >, this means that two vectors v and w
anticommute when they are orthogonal.

• About half of the math community uses the definition given here for the
defining relation of a Clifford algebra, the other half uses the relation with
the opposite sign

v · v = ||v||21

• Non-degenerate quadratic forms over a real vector space of dimension n
can be put in by a change of basis into a canonical diagonal form with p
+1’s and q −1’s on the diagonal, p+q = n. We will mostly be interested in
studying the Clifford algebra for the case of the standard positive definite
quadratic form p = n, q = 0. Physicists are also quite interested in the case
p = 3, q = −1, which corresponds to Minkowski space, four dimensional
space-time equipped with this kind of quadratic form.

Later on we will be considering the case of complex vector spaces. In this
case there is only one non-degenerate Q up to isomorphism (all diagonal
elements can be chosen to be +1).
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• For the case of V = Rn with standard inner product (p = n), we will
denote the Clifford algebra as C(n). Choosing an orthonormal basis
{e1, e2, · · · , en} of Rn, C(n) is the algebra generated by the ei, with rela-
tions

eiej + ejei = −2δij

Clifford algebras are well-known to physicists as “gamma matrices” and were
intoduced by Dirac in 1928 when he discovered what is known as the “Dirac”
equation. Dirac was looking for a version of the Schrödinger equation of quan-
tum mechanics that would agree with the principles of special relativity. One
common guess for this was what is now known as the Klein-Gordon equation
(units with the speed of light c = 1 are being used)
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but the second-order nature of this PDE was problematic, so Dirac was looking
for a first-order operator D/ satisfying

D/2 = −2

Dirac found that if he defined

D/ =
4∑

i=1

γi
∂

∂xi

then this would work if the γi satisfied the relations for generators of a Clifford
algebra on four dimensional Minkowski space. The Dirac operator remains of
fundamental importance in physics, and over the last few decades its importance
in mathematics in has become widely realized. For any space with a metric one
can define a Dirac operator, which plays the role of a “square-root” of the
Laplacian.

One can easily see that, as a vector space C(n) is isomorphic to Λ∗(Rn).
Any element of C(n) is a linear combination of finite strings of the form

ei1ei2 · · ·

and using the relations
eiej = −ejei

these can be put into a form where

i1 < i2 < · · ·

eliminating any repeated indices along the way with the relation e2i = −1. So,
just as for the exterior algebra, the 2n elements
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ei

eiej i < j

· · ·
e1e2 · · · en

form a basis.
More abstractly, the Clifford algebra is a filtered algebra

F0 ⊂ F1 ⊂ · · · ⊂ Fn = C(n)

with Fi the part of C(n) one gets from multiplying at most n generators. The
associated graded algebra to the filtration is the exterior algebra

grFC(n) = F1/F0 ⊕ F2/F1 ⊕ · · · ⊕ Fn/Fn−1

= Λ∗(Rn)

1.1 Examples

Let’s now consider what these algebras C(n) actually are for some small values
of n.

For n = 1, C(1) is the algebra of dimension 2 over R generated by elements
{1, e1} with relation e21 = −1. This is just the complex numbers C, so C(1) = C.

For n = 2, C(2) is the algebra of dimension 4 over R generated by elements
{1, e1, e2} with relations

e21 = −1, e22 = −1, e1e2 = −e2e1

This turns out to be precisely the quaternion algebra H under the identification

i = e1, j = e2, k = e1e2

so C(2) = H.
For higher values of n and for arbitray signature of the quadratic form, see

chapter 1 of [1] for a calculation of what all these real Clifford algebras are.
We’ll just quote the result here:

C(3) = H⊕H, C(4) = M(2,H), C(5) = M(4,C)

C(6) = M(8,R), C(7) = M(8,R)⊕M(8,R), C(8) = M(16,R)

and for higher values of n, things are periodic with period 8 since

C(n+ 8) = C(n)⊗M(16,R)
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