
Topics in Representation Theory: The
Borel-Weil Theorem

1 Holomorphic sections of Lλ

We defined the space of sections Γ(Lλ) of the line bundle Lλ over G/T as the
complex-valued functions on G satisfying

f(geH) = e−λ(H)f(g)

and showed that this space is infinite dimensional and decomposes into a sum
of an infinite number of finite-dimensional irreducibles.

Furthermore, we showed that once one complexifies the Lie algebra g of G
to get the complexified Lie algebra gC = g⊗C and corresponding complexified
group GC, the choice of a maximal torus and set of positive roots corresponds
to a choice of Borel subalgebra b of gC

b = tC ⊕ n−

which has a corresponding Borel subgroup B of GC. As spaces of right-cosets
we have

G/T = GC/B

so we can think of the flag manifold either in real terms as G/T or in complex
terms as GC/B in which case it is clearly a complex manifold since its tangent
space is a quotient of two vector spaces.

We also saw that, by adding in simple positive roots to the definition of b,
one can construct general parabolic subalgebras p and corresponding complex
parabolic subgroups P of GC.

There is a general definition of what it means for a vector bundle to be
a holomorphic vector bundle, in which case one can define the the space of
holomorphic sections of the bundle. In the case we are interested in, we can
explicitly define the space

Γhol(Lλ) ⊂ Γ(Lλ)

of holomorphic sections of Lλ as the space of holomorphic functions on GC

satisfying an equivariance condition under the right B action:

f(gb) = ρλ(b−1)f(g)

From a weight λ ∈ t∗, by complex linearity one has an element of t∗C and by
defining it as 0 on n−, an element of b∗. Exponentiation gives the character ρλ.

We will not go into the details of the necessary complex analysis, but func-
tions on G that are restrictions of holomorphic functions on GC form a dense
subspace of the continuous functions on G. For more details about this, see [1],
chapter 12.
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The difference between Γ(Lλ) and Γhol(Lλ) as functions on G is that the
latter satisfies a stronger equivariance condition, equivariance under B, not just
T . The additional condition of B equivariance includes invariance under the
action of n− acts from the right. In other words:

For any Z ∈ n−, let r(Z) be infinitesimal right translation by the left-
invariant complex vector field Z on G/T (in other words

r(Z)f =
d

dt
f(getZ)|t=0

then
Γhol(Lλ) = {f ∈ Γ(Lλ) : r(Z)f = 0 ∀ Z ∈ n−}

2 The Borel-Weil theorem

With the above understanding of what Γhol(Lλ) is, we have

Theorem 1 (Borel-Weil). As a representation of G, for a dominant weight
λ, Γhol(Lλ) is a non-zero, irreducible representation of highest weight λ. All
irreducible representations of G can be constructed in this way.

For an outline of the proof from the point of view of complex analysis, see
[1] chapter 14. However, the Borel-Weil theorem is really just identical with
the highest-weight theorem, except that now one has an explicit construction
of the representation and so can prove existence of a the representation with
its highest weight vector. The existence of the highest weight vector is just the
existence of solutions of a Cauchy-Riemann sort of partial differential equation,
which is the condition of infinitesimal right translation invariance by elements
of the negative root space.

To see the equivalence with highest-weight theory, recall that using the Peter-
Weyl theorem one can show

Γ(Lλ) =
⊕̂

i
Vi ⊗ (V ∗

i )−λ

where the sum is over all irreducible representations, labelled by i and (V ∗
i )−λ

is the −λ weight space of V ∗
γ .

Γhol(Lλ) ⊂ Γ(Lλ)

is the subspace that satisfies the extra condition of right invariance under the
action of the negative root space, i.e. that −λ is a lowest weight, or, equivalently
that λ is a highest weight. Explicitly

Γhol(Lλ) =
⊕̂

i
Vi ⊗ {v ∈ V ∗

i :

{
n−v = 0
v ∈ (V ∗

i )−λ

}

=
⊕

V ∗
i has lowest weight−λ

Vi ⊗ (V ∗
i )−λ

= Vλ ⊗C

where Vλ is the irreducible representation of highest weight λ.
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3 The Borel-Weil theorem: Examples

Recall that for the case of G = SU(2), we had an explicit construction of irre-
ducible representations in terms of homogeneous polynomials in two variables.
Such a construction can be interpreted in the Borel-Weil language by identifying
holomorphic sections explicitly in terms of homogeneous polynomials. We will
begin by working this out for the SU(2) case. For this case

G/T = SU(2)/U(1) = SL(2,C)/B = CP 1

the space of complex lines in C2. Elements of SL(2,C) are of the form(
α β
γ δ

)
, αδ − βγ = 1

and elements of the subgroup B are of the form

b =
(

α β
0 α−1

)
B can also be defined as the subgroup that stabilizes a standard complex line
in C2, and one can check that for b ∈ B

b

(
1
0

)
=

(
α β
0 α−1

) (
1
0

)
= α

(
1
0

)
The subgroup N of B in this case is the matrices of the form

n =
(

1 β
0 1

)
and the subgroup TC is elements of the form

t =
(

α 0
0 α−1

)
The space of holomorphic sections Γhol(Lk) will be functions on SL(2,C)

such the subgroup N acts trivially from the right and the subgroup TC acts via
a character of T , which corresponds to an integer k. More explicitly

Γhol(Lk) = {f : SL(2,C) → C, f(gb) = αkf(g) ∀ b ∈ B}

We’ll analyze what this equivariance condition says in two parts. First choos-
ing b ∈ N , since

gb =
(

α β
γ δ

) (
1 β′

0 1

)
=

(
α β′α + β
γ β′γ + δ

)
the condition f(gb) = f(g) means that f depends only on the first column of
the matrix.
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Secondly, choosing b ∈ TC,

gb =
(

α β
γ δ

) (
α′ 0
0 (α′)−1

)
=

(
αα′ (α′)−1β
γα′ (α′)−1δ

)
so the equivariance condition f(gb) = (α′)kf(g) implies that

f(α′
(

α
γ

)
) = (α′)kf(

(
α
γ

)
)

so our homogeneous polynomials of degree k in two variables (α, γ) provide
holomorphic sections in Γhol(Lk) and it turns out these are all such sections.

Another way of thinking about how to produce the appropriate holomorphic
function on SL(2,C) out of a homogeneous polynomial P (z1, z2) is by the map

P → f(g) = P (g
(

1
0

)
) = P (

(
α β
γ δ

) (
1
0

)
) = P (

(
α
γ

)
)

In the more general case of G = SU(n), representations on polynomials in
n variables correspond to sections of a line bundle over

SU(n)/U(n− 1) = SL(n,C)/P = CPn−1

the space of complex lines in Cn. The parabolic subgroup P in this case can
be taken to be the set of all matrices with zero in the first column, except for
the diagonal element in the first row. The equivariance condition defining line
bundles over this space is the same as in the SU(2) case and the relation of
holomorphic sections and homogeneous polynomials is much the same.

Note that for G = U(n), G/B = Fl(n), the space of flags in C has an obvious
map to any of the partial flag manifolds G/P such as G/P = CPn−1, given by
just forgetting some parts of the flag. In the case of G/P = CPn−1, the map
just forgets all parts of the flag except for the complex line. The line bundle
on G/B of the Borel-Weil theorem is just the pull-back under this forgetting
map of the one we constructed on CPn−1 with homogeneous polynomials as its
holomorphic sections.

The fundamental representations of SU(n) include the k = 1 case above
which is just the defining representation on Cn, but also include the represen-
tations on the higher degree parts of Λ∗(Cn). The representation on Λk(Cn)
corresponds to holomorphic sections of a certain line bundle over the Grassma-
nian

Gr(k, n) = SL(n,C)/P =
U(n)

U(k)× U(n− k)

For more details about this, the Borel-Weil theorem and its relation to the
examples discussed here, see Chapter 11 and 14 of [1].
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4 Other Topics

There are other perspectives on the geometry we have been discussing here
which we do not have time to go into. An important one is that one can also
think of flag manifolds and partial flag manifolds by picking a highest weight
vector v in an irreducible representation V and looking a the orbit of v under
GC. Projectivizing and just looking at the orbit as a set of complex lines in
P (V ), it turns out the the stabilizer of the line defined by a highest weight
vector will be a parabolic subgroup P so our orbit gives a map

GC/P → P (V )

This gives a projective embedding of GC/P and shows that these are projective
algebraic varieties in the sense of algebraic geometry.

In the language of sheaf cohomology in algebraic geometry, we have been
looking at the zero degree cohomology of the sheaf of sections of a line bundle

Γhol(Lλ) = H0(G/T,O(Lλ))

There are also higher degree cohomology groups which also provide irreducible
representations of G. For λ a non-dominant weight, there will be no holomorphic
sections, but there will be non-zero higher dimensional cohomology. The Borel-
Weil-Bott theorem describes what happens in this case. I hope to return to it,
but first we will next consider the topics of Clifford algebras and spinors.
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