
Topics in Representation Theory: Borel
Subgroups and Flag Manifolds

1 Borel and parabolic subalgebras

We have seen that to pick a single irreducible out of the space of sections Γ(Lλ)
we need to somehow impose the condition that elements of negative root spaces,
acting from the right, give zero. To get a geometric interpretation of what this
condition means, we need to invoke complex geometry. To even define the
negative root space, we need to begin by complexifying the Lie algebra

gC = tC ⊕
∑
α∈R

gα

and then making a choice of positive roots R+ ⊂ R

gC = tC ⊕
∑

α∈R+

(gα + g−α)

Note that the complexified tangent space to G/T at the identity coset is

TeT (G/T )⊗C =
∑
α∈R

gα

and a choice of positive roots gives a choice of complex structure on TeT (G/T ),
with the holomorphic, anti-holomorphic decomposition

TeT (G/T )⊗C = TeT (G/T )⊕ TeT (G/T ) =
∑

α∈R+

gα ⊕
∑

α∈R+

g−α

While g/t is not a Lie algebra,

n+ =
∑

α∈R+

gα, and n− =
∑

α∈R+

g−α

are each Lie algebras, subalgebras of gC since

[n+, n+] ⊂ n+

(and similarly for n−). This follows from

[gα, gβ ] ⊂ gα+β

The Lie algebras n+ and n− are nilpotent Lie algebras, meaning
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Definition 1 (Nilpotent Lie Algebra). A Lie algebra g is called nilpotent
if, for some finite integer k, elements of g constructed by taking k commutators
are zero. In other words

[g, [g, [g, [g, · · · ]]]] = 0

where one is taking k commutators.

The nilpotence of n+ is clear since each time one takes a commutator one ends
up in a root space with a more positive root, a process which must terminate
in a finite number of steps due to the finite number of positive roots.

An important example of a nilpotent Lie algebra is the subalgebra of gl(n,C)
consisting of strictly upper triangular n by n matrices.

Another important Lie subalgebra is

b = tC ⊕ n−

This is called a Borel subalgebra of gC. Note the choice of whether to use
the negative or positive root space in this definition is a choice of convention.
The choice of the negative root space makes some of the later discussion of the
Borel-Weil theorem slightly simpler. The opposite choice, using the positive
root space n+ is perhaps somewhat more popular.

Our emphasis has been on the case of compact Lie groups G and their
Lie algebras g, but one could instead emphasize general complex semi-simple lie
algebras with gC being special cases. In the general structure theory of complex
semi-simple Lie algebras a Borel subalgebra is defined to be a maximal solvable
subalgebra.

This requires a definition of a solvable Lie subalgebra. Among equivalent
definitions, the one that is closest to the definition of a solvable group is

Definition 2 (Solvable Lie algebra). A Lie algebra g is solvable if there
exists a sequence of Lie subalgebras

0 ⊂ · · · ⊂ g2 ⊂ g1 ⊂ g0 = g

such that for all i, gi+1 is an ideal in gi and the quotient Lie algebra gi+1/gi is
abelian.

One can develop the general structure theory of complex semi-simple Lie
algebras using the fact that they have Borel subalgebras, all of which are conju-
gate, much in the same way that one develops the structure theory of compact
Lie groups using maximal torii and the fact that they are all conjugate.

As an important example, note that the Borel subalgebra of sl(n,C) consists
of all lower-triangular elements of sl(n,C).

We have a sequence of inclusions

n− ⊂ b ⊂ gC

There are other interesting Lie subalgebras of gC that contain the Borel subal-
gebra and can be constructed by adding to tC not just the negative root space
n−, but in addition some subset of the set of the spaces gα associated to positive
simple roots α. More precisely
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Definition 3. A parabolic subalgebra p of gC is a Lie algebra satisfying

b ⊆ p ⊂ gC

such that
p = tC ⊕

∑
α∈T

gα

where T consists of the negative roots and some subset (possibly empty) of the
simple positive roots.

The parabolic subalgebras of sl(n,C) are determined by partitions of n and
consist of “block lower-triangular” matrices. The size of the blocks is given
by the partition, with the case of the Borel sub-algebra corresponding to the
partition into blocks of size one.

In the general case, parabolic subalgebras correspond to choices of sets of
nodes on the Dynkin diagram of the group, since each such node corresponds
to a simple positve root.

2 Flag manifolds

So far we have been discussing the complex picture at the level of Lie algebras,
but there is a corresponding story at the level of Lie groups. This involves the
notion of the complexification GC of a compact Lie group G. This is a Lie group
with Lie algebra gC. For a more extensive discussion of the complexification of
a compact group, see [1], Chapter 12.

There are subgroups N−, N+, B, P corresponding to the nilpotent, Borel
and parabolic subalgebras. Since n− is an ideal in b, N− is a normal subgroup
of G with quotient group B/N− = TC.

For the case of G = U(n), GC = GL(n,C), and N− consists of the lower
triangular unipotent matrices (those with 1 on the diagonal), and B is the group
of lower triangular invertible matrices. The parabolic subgroups P are groups
of “block lower triangular invertible matrices.

Recall from linear algebra the procedure of Gram-Schmidt orthonormaliza-
tion. This takes an arbitrary basis {v1, · · ·vn} of Cn and produces an orthonor-
mal basis {u1, · · ·un}. It is expressed by a sequence of formulas

v1 = λ11u1

v2 = λ21u1 + λ22u2

· · · = · · ·

Thinking of the basis {v1, · · ·vn} as, say the columns of an element of
GL(n,C), the Gram-Schmidt formulas equate such an element in a well-defined
way with a product of a lower-triangular matrix (the λij) and the columns of a
unitary matrix (the {u1, · · ·un}). So we have the following
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Theorem 1. Any g ∈ GL(n,C) can be factorized uniquely as

g = bu

where u ∈ U(n) and b is a lower triangular matrix with positive real diagonal
entries.

Note that B ∩ U(n) = T , the subgroup of diagonal unitary matrices, so we
have an identification

U(n)/T = GL(n,C/B

This identification of U(n)/T as a quotient of two complex Lie groups shows that
the space G/T has a complex structure. This space appears in many contexts
in mathematics and is known as a “flag manifold” Fl(n,C) for the following
reason.

Definition 4. A flag in Cn is a sequence of linear subspaces of Cn such that

L1 ⊂ L2 ⊂ · · · ⊂ Ln−1 ⊂ Cn

with dimLi = i.

Given the standard basis {e1, · · · en} of Cn one can define a standard flag by
taking L1 to be all linear combinations of e1, L2 to be all linear combinations
of e1 and e2, etc. Then U(n) acts transitively on the set of all flags, with the
subgroup T not changing the flag. Thus U(n)/T is the space of all flags.

For general compact G, the space G/T continues to be referred to as a flag
manifold, and can be identified with the quotient of complex groups GC/B.
The GC/P for parabolic subgroups P are called “partial flag manifolds”. An
important special case is

Gr(k, n) =
U(n)

U(k)× U(n− k)

the Grassmanian of complex k-planes in Cn.
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