TOPICS IN REPRESENTATION THEORY: DECOMPOSITION OF THE INDUCED REPRESENTATION

1 The Peter-Weyl theorem, a review

The Peter-Weyl theorem can be formulated in many equivalent ways. One of these is the statement that the matrix entries $\pi_{i,j}^{\gamma}$ of irreducible representations of a compact Lie group G on a vector space V_{γ} (γ is a representation label) are functions on G that satisfy the Schur orthogonality relations

$$(\pi_{i,j}^{\gamma},\pi_{k,l}^{\beta}) = \int_{G} \overline{\pi_{i,j}^{\gamma}(g)} \pi_{k,l}^{\beta}(g) dg = \frac{1}{\dim(V_{\gamma})} \delta^{\gamma\beta} \delta^{ik} \delta^{jl}$$

and that furthermore matrix entries form a complete set, i.e. any $f \in L^2(G)$ has an L^2 convergent expansion

$$f = \sum_{\gamma, ij} \dim(V_{\gamma})(f, \pi_{i,j}^{\gamma}) \pi_{i,j}^{\gamma}$$

More abstractly, one can restate this as

Theorem 1 (Peter-Weyl). For compact G, $L^2(G)$ is an orthogonal L^2 -sum of the subspaces $M(V_{\gamma})$ spanned by the matrix coefficients of the irreducible representations π^{γ} of G (the functions $\pi_{i,j}^{\gamma}(g)$), i.e.

$$L^2(G) = \widehat{\bigoplus}_{\gamma} M(V_{\gamma})$$

The left and right regular representations give a representation of $G_L \times G_R$ $(G_L, G_R$ are just two copies of G) acting on the space $L^2(G)$ by

$$(g_L, g_R) \cdot f(g) = f(g_L^{-1}gg_R)$$

One can restrict attention to $M(V_{\gamma})$, the part of $L^2(G)$ spanned by matrix coefficients of the irreducible representation on V_{γ} and see how $G_L \times G_R$ acts on this space. It is convenient to think of $M(V_{\gamma})$ as $V_{\gamma} \otimes V_{\gamma}^*$, using the identification

$$(v,\alpha) \in V_{\gamma} \otimes V_{\gamma}^* \to \alpha(\pi_{\gamma}(g^{-1})v) \in M(V_{\gamma})$$

Using this identification, G_L acts on V_{γ} as

$$v \to \pi_{\gamma}(g_L)v$$

and G_R acts on V^*_{γ} by the dual representation

$$\alpha \to \pi_{\gamma}^{\vee}(g_R)\alpha$$

This dual representation is defined by

$$(\pi_{\gamma}^{\vee}(g_R)\alpha)(v) = \alpha(\pi_{\gamma}(g_R^{-1})v)$$

and is sometimes known as the "contra-gredient" representation.

What we have shown is that the Peter-Weyl theorem can be interpreted as saying that

$$L^2(G) = \widehat{\bigoplus}_{\gamma} V_{\gamma} \otimes V_{\gamma}^*$$

with the left regular representations of G on $L^2(G)$ corresponding to the action on the factor $V\gamma$ and the right regular representation corresponding to the dual action on the factor V_{γ}^* . Under the left regular representation $L^2(G)$ decomposes into irreducibles as a sum over all irreducibles, with each one occuring with multiplicity dim V_{γ} (which is the dimension of V_{γ}^*).

2 Decomposition of the Induced Representation

Given a weight λ of T, we have seen that we can form the induced representation of G on $\Gamma(L_{\lambda})$. The space $\Gamma(L_{\lambda})$ is a space of functions on G and is acted on by $g_L \in G_L$ by

$$f(g) \to g_L f(g) = f(g_L^{-1}g)$$

 $\Gamma(L_{\lambda})$ is thus a sub-representation of the left-regular representation. What picks out the subspace

$$\Gamma(L_{\lambda}) \subset L^2(G)$$

is the condition

$$f(gt) = \rho_{\lambda}(t^{-1})f(g)$$

Here the representation of T is one dimensional so if $t = e^{H}$

$$\rho_{\lambda}(t^{-1}) = e^{-\lambda(H)}$$

This condition says that under the action of the subgroup $T_R \subset G_R$, $\Gamma(L_\lambda)$ is the subspace of $L^2(G)$ that has weight $-\lambda$. In other words

$$\Gamma(L_{\lambda}) = \widehat{\bigoplus}_{\gamma} V_{\gamma} \otimes (V_{\gamma}^{*})_{-\lambda}$$

where $(V_{\gamma}^*)_{-\lambda}$ is the $-\lambda$ weight space of V_{γ}^* .

Our induced representation $\Gamma(L_{\lambda})$ thus breaks up into irreducibles as a sum over all irreducibles V_{γ} , with multiplicity given by the dimension of the weight $-\lambda$ in V_{γ}^* . We can get a single irreducible if we impose the condition that $-\lambda$ be a lowest weight since $-\lambda$ will be the lowest weight for just one irreducible representation. So if we impose the condition on $\Gamma(L_{\lambda})$ that infinitesimal right translation by an element of a negative root space give zero, we will finally have a construction of a single irreducible, it will be the irreducible with highest weight λ .