
Topics in Representation Theory:
Fundamental Representations and Highest

Weight Theory

We’ll now start the study of arbitrary irreducible representations of higher
rank compact Lie groups, beginning with the purely Lie-algebraic aspects of the
story. A fundamental weakness is the Lie-algebraic approach is the lack of any
analog of the explicit representation in terms of homogeneous polynomials that
we were able to use in the SU(2) case. Working just with the Lie algebra and its
commutation relations, one can derive many properties of irreducible represen-
tations, but the only actual construction of the representations in this context
are rather inexplicit, involving taking quotients of infinite dimensional modules
of the enveloping algebra known as Verma modules. We will not construct rep-
resentations this way, instead using the Borel-Weil construction, a geometric
technique that works at the level of the group and generalizes the homogeneous
polynomial construction of the SU(2) case. For now we will describe some of
the Lie-algebraic techniques that are both computationally useful and allow the
precise formulation of the general picture, postponing proofs that these actu-
ally give all irreducible representations until we use geometric techniques to
construct them.

In this lecture we’ll be following [1] chapter 14 fairly closely. As a result
these notes may be even sketchier than usual.

1 Co-roots and Fundamental Weights

For each simple root α, we would like to identify a copy of sl(2,C) ⊂ gC, which
we will call sl(2,C)α. The weights of our representations will then be classified
by how they behave under the maximal abelian subalgebras of each of these
sl(2,C)α. Recall that

[gα, gβ ] ⊂ gα+β

and
[gα, g−α] ⊂ tC

We can choose a set of three generators X+
α , X−

α ,Hα satisfying the sl(2,C)
commutation relations, with X+

α ⊂ gα, X−
α ⊂ g−α and Hα ⊂ tC

[Hα, X+
α ] = α(Hα)X+

α = 2X+
α

[Hα, X−
α ] = −α(Hα)X−

α = −2X−
α

[X+
α , X−

α ] = Hα

We can also choose X−
α to be the conjugate of X+

α . The element Hα ∈ t
is canonically associated with the root α and is called the co-root of α and
sometimes denoted α∨. It can be defined as follows
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Definition 1 (Co-root). The co-root Hα associated to a root α is the unique
element in [gα, g−α] satisfying α(Hα) = 2.

Our representation of g will also be a representation of each of the sl(2,C)α.
We have seen that representations of sl(2,C) decompose into weight spaces Vβ

with integral eigenvalues of H. For each co-root Hα the weight-spaces Vβ of our
representation V must satisfy HαVβ = β(α) ∈ Z.

Recall that a lattice Λ in a vector space V is a discrete additive subgroup,
closed in V , such that element of Λ span V as a vector space. Motivated by the
above requirement on the weights of our representations, we’ll define

Definition 2 (Weight Lattice). The lattice of weights ΛW ⊂ t∗ is the set of
β ∈ t∗ such that β(Hα) ∈ Z for all simple roots α.

Note that the roots themselves define a basis for a lattice, the root lattice ΛR

and ΛR ⊂ ΛW . For simply connected G all elements of ΛW are actually weights
of representations of G, whereas for non-simply connected groups (for example
G = SO(3)) only a sub-lattice are actually weights, with the full lattice being
weights for the universal covering group. For a full discussion of the relation of
these various lattices, see [2] section IX.1.

To better understand the relation of the weight lattice to the roots, note that
the Weyl group W (G, T ) takes weights to weights, leaving the weight lattice in-
variant. In particular the reflections sα corresponding to each simple root which
generate W take weights to weights. Recall the formula for a Weyl reflection
with respect to a root α

sα(β) = β − 2 < α, β >

< α,α >
α

As an exercise (see [1] section 14.2) show that under the identification of t
and t∗ using the Killing form, the co-root Hα correspond to

2α

< α,α >

Using this, one can rewrite the Weyl reflection as

sα(β) = β − β(Hα)α

Reflecting one root (β = αj) with respect to another (αi) gives

sαi(αj) = αj −
2 < αj , αi >

< αi, αi >
αi

but
2 < αj , αi >

< αi, αi >
= αj(Hαi) = Aji

where A is the Cartan matrix.
The dual basis to the basis of co-roots is called the basis of fundamental

weights:
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Definition 3. The set of fundamental weights of G is a set of rank G elements
ωi ∈ t∗ such that

ωi(Hαj
) = δij

In general a weight β can be written using this basis as

β =
∑

i

β(Hαi)ωi

so the simple roots are linear combinations of the fundamental weights, with
transformation matrix the Cartan matrix

αj =
∑

i

αj(Hαi
)ωi =

∑
i

Ajiωi

As an example consider the case G = SU(3) where, defining α1 = α12, α2 =
α23 and knowing that the Cartan matrix is

A =
(

2 −1
−1 2

)
we have

α1 = 2ω1 − ω2

α2 = −ω1 + 2ω1

α

α

12

23

ω

ω

1

2

Simple Roots and Fundamental Weights for SU(3)

As a more general example, for G = SU(n), t consists of diagonal matrices
with zero trace and and entries Dii = λi, and the roots are

αij(λ) = λi − λj
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for i 6= j. One choice of positive roots are those for which i < j, the simple
roots can be chosen to be αi,i+1. The co-roots are

Hαi,i+1 = Eii − Ei+1,i+1

where Eij is the matrix that whose i, j’th entry is one, all others zero. The
corresponding fundamental weights are

ωi,i+1(λ) = λ1 + · · ·+ λi

2 Highest Weight Theorem

Now we can at least state the recipe for constructing, first we’ll define

Definition 4. A weight β is dominant if < β, αi >≥ 0 for all simple roots αi,
i.e. it is in the closure of the fundamental Weyl chamber.

and

Definition 5. For a representation of G on V , v ∈ V is called a highest weight
vector if for all positive roots α, Xα ∈ gα implies Xα = 0. If the highest weight
vector v is in the weight space Vβ, β is the highest weight of the representation.

Now the recipe to construct an irreducible representation goes as follows:
pick a dominant weight λ. Assume one has a representation with this highest
weight and pick a highest weight vector. Now applying all possible combinations
of elements of negative root spaces to this vector generates the full representa-
tion. This motivates the following theorem

Theorem 1 (Highest Weight Theorem). For any dominant weight λ ∈ ΛW

there exists a unique, irreducible, finite-dimensional representation Vλ of G with
highest weight λ.

For a “half proof” see [1] 14.18. The tricky part of really proving this theorem
involves the existence, since one doesn’t have any kind of construction to start
with to get a highest weight vector. Later on when we examine the Borel-Weil
geometric picture of representations we will have an explicit construction that
can be used to prove existence.

The Weyl-invariant geometry of the weight lattice provides a good hold
on the pattern that the weights of an irreducible representation must lie in.
They lie inside the convex hull of the figure one gets by acting on the highest
weight with elements of the Weyl group. To get not just the weights, but the
multiplicity with which each weight occurs, one needs to know the character of
the representation and we will turn next lecture to that issue.

Since the fundamental weights form a basis for the weight lattice and the
dominant weights are the ones that are non-negative integral linear combinations
of the fundamental weights, all irreducible weights can be characterized by a set
of rank G non-negative integers. One can think of each of these integers as being
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associated to the corresponding node of the Dynkin diagram for the group. Some
figures with the weights for various representations of SU(3) follow.

α

α

12

23

ω

ω

1

2

(1,0)

Weights for the (1, 0) fundamental representation of SU(3)

α

α

12

23

ω

ω

1

2

(0,1)

Weights for the (0, 1) fundamental representation of SU(3)
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α

α

12

23

ω

ω

1

2

(1,1)

Weights for the (1, 1) adjoint representation of SU(3)
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