Torics IN REPRESENTATION THEORY: SU(2)
REPRESENTATIONS AND THEIR APPLICATIONS

We’ve so far been studying a specific representation of an arbitrary compact
Lie group, the adjoint representation. The roots are the weights of this repre-
sentation. We would now like to begin the study of arbitary representations and
their weights. An arbitrary finite dimensionsional represesentation will have a
direct sum decomposition

V=P
«@

where the « are the weights of the representation labelled by elements of ¢*, and
V., is the a-weight space, i.e. the vectors v in V satisfying

Hv =a(H)v

for H € t. The dimension of V,, is called the multiplicity of o. The problem
we want to solve for each compact Lie group G is to identify the irreducible
representations, computing their weights and multiplicities.

An important relation between roots and weights is the following:

Lemma 1. If X € gg, then it maps
X Va — Va+[j

Proof:
IfveV, Het

HXv=XHv+ [H,Xv=Xa(H)v+ p(H)Xv = (a(H)+ (H))Xv

so the roots act on the set of weights by translation.

We will begin with the simplest case, that of G = SU(2). This case is of
great importance both as an example of all the phenomena we want to study
for higher rank cases, as well as playing a fundamental part itself in the analysis
of the general case.

1 Review of SU(2) Representations

One reason that SU(2) representations are especially tractable is that there is
a simple explicit construction of the irreducible representations. Consider the
space V3" of homogeneous polynomials of two complex variables. An element of
this space is of the form

f(z1,29) = apz] + alz?_lzg + -t anzy

The group SU(2) acts on V3 through the action of U € SU(2) as a linear
transformation on the vector z = (z1, 22) as follows

n(U)f(z) = f(U'2)



This is a group homomorphism since
7(U1)(m(U2) f)(2) = (n(U2) ) (U1 '2) = f(U Uy '2) = 7(U1Us) f(2)

The representation on V3' is of dimension n 4 1 and one can show that it is
irreducible.

By differentiating the action of the group one can explicitly get the action
of the Lie algebra and one finds that

0 0
. (H)f —Zlafzfl + 8752 2
0
m(X)f = —agL
0
(X7)f = —8—f

One can explicitly work out how the Lie algebra acts on V3'. Note that
acting on the monomials we find

7r*(H)z{zéC =(—j+ k:)z{zéC

ik =1 _k+1
(X ) 2] 2k = —j2f 7 25
N\ 4 i+l ke
T (X 7)2l 2k = —k2dT1 51
The monomials are eigenvectors of 7, (H) with eigenvalues —n, —n+2,--- ,n—

2,n, these are the weights of the representation. The 7, (X ) are “raising oper-
ators” that increase this eigenvalue by 2, i.e, shift the weight by the one positive
root, the m.(X ) are “lowering operators” that decrease it by 2, i.e shift it by

the negative root.
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Weights, raising and lowering operators for n = 3 SU(2) representation

Note that there is a “highest weight” n, corresponding to the monomial 23
This is the one weight space on which m,(X™) gives zero, and the rest of the
representation can be constructed by applying 7. (X ~) to a vector in this weight
space. Such a vector is called a “highest weight vector”.

Another important phenomenon one can see at work here is that of how
SO(3) representations are related to representations of its double-cover SU(2).
We will examine this in much more detail later when we come to the study of
the Spin groups, but what happens here is that for n even these representations



are also SO(3) representations. The ones for n odd are only projective repre-
sentations, i.e. the homomorphism property only holds up to a sign. We will
examine the issue of projective representations also in much more detail later
on.

One can calculate the Casimir operator for SU(2) with the result

2
C= E(XJ“X_ +X X))+ =
2 4
and it is a second-order differential operator, with eigenvalue & (% + 1) on all
elements of V3.
If one takes the tensor product of two irreducible SU(2) representations one
gets one that is reducible. It decomposes into irreducibles as follows

‘/Qn ® Vzm _ 2n+m ® V2n+m—1 B P VQ\n—m|

This decomposition of the tensor product goes under the name “Clebsch-
Gordan” decomposition. The general issue of how the tensor product of two
irreducibles decomposes is an important one we will study in general later. It
is related to the representation theory of the symmetric group, by “Schur-Weyl
duality”.

Finally, one can calculate the character of the irreducible representation. For
V3" the character as a function on the maximal torus is

Xﬂ(a) = 672‘719 —+ eii(n+2)9 4+ ein@
. ei(n+1)8 _ —i(n+1)8 ~ sin((n+1)9)
= eit _ g—it - sin(@)

This character formula is the simplest example of a the more general Weyl
character formula that we will prove later.

2 Applications to Physics

The group SU(2) appears in two guises in physics. One is as the spin double
cover of the rotation group SO(3), the other is as an “internal” symmetry
relating types of particles and generalizing the notion of charge.

2.1 Angular Momentum and Spin

At the beginning of this course I explained that in quantum mechanics the state
of the world is given by a vector in a complex vector space H, the “Hilbert
space” of the theory. There is a unitary representation of any symmetry group
G of the theory on the complex vector space H (which in general will be infinite-
dimensional. We can decompose H into irreducible representations of G. Many
physical situations are invariant under rotations in three dimensions and in



these situations H will be an SO(3) representation. We can decompose it into
irreducibles
H=HoDHoDHy---

where H consists of some multiplicity of the trivial representation of dimension
1, Hy consists of some multiplicity of the representation of weight 2, of dimension
3, etc.

Early on in the theory of atomic spectra it was observed that the possible
energy states of a hydrogen atom were organized into groups with the same
energy corresponding exactly to the dimensions of the representations noted
above. These were labelled, by an integer [ corresponding to half of our weight
label. The [ = 0 states were called “s states” and came in singlets, the [ =1
states were called “p states” and came in triplets with the same energy, the
[ = 2 states were called “d states” and came in energy multiplets of dimension
5, etc.

In classical mechanics there is a conserved quantity called angular momen-
tum whose existence follows from rotational symmetry. In quantum mechanics
the states are said to have “quantized” angular momentum, taking on the value
l. Such quantum mechanical states are sometimes thought of as “spinning”,
with the amount of spinning quantized and given by the integer [.

You can see the multiplicity of the different states by putting the system
in a magnetic field. Such a magnetic field is not rotation invariant, so the
Hamiltonian operator that generates time translations no longer commutes with
the operators that generate rotations. As a result, the states that were in an
irreducible representation of the rotation group, all with the same energy in the
rotation invariant case, now have slightly different energies and their multiplicity
can be observed.

By 1925 it was discovered that certain unexplained features of atomic spectra
could be explained if one assumed that the electrons in an atom carried their own
intrinsic quantized angular momentum, with the corresponding representation
being the fundamental two-dimensional n = 1 or angular momentum [ = %
representation of SU(2), which is a projective representation of SO(3). In other
words, the Hilbert space had to be changed as follows

H—HVy

doublings its dimension. The Clebsch-Gordan decomposition is then used to
analyze the behavior of the new Hilbert space as an SU(2) representation in
terms of the behavior of the two factors. This is part of a story discussed
extensively in any quantum mechanics textbook under the title “addition of
angular momenta”.

2.2 Isotopic Spin

Physicists studying atomic spectra became very familiar with the use of SU(2)
representation theory to study the “spin” of particles, corresponding to their
behavior under spatial rotations. During the 1930s and 40s the study of nuclear



physics began, dealing with the question of how protons and neutrons interact
via a strong force to bind together into nuclei. It was soon discovered that the
strong force had an SU(2) invariance and this SU(2) was named “isospin sym-
metry” with its irreducible representations labelled by “isospin” %, 1,---. The
proton and neutron states formed a two-dimensional isospin % representation,
new particles called “pions” were discovered that fit into a three-dimensional

isospin 1 representation.

)

2.3 SU(3) and the Eightfold-Way

By the early 1960s a large array of new strongly interacting particles had been
discovered and there were many attempts to classify them. Physicists at the
time were generally unaware of the subject of representation theory beyond the
case of SU(2). Gell-Mann finally made the discovery that strongly interacting
particles could be organized into irreducible representations of SU(3), with the
isospin SU(2) as a subgroup. Since one of the main representations he was
using was the eight dimensional adjoint representation, he referred to this as
the “Eightfold Way”. His discovery came a year after he had spent a sabbatical
in Paris, having lunch daily with Serre, but never talking to him about what
he was working on since he was convinced that whatever mathematicians were
doing, it had nothing to do with the problem he was working on.

After a couple years it became clear that the SU(3) symmetry Gell-Mann had
found was due to existence of three relatively light particles called quarks, which
fit into the fundamental three-dimensional representation of SU(3). Quarks are
bound together in the states that are observed, which thus live in the tensor
product of several copies of the fundamental representation. The decomposition
of these tensor products into irreducibles gives the observed representations,
including the adjoint.

In the modern “Standard Model” of particles and their interactions, Gell-
Mann’s SU(3) plays no fundamental role. It is an approximate symmetry of
the theory due to the relatively small masses of three of the six known types
of quarks. Another SU(3) symmetry does play an important role, but this one
corresponds to the fact that each quark comes in three completely identical
states, called “colors”.

Various attempts have been made to produce “Grand Unified” theories of the
weak, strong and electromagnetic forces. These mostly use Lie groups of rank at
least four. Standard possibilities that have been studied include SU(5), SO(10)
and FEg, but to this day there is no experimental support for these theories. For
a description of representation theory as used by modern-day particle theorists,
a good reference is [1].
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