MODERN GEOMETRY, FALL 2017: PROBLEM SET 9 Due Thursday, November 16

Problem 1: Differentiating (with respect to G) the right action of G on a principal bundle P gives a map

$$\sigma:\mathfrak{g}\to Vect(P)$$

Show that for elements $Z_1, Z_2 \in \mathfrak{g}$ one has

$$\sigma([Z_1, Z_2]) = [\sigma(Z_1), \sigma(Z_2)]$$

If $R_g: P \to P$ is the right action map (now g is fixed), show that

$$(R_g)_*\sigma(Z) = \sigma(Ad(g^{-1})Z)$$

Problem 2: Show that the definitions of a connection on a principal bundle *P* as

• A decomposition

$$T_p P = V_p P \oplus H_p P$$

of the tangent bundle of P such that V_pP is the subspace of vertical vectors and H_pP satisfies

$$R_{q*}H_p(P) = H_{pq}(P)$$

• A Lie algebra valued one-form ω satisfying

 $\omega(\sigma(Z)) = Z$

and

$$R_a^*\omega = Ad(g^{-1})\omega$$

are equivalent.

Problem 3: For the case of the trivial bundle $P = M \times G$, show that

 $\pi_G^* \omega_G$

(for π_G projection onto G, and ω_G the Maurer-Cartan form) is a connection on P, with curvature $\Omega = 0$.

Problem 4: Show that if X is a horizontal vector field on a principal G-bundle P, then for all Z in the Lie algebra of G,

$$[\sigma(Z), X]$$

is horizontal.

Problem 5: Prove the structural equation relating the torsion and the canonical one-form:

$$d\theta(X,Y) + \omega(X)\theta(Y) - \omega(Y)\theta(X) = \Theta(X,Y)$$

Problem 6: Show that for any two standard horizontal vector fields B(v), B(v') $(v, v' \in \mathbf{R}^n)$

- If the curvature two-form $\Omega = 0$, then [B(v), B(v')] is horizontal.
- If the torsion two-form $\Theta = 0$, then [B(v), B(v')] is vertical.