MODERN GEOMETRY, FALL 2017: PROBLEM SET 6 Due Thursday, October 19

Problem 1: Show that every symplectic manifold is orientable. Hint: consider the top exterior power of the symplectic form.

Problem 2:

Show that the Stokes and divergence theorems of vector analysis in \mathbb{R}^3 are special cases of the general Stokes theorem using differential forms discussed in class.

Problem 3: Show that SO(3) is diffeomorphic to the real projective space $\mathbb{R}P^3$.

Problem 4: Show that $GL(n, \mathbf{R})^+$ (the orientation-preserving component of

 $GL(n,\mathbf{R}))$ is diffeomorphic to $SO(n)\times \mathbf{R}^{\frac{n(n+1)}{2}}$. Hint: use the Gram-Schmidt algorithm to get the relation between an arbitrary basis of \mathbf{R}^n and an orthornormal basis.