MODERN GEOMETRY, FALL 2017: PROBLEM SET 3 Due Thursday, September 28

Problem 1: If α is a smooth tensor field in $\Gamma(T^{k,l}M)$ on a smooth manifold M,

and x^i are \tilde{x}^i are two sets of coordinates corresponding to two different coordinate charts on some open set $U \subset M$, find the formula relating the coefficient functions for α with respect to the two coordinate bases.

Problem 2: Prove that the tensor product defined in class on multilinear functions is associative.

Problem 3: Prove that a covariant k-tensor α is antisymmetric iff $Alt(\alpha) = \alpha$

Problem 4: Given a smooth map $F: M \to N$ between smooth manifolds Mand N, show that the pull-back map $F^*: \Omega^*(N) \to \Omega^*(M)$ satisfies $F^*(\alpha \land \beta) = F^*\alpha \land F^*\beta$ for $\alpha, \beta \in \Omega^*(N)$