MODERN GEOMETRY, FALL 2017: PROBLEM SET 2 Due Thursday, September 21

Problem 1: Show that if $F: M_1 \to M_2$ and $G: M_2 \to M_3$ are smooth maps between smooth manifolds, then the differentials satisfy

$$(G \circ F)_* = G_* \circ F_*$$

Show that for $M_1 = \mathbf{R}$, $M_2 = \mathbf{R}^n$ and $M_3 = \mathbf{R}$ this is the usual chain rule of multivariable calculus

Problem 2: If f and g are smooth functions on a smooth manifold M, and X and Y are smooth vector fields on M, show that the Lie bracket satisfies

$$[fX,gY] = fg[X,Y] + f(Xg)Y - g(Yf)X$$

Problem 3: Starting from the definition of smooth differential 1-forms as smooth sections $M \to T^*M$, find an appropriate definition of a smooth structure on T^*M and show that such smooth differential 1-forms ω when expressed in local coordinates as

$$\omega = \sum_{i} a_{i} dx^{i}$$

are given by smooth coefficient functions a_i .

Problem 4:

The "canonical 1-form" θ on a cotangent bundle T^*M is defined at the point $(p, l) \in T^*M$ $(p \in M, \text{ and } l \in (T_pM)^*)$ by

$$\theta_{(p,l)}(X) = l(\pi_*(X))$$

where X is a tangent vector to T^*M at (p, l). For $M = \mathbf{R}^n$ find an expression for θ in terms of coordinates.