MODERN GEOMETRY, FALL 2017: PROBLEM SET 1 Due Thursday, September 14

Problem 1:

Consider the stereographic projection maps φ , $\tilde{\varphi}$ from $S^n \to \mathbf{R}^n$ defined in class (these are the stereographic projections from the North or South pole to the \mathbf{R}^{n-1} intersecting the equator).

a) Show that these two maps define coordinate charts that cover S^n .

b) Show that these two charts define a smooth structure on S^n .

Problem 2: Show that the n + 1 coordinate charts on \mathbb{RP}^n defined in class

(or in section 7.7 of Tu, *Introduction to manifolds*) define a smooth structure on \mathbb{RP}^n .

Problem 3: Prove that the set of derivations of $C^{\infty}(\mathbf{R}^n)$ at a point x = a

is isomorphic to \mathbf{R}^n (hint: do this by showing that directional derivatives are derivations, and all derivations are directional derivatives).

Problem 4: Given a coordinate chart

$$\phi: U \to \mathbf{R}^n$$

one can compose with projection on the i'th component to get a coordinate function $x^i: U \to \mathbf{R}$. Then a basis for the tangent vectors at $p \in M$ will be given by the $\frac{\partial}{\partial x^i}|_p$.

Given two coordinate charts both defined in a neighborhood of a point $p \in M$, what is the formula relating tangent vectors expressed in the two different bases corresponding to the two different coordinate charts?