MODERN GEOMETRY II: PROBLEM SET 3 Due Monday, April 18

Problem 1: Prove the the symplectic form ω of a compact symplectic manifold can never be an exact form. Use this to show that the only for n=2 does the n-sphere S^n have a symplectic structure.

Problem 2: Given a symplectic action of a Lie group G on a symplectic manifold M, with a moment map

$$\mu: M \to (Lie\ G)^*$$

define a dual "co-moment map"

$$\mu^* : Lie \ G \to C^{\infty}(M)$$

and show that it satisfies:

- a) $\mu^*(X)$ is a hamiltonian function vector field corresponding to X.
- b) μ^* is a Lie algebra homomorphism, where the bracket on $C^\infty(M)$ is the Poisson Bracket.

Problem 3: Show that complex projective space $\mathbb{C}P^n$ is a complex manifold by explicitly finding a set of complex coordinate charts and holomorphic transition functions between them.

Problem 4:

If J is an almost complex structure on a manifold M, define its torsion (or Nijenhuis tensor) to be

$$N(X,Y) = [JX, JY] - [X,Y] - J[X,JY] - J[JX,Y]$$

where X,Y are vector fields on M. Show that N is the zero tensor if J is integrable.

Problem 5: For E a holomorphic vector bundle, define an operator

$$\overline{\partial}_E: \Omega^{p,q}(M,E) \to \Omega^{p,q+1}(M,E)$$

in terms of a local choice of holomorphic frame, such that for E a trivial bundle $\overline{\partial}_E = \overline{\partial}$. Show that your definition is independent of the choice of holomorphic frame, and that it satisfies $\overline{\partial}_E^2 = 0$.