MODERN GEOMETRY II: PROBLEM SET 1 Due Monday, February 21

Problem 1: If θ^i is the i'th component of the canonical 1-form θ on a frame

bundle F(M), and $s: U \to \pi^{-1}(U)$ is the local section over a coordinate patch U given by the coordinate frame, show that, for Y a vector field on U, $s^*\theta^i(Y)$ gives the i'th component of Y with respect to the coordinate frame basis.

Problem 2: Show that

 $\nabla \theta = \Theta$

where ∇ is the covariant differential on \mathbf{R}^n valued forms, θ is the canonical 1-form, and Θ is the torsion 2-form.

Problem 3: Let $B(\zeta)$, for $\zeta \in \mathbb{R}^n$ be the horizontal vector field defined in class. Show that

a) If $\zeta \neq 0$, $B(\zeta)$ is a nowhere zero vector field on F(M). b) $(R_g)_*(B(\zeta)) = B(g^{-1}\zeta)$, where $g \in GL(n, \mathbf{R})$ and R_g is the right action by g on F(M).

Problem 4: If X_j is the j-th component of a coordinate frame on a coordinate patch $U \subset M$, and Γ^i_{jk} are the Christoffel symbols of a connection on F(M)in the coordinates given by U, show that the horizontal lift of X_j to $\pi^{-1}(U)$ is given by

$$X_j^{horiz} = \frac{\partial}{\partial x^j} - \sum_{i,k,l} \Gamma_{jk}^i X_l^k \frac{\partial}{\partial X_l^i}$$

Here (x^i, X_k^j) are the local coordinates on $\pi^{-1}(U)$ defined in class.

Problem 5: If one has two coordinate patches: U, with coordinates x^i , and \tilde{U} with coordinates \tilde{x}^i , show that on the overlap of the two patches the Christoffel symbols are related by:

$$\tilde{\Gamma}^{\alpha}_{\beta\gamma} = \sum_{i,j,k} \Gamma^{i}_{jk} \frac{\partial x^{j}}{\partial \tilde{x}^{\beta}} \frac{\partial x^{k}}{\partial \tilde{x}^{\gamma}} \frac{\partial \tilde{x}^{\alpha}}{\partial x^{i}} + \sum_{i} \frac{\partial^{2} x^{i}}{\partial \tilde{x}^{\beta} \partial \tilde{x}^{\gamma}} \frac{\partial \tilde{x}^{\alpha}}{\partial x^{i}}$$

Problem 6:

If the components R^i_{jkl} of the curvature tensor with respect to a coordinate frame X_i are defined by

$$R(X_j, X_l)X_j = \sum_i R^i_{jkl}X_i$$

show that

$$R^{i}_{jkl} = \frac{\partial}{\partial x^{k}} \Gamma^{i}_{lj} - \frac{\partial}{\partial x^{l}} \Gamma^{i}_{kj} + \sum_{m} (\Gamma^{m}_{lj} \Gamma^{i}_{km} - \Gamma^{m}_{kj} \Gamma^{i}_{lm})$$