
Modern Geometry II: Problem Set 1
Due Monday, February 21

Problem 1: If θi is the i’th component of the canonical 1-form θ on a frame

bundle F (M), and s : U → π−1(U) is the local section over a coordinate patch
U given by the coordinate frame, show that, for Y a vector field on U , s∗θi(Y )
gives the i’th component of Y with respect to the coordinate frame basis.

Problem 2: Show that

∇θ = Θ

where ∇ is the covariant differential on Rn valued forms, θ is the canonical
1-form, and Θ is the torsion 2-form.

Problem 3: Let B(ζ), for ζ ∈ Rn be the horizontal vector field defined in class.

Show that
a) If ζ 6= 0, B(ζ) is a nowhere zero vector field on F (M).
b) (Rg)∗(B(ζ)) = B(g−1ζ), where g ∈ GL(n,R) and Rg is the right action by
g on F (M).

Problem 4: If Xj is the j-th component of a coordinate frame on a coordinate

patch U ⊂ M , and Γi
jk are the Christoffel symbols of a connection on F (M)

in the coordinates given by U , show that the horizontal lift of Xj to π−1(U) is
given by
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Here (xi, Xj
k) are the local coordinates on π−1(U) defined in class.

Problem 5: If one has two coordinate patches: U , with coordinates xi, and Ũ

with coordinates x̃i, show that on the overlap of the two patches the Christoffel
symbols are related by:
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Problem 6:

If the components Ri
jkl of the curvature tensor with respect to a coordinate

frame Xi are defined by
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