MODERN GEOMETRY I: PROBLEM SET 1 Due Monday, October 4

Problem 1:

Consider the stereographic projection maps ϕ , $\tilde{\phi}$ from $S^n \to \mathbf{R}^n$ defined in class.

a) Show that these two maps define coordinate charts that cover S^n .

b) Show that these two charts define a smooth structure on S^n .

Problem 2: Show that the n + 1 coordinate charts on \mathbb{RP}^n defined in class define a smooth structure on \mathbb{RP}^n .

Problem 3: Prove that the tautological bundle L over \mathbf{RP}^n is a vector bundle.

Problem 4: Prove that the set of derivations of $C^{\infty}(\mathbf{R}^n)$ at a point x = a

is isomorphic to \mathbf{R}^n (hint: do this by showing that directional derivatives are derivations, and all derivations are directional derivatives).

Problem 5: Given a coordinate chart

$$\phi: U \to \mathbf{R}^r$$

one can compose with projection on the i'th component to get a coordinate function $x^i: U \to \mathbf{R}$. Then a basis for the tangent vectors at $p \in M$ will be given by the $\frac{\partial}{\partial x^i}|_p$.

Given two coordinate charts both defined in a neighborhood of a point $p \in M$, what is the formula relating tangent vectors expressed in the two different bases corresponding to the two different coordinate charts?

Problem 6: Show that the space $T(M) = \bigcup_{p \in M} T_p(M)$ is a vector bundle.

Problem 7: A vector bundle E is trivial if one can find not only local trivializa-

tion maps $\Phi: E \to U \times \mathbf{R}^n$, but a global trivialization map $\Phi: E \to M \times \mathbf{R}^n$. Show that a rank *n* vector bundle *E* is trivial if and only if one can find *n* sections that are everywhere linearly independent.