MODERN GEOMETRY

This is a one-year graduate-level introduction to modern geometry, what follows is a highly tentative syllabus. We'll see how much of this there is actually time for.

For the first part of the course, two textbooks that cover this material at a similar level are:

- 1. Differential Geometry, Volume I, by Michael Spivak
- 2. Foundations of Differentiable Manifolds and Lie Groups, by Frank Warner

For the later parts of the first semester, a good book to consult is *Geometry*

of Differential Forms, by Shigeyuki Morita

- Differentiable Manifolds: Foundations
 - Examples of manifold,
 - Topological manifolds, smooth structures
 - Definition of a smooth manifold
 - The tangent space, various definitions
 - The tangent bundle, general vector bundles, vector fields
 - The differential of a smooth map
 - Implicit and inverse function theorems
- Tensors and Differential Forms
 - The exterior algebra
 - Differential forms and the exterior derivative
 - The Lie derivative, Cartan Formulas
 - Distributions, Frobenius integrability theorem
- de Rham Cohomology
 - Generalities on homological algebra
 - de Rham cohomology, other cohomology theories
 - Examples
- Integration on Manifolds
 - Orientation
 - Integrals over manifolds
 - Stokes' theorem

- Poincaré duality
- Lie Groups and Lie Algebras
 - Lie groups: definition and examples
 - Lie algebras: definition and examples
 - Left-invariant forms, Maurer-Cartan forms
 - Representations of Lie groups: the adjoint representation
 - Haar measure
 - de Rham cohomology of compact Lie groups, Lie algebra cohomology
- Principal Bundles and Associated Vector Bundles
 - Definition and Examples: Homogeneous spaces, Hopf fibration, frame bundles
 - Connections on principal bundles: various definitions
 - Space of connections, the gauge group
 - Curvature of a connection on a principal bundle
 - Parallel transport and holonomy
 - Covariant derivatives, connections on vector bundles
- Characteristic Classes and Chern-Weil Theory
 - U(1) bundles and the first Chern class
 - Ad-invariant polynomials on Lie algebras
 - Chern classes: definition
 - Chern classes: properties
 - Pontryagin classes and the Euler class
- Frame Bundles and Cartan Connections
- Riemannian Geometry
 - Riemannian metrics
 - The Levi-Civita connection
 - Riemann curvature tensor and the Ricci tensor
 - Geodesics
 - Laplacian operator on differential forms, Hodge theory
 - Yang-Mills equation
 - General relativity
 - The Ricci flow
- Symplectic Geometry

- Symplectic manifolds
- Hamiltonian mechanics
- Hamiltonian group actions and moment maps
- Complex and Kähler Geometry
 - Complex structures
 - Complex and holomorphic vector bundles
 - Dolbeault cohomology
 - Kähler manifolds
- Spin Geometry
 - Clifford algebras
 - Spinors
 - The Dirac Operator
- The Atiyah-Singer Index Theorem
 - The index of an elliptic operator
 - The index theorem: heat equation proof