GROUPS AND REPRESENTATIONS II: FINAL EXAM (REVISED) Due Monday, May 12

Problem 1: Show that if λ is a dominant weight (i.e. in the closure of the

fundamental Weyl chamber), and ω is a fundamental weight, then the dimension of the irreducible representation $V_{\lambda+\omega}$ is greater than the dimension of V_{λ} . Use this to show that the non-trivial representations of smallest dimension must be among the fundamental representations.

Problem 2: For a compact Lie group G, use the Killing form to define the

Laplacian Δ on G. This is the left and right-invariant second order differential operator on G corresponding to the quadratic Casimir operator defined in the first problem set. Let W_{λ} be the linear span of the space of matrix elements of an irreducible representation with highest weight λ . Show that W_{λ} is an eigenspace of Δ with eigenvalue given by

$$||\lambda + \delta||^2 - ||\delta||^2$$

where δ is half the sum of the positive roots.

Problem 3: Consider the group G = SO(4) and its double cover Spin(4). For both of these groups:

- 1. Identify the maximal torus, the roots, the Weyl group and a choice of a set of positive roots.
- 2. Classify the irreducible representation of SO(4) and of Spin(4). What are the weights in each of these representations?

Problem 4: For any irreducible representation representation V_{λ} of a compact

Lie group G (of highest weight λ), define an irreducible representation on its dual space V_{λ}^* . How are the weights of V_{λ}^* related to those of V_{λ} ? For the case G = SU(3), representations are characterized by the integer coefficients (m_1, m_2) of their highest weight, expressed in terms of the fundamental weights. What are the coefficients for V_{λ}^* if they are (m_1, m_2) for V_{λ} . For the representation labelled (2, 0), what are the weights that occur in this representation? What about in the dual representation?

Problem 5: Prove the Kostant multiplicity formula. This says that the multi-

plicity of the weight μ in the representation of highest weight λ is given by

$$\sum_{w \in W} sgn(w) P(w(\lambda + \delta) - (\mu + \delta))$$

where W is the Weyl group, δ is half the sum of the positive roots, and $P(\lambda)$ is the number of ways to write λ as a sum of positive roots with non-negative coefficients.

Problem 6: Classify the irreducible representations of S_4 , and use the Frobe-

nius character formula to compute the table of values of the character for these representations.

Problem 7: Using the Jacobi identity, derive the "cocycle" condition that an

antisymmetric two-form ω on \mathfrak{g} must satisfy in order to be used to define a central extension of the \mathfrak{g} by \mathbb{C} . Show that for $\mathfrak{g} = Vect_{\mathbb{C}}(S^1)$

$$\omega(e^{in\theta}\frac{d}{d\theta}, e^{im\theta}\frac{d}{d\theta}) = \delta_{n,-m}\frac{m(m^2-1)}{12}$$

satisfies the cocycle condition.