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Some History

Quantum Mechanics

• Summer 1925: Observables are operators (Heisenberg)

• Fall 1925: Poisson Bracket → Commutator (Dirac)

• Christmas 1925: Representation of operators on wave-functions
(Schrödinger)
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Some History

Quantum Mechanics

• Summer 1925: Observables are operators (Heisenberg)

• Fall 1925: Poisson Bracket → Commutator (Dirac)

• Christmas 1925: Representation of operators on wave-functions
(Schrödinger)

Representation Theory

• Winter-Spring 1925: Representation Theory of Compact Lie
Groups (Weyl)

• Spring 1926: Peter-Weyl Theorem (Peter, Weyl)
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Schrödinger and Weyl
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Schrödinger and Weyl
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Weyl’s Book

1928: Weyl’s "Theory of Groups and Quantum

Mechanics", with alternate chapters of group the-

ory and quantum mechanics.
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Interview with Dirac, Wisconsin, 1929
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Interview with Dirac, Wisconsin, 1929

And now I want to ask you something more: They tell me that you and
Einstein are the only two real sure-enough high-brows and the only
ones who can really understand each other. I won’t ask you if this is
straight stuff for I know you are too modest to admit it. But I want to
know this – Do you ever run across a fellow that even you can’t
understand?
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Interview with Dirac, Wisconsin, 1929

And now I want to ask you something more: They tell me that you and
Einstein are the only two real sure-enough high-brows and the only
ones who can really understand each other. I won’t ask you if this is
straight stuff for I know you are too modest to admit it. But I want to
know this – Do you ever run across a fellow that even you can’t
understand?

Yes.

This will make a great reading for the boys down at the office. Do you
mind releasing to me who he is?

Weyl.
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The Gruppenpest

Wolfgang Pauli: the "Gruppenpest", the plague of group theory.

For a long time physicists mostly only really needed representations of:

• R
n, U(1): Translations, phase transformations. (Fourier analysis)

• SO(3): Spatial rotations.

• SU(2): Spin double cover of SO(3), isospin.

Widespread skepticism about use of representation theory until
Gell-Mann and Neeman use SU(3) representations to classify strongly
interacting particles in the early 60s.
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Representation Theory: Lie Groups

Definition. A representation of a Lie group G on a vector space V is a

homomorphism

ρ : g ∈ G → ρ(g) ∈ GL(V )

We’re interested in representations on complex vector spaces, perhaps
infinite dimensional (Hilbert space). In addition we’ll specialize to
unitary representations, where ρ(g) ∈ U(V ), transformations
preserving a positive definite Hermitian form on V .

For V = C
n, ρ(g) is just a unitary n by n matrix.
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Representation Theory: Lie Algebras

Taking differentials, from ρ we get a representation of the Lie algebra g

of G:

ρ′ : g → End(V )

For a unitary ρ, this will be a representation in terms of self-adjoint op-

erators.
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Quantum Mechanics

Basic elements of quantum mechanics:

• States: vectors |Ψ > in a Hilbert space H.
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Quantum Mechanics

Basic elements of quantum mechanics:

• States: vectors |Ψ > in a Hilbert space H.

• Observables: self-adjoint operators on H.

• Hamiltonian: distinguished observable H corresponding to energy.

• Schrödinger Equation: H generates time evolution of states

i
d

dt
|Ψ >= H|Ψ >
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Symmetry in Quantum Mechanics

Schrodinger’s equation: H is the generator of a unitary representation
of the group R of time translations.

Physical system has a Lie group G of symmetries → the Hilbert space
of states H carries a unitary representation ρ of G.

This representation may only be projective (up to complex phase),
since a transformation of H by an overall phase is unobservable.

Elements of the Lie algebra g give self-adjoint operators on H, these
are observables in the quantum theory.
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Standard Examples of Symmetries

• Time translations: Hamiltonian (Energy) H, G = R.
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Standard Examples of Symmetries

• Time translations: Hamiltonian (Energy) H, G = R.

• Space translations: Momentum ~P , G = R
3.

• Spatial Rotations: Angular momentum ~J , G = SO(3).

Projective representations of SO(3) ↔ representations of
SU(2) = Spin(3).
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Standard Examples of Symmetries

• Time translations: Hamiltonian (Energy) H, G = R.

• Space translations: Momentum ~P , G = R
3.

• Spatial Rotations: Angular momentum ~J , G = SO(3).

Projective representations of SO(3) ↔ representations of
SU(2) = Spin(3).

• Phase transformations: Charge Q, G = U(1).
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Quantization

Expect to recover classical mechanical system from
quantum mechanical one as ~ → 0

Surprisingly, can often “quantize" a classical mechanical

system in a unique way to get a quantum one.
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Classical Mechanics

Basic elements of (Hamiltonian) classical mechanics:

• States: points in a symplectic manifold (phase space) M , (e.g.
R

2n).

Quantum Field Theory and Representation Theory – p.14



Classical Mechanics

Basic elements of (Hamiltonian) classical mechanics:

• States: points in a symplectic manifold (phase space) M , (e.g.
R

2n).

• Observables: functions on M

Quantum Field Theory and Representation Theory – p.14



Classical Mechanics

Basic elements of (Hamiltonian) classical mechanics:

• States: points in a symplectic manifold (phase space) M , (e.g.
R

2n).

• Observables: functions on M

• Hamiltonian: distinguished observable H corresponding to the
energy.

Quantum Field Theory and Representation Theory – p.14



Classical Mechanics

Basic elements of (Hamiltonian) classical mechanics:

• States: points in a symplectic manifold (phase space) M , (e.g.
R

2n).

• Observables: functions on M

• Hamiltonian: distinguished observable H corresponding to the
energy.

• Hamilton’s equations: time evolution is generated by a vector field
XH on M determined by

iXH
ω = −dH

where ω is the symplectic form on M .
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Quantization + Group Representations

Would like quantization to be a functor

(Symplectic manifolds M , symplectomorphisms)

↓

(Vector spaces, unitary transformations)

This only works for some subgroups of all symplectomor-

phisms. Also, get projective unitary transformations in gen-

eral.
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Mathematics→ Physics

What can physicists learn from representation theory?

• Classification and properties of irreducibles.
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Mathematics→ Physics

What can physicists learn from representation theory?

• Classification and properties of irreducibles.

• How irreducibles transform under subgroups.

• How tensor products behave.

Example: In Grand Unified Theories, particles form representations of

groups like SU(5), SO(10), E6, E8.
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Physics→ Mathematics

What can mathematicians learn from quantum mechanics?

• Constructions of representations starting from
symplectic geometry (geometric quantization).
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Physics→ Mathematics

What can mathematicians learn from quantum mechanics?

• Constructions of representations starting from
symplectic geometry (geometric quantization).

• Interesting representations of infinite dimensional
groups (quantum field theory).
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Canonical Example:R2n

Standard flat phase space, coordinates (pi, qi), i = 1 . . . n:

M = R
2n, ω =

n
∑

i=1

dpi ∧ dqi

Quantization:

[p̂i, p̂j ] = [q̂i, q̂j ] = 0, [q̂i, p̂j ] = i~δij

(This makes R
2n+1, a Lie algebra, the Heisenberg algebra)

Schrödinger representation on H = L2(Rn):

q̂i = mult. by qi, p̂i = −i~
∂

∂qi
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Metaplectic representation

Pick a complex structure on R
2n, e.g. identify C

n = R
2n by

zj = qj + ipj

Then can choose H = {polynomials in zj}.

The group Sp(2n,R) acts on R
2n preserving ω, H is a projective

representation, or a true representation of Mp(2n,R) a double cover.

Segal-Shale-Weil = Metaplectic = Oscillator Representation

Exponentiating the Heisenberg Lie algebra get H2n+1, Heisenberg
group (physicists call this the Weyl group), H is a representation of the
semi-direct product of H2n+1 and Mp(2n,R).
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Quantum Field Theory

A quantum field theory is a quantum mechanical system whose
configuration space (Rn, space of qi in previous example) is infinite
dimensional, e.g. some sort of function space associated to the
physical system at a fixed time.

• Scalar fields: Maps(R3 → R)

• Charged fields: sections of some vector bundle

• Electromagnetic fields: connections on a U(1) bundle

These are linear spaces, can try to proceed as in finite-dim case, taking

n → ∞.
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A Different Example: S
2

Want to consider a different class of example, much closer to what
Weyl was studying in 1925.

Consider an infinitely massive particle. It can be a non-trivial projective
representation of the spatial rotation group SO(3), equivalently a true
representation of the spin double-cover Spin(3) = SU(2).

H = C
n+1, particle has spin n

2 .

Corresponding classical mechanical system:

M = S2 = SU(2)/U(1), ω = n × Area 2-form

This is a symplectic manifold with SU(2) action (left multiplication).
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Geometric Quantization ofS2

What is geometric construction of H analogous to Fock representation
in linear case?

Construct a line bundle L over M = SU(2)/U(1) using the standard
action of U(1) on C.

L = SU(2) ×U(1) C

↓

M = SU(2)/U(1)

M is a Kähler manifold, L is a holomorphic line bundle, and H =

Γhol(L
n), the holomorphic sections of the n’th power of L.
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Borel-Weil Theorem (1954) I

This construction generalizes to a geometric construction of all the
representations studied by Weyl in 1925.

Let G be a compact, connected Lie group, T a maximal torus (largest
subgroup of form U(1) × · · · × U(1)). Representations of T are
“weights", letting T act on C with weight λ, can construct a line bundle

Lλ = G ×T C

↓

G/T

G/T is a Kähler manifold, Lλ is a holomorphic line bundle, and G acts

on H = Γhol(Lλ).
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Borel-Weil Theorem II

Theorem (Borel-Weil). Taking λ in the dominant Weyl chamber, one gets all

elements of Ĝ (the set of irreducible representations of G) by this construction.

In sheaf-theory language

H = H0(G/T,O(Lλ))

Note: the Weyl group W (G, T ) is a finite group that permutes the

choices of dominant Weyl chamber, equivalently, permutes the choices

of invariant complex structure on G/T .
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Relation to Peter-Weyl Theorem

The Peter-Weyl theorem says that, under the action of G × G by left
and right translation,

L2(G) =
∑

i∈Ĝ

End(Vi) =
∑

i∈Ĝ

Vi × V ∗
i

where the left G action acts on the first factor, the right on the second.

To extract an irreducible representation j, need something that acts on
all the V ∗

i , picking out a one-dimensional subspace exactly when i = j.

Borel-Weil does this by picking out the subspace that

• transforms with weight λ under T

• is invariant under n+, where g/t ⊗ C = n+ ⊕ n−
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Borel-Weil-Bott Theorem (1957)

What happens for λ a non-dominant weight?

One gets an irreducible representation not in H0(G/T,O(Lλ)) but in
higher cohomology Hj(G/T,O(Lλ)).

Equivalently, using Lie algebra cohomology, what picks out the
representation is not H0(n+, V ∗

i ) 6= 0 (the n+ invariants of V ∗
i ), but

Hj(n+, V ∗
i ) 6= 0. This is non-zero when λ is related to a λ′ in the

dominant Weyl chanber by action of an element of the Weyl group.

In some sense irreducible representations should be labeled not by a

single weight, but by set of weights given by acting on one by all ele-

ments of the Weyl group.
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The Dirac Operator

In dimension n, the spinor representation S is a projective
representation of SO(n), a true representation of the spin double cover
Spin(n). If M has a "spin-structure", there is spinor bundle S(M),
spinor fields are its sections Γ(S(M)).

The Dirac operator D/ was discovered by Dirac in 1928, who was
looking for a “square root" of the Laplacian. In local coordinates

D/ =
n

∑

i=1

ei

∂

∂xi

D/ acts on sections of the spinor bundle. Given an auxiliary bundle E

with connection, one can form a “twisted" Dirac operator

D/E : Γ(S(M) × E) → Γ(S(M) × E)
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Borel-Weil-Bott vs. Dirac

• Instead of using the Dolbeault operator ∂ acting on complex forms
Ω0,∗(G/T ) to compute H∗(G/T,O(Lλ)), consider D/ acting on
sections of the spinor bundle.

• Equivalently, instead of using n+ cohomology, use an algebraic
version of the Dirac operator as differential (Kostant Dirac
operator).

Basic relation between spinors and the complex exterior algebra:

S(g/t) = Λ∗(n+) ⊗
√

Λn(n−)

Instead of computing cohomology, compute the index of D/. This is inde-

pendent of choice of complex structure on G/T .
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Equivariant K-theory

K-theory is a generalized cohomology theory, and classes in K0 are
represented by formal differences of vector bundles. If E is a vector
bundle over a manifold M ,

[E] ∈ K0(M)

If G acts on M , one can define an equivariant K-theory, K0
G(M),

whose representatives are equivariant vector bundles.

Example: [Lλ] ∈ K0
G(G/T )

Note: equivariant vector bundles over a point are just representations,
so

K0
G(pt.) = R(G) = representation (or character) ring of G
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Fundamental Class in K-theory

In standard cohomology, a manifold M of dimension d carries a
“fundamental class" in homology in degree d, and there is an
integration map

∫

M

: Hd(M,R) → H0(pt.,R) = R

In K-theory, the Dirac operator provides a representative of the
fundamental class in “K-homology" and
∫

M

: [E] ∈ KG(M) → indexD/E = kerD/E − cokerD/E ∈ KG(pt.) = R(G)
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Quantization = Integration in K-theory

In the case of (G/T, ω = curv(Lλ)) this symplectic manifold can be
“quantized" by taking H to be the representation of G given by the
index of D/Lλ

.

This construction is independent of a choice of complex structure on
G/T , works for any λ, not just dominant ones.

In some general sense, one can imagine “quantizing" manifolds M

with vector bundle E, with H given by the index of D/E .

Would like to apply this general idea to quantum field theory.
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History of Gauge Theory

• 1918: Weyl’s unsuccessful proposal to unify gravity and
electromagnetism using symmetry of local rescaling of the metric

• 1922: Schrödinger reformulates Weyl’s proposal in terms of phase
transformations instead of rescalings.

• 1927; London identifies the phase transformations as
transformations of the Schrödinger wave-function.

• 1954: Yang and Mills generalize from local U(1) to local SU(2)

transformations.
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Gauge Symmetry

Given a principal G bundle over M , there is an infinite-dimensional
group of automorphisms of the bundle that commute with projection.
This is the gauge group G. Locally it is a group of maps from the base
space M to G.

G acts on A, the space of connections on P .

Example: M = S1, P = S1 × G, G = Maps(S1, G) = LG

A/G = conjugacy classes in G, identification given by taking the holon-

omy of the connection.
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Loop Group Representations

See Pressley and Segal, Loop Groups.

LG/G is an infinite-dimensional Kähler manifold, and there is an
analog of geometric quantization theory for it, with two caveats:

• One must consider “positive energy" representations, ones where
rotations of the circle act with positive eigenvalues.

• Interesting representations are projective, equivalently
representations of an extension of LG by S1. The integer
classifying the action of S1 is called the “level".

For fixed level, one gets a finite number of irreducible representations.
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QFT in 1+1 dimensions

Consider quantum field theory on a space-time S1 × R. The Hilbert
space H of the theory is associated to a fixed time S1.

The level 1 representation for LU(N) is H for a theory of a chiral
fermion with N “colors".

At least in 1+1 dimensions, representation theory and quantum field

theory are closely related.
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Freed-Hopkins-Teleman

For loop group representations, instead of the representation ring
R(LG), one can consider the Verlinde algebra Vk. As a vector space
this has a basis of the level k positive energy irreducible
representations.

Freed-Hopkins-Teleman show:

Vk = Kk+τ
dim G,G(G)

The right-hand side is equivariant K-homology of G (under the conju-

gation action), in dimension dim G, but “twisted" by the level k (shifted

by τ ). This relates representation theory of the loop group to a purely

topological construction.
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QFT Interpretation

• Consider the quantum field theory of chiral fermion coupled to a
connection (gauge field).
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QFT Interpretation

• Consider the quantum field theory of chiral fermion coupled to a
connection (gauge field).

• Apply physicist’s “BRST" formalism.

• Get explicit representative of a K-homology class in KG(A).

• Idenitfy KG(A) with FHT’s KG(G), since for a free H action on M ,
KH(M) = K(M/H).
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Summary

• Quantum mechanics and representation theory are very closely
linked subjects.

Quantum Field Theory and Representation Theory – p.38



Summary

• Quantum mechanics and representation theory are very closely
linked subjects.

• Much is known about representation theory that still awaits
exploitation by physicists. Much is known about QFT that awaits
exploitation by mathematicians for insights into representations of
infinite-dimensional groups.

Quantum Field Theory and Representation Theory – p.38



Summary

• Quantum mechanics and representation theory are very closely
linked subjects.

• Much is known about representation theory that still awaits
exploitation by physicists. Much is known about QFT that awaits
exploitation by mathematicians for insights into representations of
infinite-dimensional groups.

• Work in Progress: 1+1 dim QFT and twisted K-theory. Relate path
integrals and BRST formalism to representation theory and
K-theory.

Quantum Field Theory and Representation Theory – p.38



Summary

• Quantum mechanics and representation theory are very closely
linked subjects.

• Much is known about representation theory that still awaits
exploitation by physicists. Much is known about QFT that awaits
exploitation by mathematicians for insights into representations of
infinite-dimensional groups.

• Work in Progress: 1+1 dim QFT and twisted K-theory. Relate path
integrals and BRST formalism to representation theory and
K-theory.

• QFT in higher dimensions?
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