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1 Introduction

Given a quantum mechanical system with symmetry group a Lie group G, the
Hilbert space H of the theory will be a unitary representation of G and of its
Lie algebra g. For the case of G a gauge symmetry, the space of physical states
is supposed to be the G-invariant subspace

HG ⊂ H

The quantum BRST method constructs this subspace using what mathemati-
cians refer to as Lie algebra cohomology, in which

HG = H0(g,H)

an identity which follows from the abstract definition of such a cohomology
theory as the derived functor of the invariants functor. Lie algebra cohomology
can be explicitly defined in terms of a specific complex with differential, the
Chevalley-Eilenberg complex

C∗(g,H) = H⊗ Λ∗(g∗)

In physicist’s language, one adjoins to the original theory anti-commuting vari-
ables transforming as g, known as “ghosts”.

For a more useful characterization of such a quantum system, it should
be given as a “quantization” of a classical mechanical system described by an
algebra of functions C∞(P ) on a Poisson manifold P , with a Poisson bracket
{·, ·}. Quantization takes such functions to operators on H, and (at least for
generators of C∞(P )), Poisson brackets to commutators. WhenG is a symmetry
group of P , one defines a “reduced” Poisson manifold P//G, and quantization
of this space is supposed to give operators on the quantum reduction HG. The
operations of reduction and quantization should commute.
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The Hamiltonian BRST method provides a homological “classical BRST”
construction of functions on P//G in terms of a complex with differential given
by taking the super-Poisson bracket with a specific element Ω of the complex.
Quantization of Ω then provides an explicit differential, the “BRST operator” Q.
The physical Hilbert spaceHG should be the degree zero cohomology of Q acting
on states, and physical operators should be given by degree zero cohomology
classes of Q acting on operators (as O → [Q,O]).

Attempts to implement this method run into various technical problems,
due, for example, to the lack of a quantization map with the properties one
needs, to non-zero higher cohomology classes, or to the necessity of introducing
an indefinite inner product on states. To better understand the mathematical
issues involved, one can study a special case of the problem, that of P = g∗

(this is a Poisson manifold with G symmetry). A simple case of the BRST
formalism would be to choose as gauge symmetry group some H ⊂ G. This will
be reviewed in the first section of the paper.

It turns out that if one adopts a somewhat different point of view on the
topic of quantum gauge symmetries, then a very interesting mathematical for-
malism somewhat analogous to the BRST formalism exists, one that has been
recently intensively studied by representation theorists under the name “Dirac
cohomology”. Here, given a symmetry group G, instead of choosing a subgroup
H to gauge, one chooses a subgroup R with Lie algebra r that will remain un-
gauged. An algebraic Dirac operator ��Dg/r plays the role of the BRST operator,
although its square is no longer zero, but a central element. As a result it acts
as a differential on operators, with cohomology that turns to be the algebra
Z(r), the center of the enveloping algebra U(r).

On states the kernel of ��Dg/r gives an analog of BRST-invariant states, while
allowing a positive-definite inner product. When the quotient g/r can be de-
composed as u ⊕ u for some complex Lie algebra u, these states are essentially
harmonic representatives of the Lie algebra cohomology H∗(u,H). In the stan-
dard BRST method, this is what would appear when gauging the complex Lie
group with Lie algebra u. Note that this is a sort of Gupta-Bleuler construction,
gauging u, but not all of g/r = u ⊕ u. The Dirac cohomology construction can
be applied in cases where the the BRST method cannot: there is no need for
g/r to either be a Lie algebra, or to decompose as a sum of a Lie algebra and
its conjugate.

Dirac cohomology gives a version of the standard highest-weight theory for
representations of semi-simple Lie algebras, as well as other applications in
representation theory. For an exposition of some of these applications, see the
recent book by Huang and Pandzic[12]. After reviewing the specifics of the Dirac
cohomology construction and examining some examples, it will be applied to
handle the gauge symmetry in the toy model of 0+1 dimensional gauge theory.

In 1+1 dimensions, there may be applications to geometric Langlands theory,
and in higher dimensions the use of Dirac cohomology instead of BRST may
conceivably lead to new insights into both gauge theory and the physical Dirac
operator.
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2 Conventional Hamiltonian BRST

In the conventional constrained Hamiltonian formalism, one begins with a clas-
sical mechanical system characterized by a Poisson algebra P, with Poisson
bracket {·, ·}. P is a Lie algebra with the Poisson bracket a Lie bracket.

First-class constraints give an ideal I ⊂ P, closed under the Poisson bracket.
φ ∈ I acts on the quotient A/I by

φ · [f ] = [{φ, f}]

and one can define the reduced algebra by taking I invariants

Pred = (A/I)I

This is again a Poisson algebra, the algebra of physical observables.
Quantization is supposed to give a map q : P → A taking Poisson algebras

to associative algebras. Such a map should be a Lie algebra homomorphism
modulo higher order terms in algebra generators (the Lie bracket for associative
algebras is the commutator). For a Poisson algebra P, quantization gives an
algebra of operators q(P), represented as linear operators on a Hilbert space H.

In the presence of constraints, physical states are supposed to be those in
the subspace Hred ⊂ H annihilated by operators in q(I). Physical observables
correspond to operators in the algebra q(Pred), which is supposed to be an
algebra of operators on Hred.

The basic idea of the BRST formalism (a good reference is [9]) is to first
use techniques from homological algebra to enlarge P to a graded super-Poisson
algebra P∗BRST with super-Poisson bracket {·, ·}± and differential

D(·) = {Ω, ·}±

for some Ω ∈ P∗BRST . D should satisfy D2 = 0 and the cohomology of the
complex in degree zero is arranged to be

Pred = H0(P∗BRST )

This construction is sometimes referred to as “classical BRST”.
One then generalizes the quantization map q to take super-Poisson algebras

to associative super-algebras and thereby get a quantum version of BRST. This
involves a graded algebra of operators q(P∗BRST ) acting on a graded Hilbert
space H∗BRST , with a distinguished degree one operator Q = q(Ω) (the “BRST
operator”) satisfying Q2 = 0. The physical Hilbert space of states is given by
the degree zero cohomology

Hred = H0
Q(H∗BRST )

of the complex H∗BRST with differential Q. The algebra of physical operators
acting on these states is given by

q(Pred) = H0
d(q(P∗BRST ))
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the degree zero cohomology of the complex q(P∗BRST ), with differential given
by d(·) = [Q, ·]±.

For any given choice of P and I, one runs into various problems with im-
plementing this philosophy, problems which one may or may not be able to
successfully resolve.

More concretely, the Poisson algebra of interest will typically be an algebra
P = C∞(P ), functions on a Poisson manifold P , for instance P = C∞(P )
or P = Pol(P ) (polynomials on P ). Such a manifold P may be a symplectic
manifold, but more generally it will be a manifold foliated by symplectic leaves.
An important example will be P = g∗, the dual space to the Lie algebra g,
with P = Pol(g∗) = S∗(g) (S∗(g) is the symmetric algebra on g). In that case,
the Lie bracket directly gives a Poisson bracket, since linear functions on g∗ are
elements of g. So, one can define the Poisson bracket of f1, f2 ∈ Pol(g∗) at
ξ ∈ g∗ by

{f1, f2}(ξ) = ξ([df1, df2])

If P is a Poisson manifold with symmetry group G and g = Lie(G), G acts
on P preserving the Poisson bracket. This situation that can alternately be
characterized by the existence of a Poisson map between Poisson manifolds, the
moment map

µ : P → g∗

In this case, the ideal of first-class constraints is the ideal of functions f ∈
C∞(P ) that vanish on µ−1(0). The reduced space is Pred = µ−1(0)/G, some-
times written P//G. One would like to define the reduced Poisson algebra as
C∞(P//G), but one problem with this is that P//G is often a singular space.
If 0 is a regular value for µ, the constraints are said to be irreducible.

In the irreducible case, the classical BRST construction proceeds by first
using the moment map to construct a complex C∞(P )⊗Λ∗(g) with differential

δ : C∞(P )⊗ Λ∗(g)→ C∞(P )⊗ Λ∗−1(g)

The dual of the moment map takes g to C∞(P ), and this can be extended to a
homomorphism of the symmetric algebra S∗(g) to C∞(P ). This makes C∞(P )
a S∗(g)-module, and our complex is the Koszul resolution of this module. Its
homology is just the functions on µ−1(0) in degree zero:

H0
δ (C∞(P )⊗ Λ∗(g)) = C∞(µ−1(0))

One then takes G invariants by taking the Lie algebra cohomology of this in
degree zero, which requires tensoring the complex by Λ∗(g∗) and defining the
Chevalley-Eilenberg differential d. One ends up with a double complex

C∞(P )⊗ Λ∗(g)⊗ Λ∗(g∗)

with a total differential D. Kostant and Sternberg[19] show that under certain
conditions which are not necessarily satisfied (vanishing of the higher TorS

∗(g)
∗ (R, C∞(P ))

H0
D(C∞(P )⊗ Λ∗(g)⊗ Λ∗(g∗))
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is the reduced Poisson algebra C∞(P//G). So, in this case D is the classical
BRST operator and

P∗BRST = C∞(P )⊗ Λ∗(g)⊗ Λ∗(g∗)

Kostant and Sternberg go on to use the fact that the super-algebras Λ∗(g)⊗
Λ∗(g∗) and Λ∗(g+g∗) are isomorphic, and they identify an element Ω ∈ C∞(P )⊗
Λ∗(g + g∗) such that

D(·) = {Ω, ·}±
(this uses a super-Poisson bracket {·, ·}± on C∞(P )⊗ Λ∗(g + g∗)), completing
the classical BRST construction.

To get a quantum version of this, Kostant and Sternberg first assume as
given a quantization q(C∞(P )) as operators on a Hilbert space H, and quantize
Λ∗(g+g∗) as the Clifford algebra Cliff(g+g∗). This Clifford algebra is defined
using the inner product coming from evaluating element of g∗ on elements of g.
It has a unique irreducible module, the spin module S, which for a unimodular
group G is isomorphic to Λ∗(g).

In summary, the Kostant-Sternberg version of classical BRST is to take

P∗BRST = P ⊗ Λ∗(g + g∗)

with differential d(·) = {Ω, ·}±. Quantum BRST for operators uses the complex

q(P)⊗ Cliff(g + g∗)

with a distinguished operator Q = q(Ω) such that the differential is d(·) = [Q, ·].
Q satisfies Q2 = 0 and also acts on states in HBRST = H⊗S, with cohomology
classes the physical states, acted on by cohomology classes of operators.

For P a point, so P = C, and g semi-simple, Ω ∈ Λ3(g) is defined using the
Killing form. The quantum BRST operator cohomology is trivial, the complex
Q acting on HBRST is the Chevalley-Eilenberg complex for H∗(g,C), so the
quantum BRST state cohomology is the cohomology of the Lie algebra.

Sevostyanov[23] gives an interpretation of the Kostant-Sternberg BRST op-
erator cohomology as a homological version

Hecke∗(A,U(g))

of the Hecke algebra associated to a pair of algebras U(g) ⊂ A, for the case
A = q(P). Here

Hecke0(A,U(g)) = EndA(A⊗U(g) C, A⊗U(g) C)

which acts on the Lie algebra cohomology H∗(g,H).

2.1 An Example

Feigin and Frenkel[4] give an interesting example of the above construction.
Take as Poisson manifold P = g∗ for g a complex semi-simple Lie algebra, so the
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Poisson algebra is P = S∗(g). This can be quantized with the symmetrization
map

q : S∗(g)→ U(g)

and one can take as Hilbert space H any representation of g.
Note that U(g) is a filtered algebra, with S∗(g) its associated graded algebra.

The Poisson bracket on S∗(g) is induced from the commutator on U(g), and the
quantization map q takes the Poisson bracket not to the commutator, but to
the commutator plus lower order terms.

Such a Lie algebra has a decomposition

g = h⊕ n⊕ n

where h is the Cartan subalgebra, n the positive root spaces and n the negative
root spaces. One can choose to treat n as a gauge symmetry, with gauge group
N such that Lie(N) = n. In this case one must reduce not at the trivial
representation of N , but at the principal character χ ∈ n∗. The moment map

µ : g∗ → n∗

is just the projection map, and the reduced Poisson manifold is

g∗//N = µ−1(χ)/N

The classical BRST construction gives the Poisson algebra on this space as the
cohomology of a complex

S∗(g∗)⊗ Λ∗(n⊕ n)

Quantum BRST for operators uses a complex

U(g)⊗ Cliff(n⊕ n)

which, by a theorem of Kostant[16] has cohomology purely in degree zero, iso-
morphic to the center Z(g). This acts on the BRST state cohomology, which
consists of so-called Whittaker vectors v ∈ H satisfying Xv = χ(X)v for X ∈ n.

Feigin and Frenkel go on to apply this in the infinite-dimensional case of g an
affine Kac-Moody algebra, where gauging a nilpotent sub-algebra is Drinfeld-
Sokolov reduction. Here the BRST method requires the use of the semi-infinite
variant of Lie algebra cohomology, and the reduced algebra is known as a W -
algebra. This sort of construction of the W -algebra gets used in one approach
to the geometric Langlands program.

3 The Quantum Weil Algebra

A semi-simple Lie algebra g comes with an invariant bilinear form B(·, ·), the
Killing form. This can be used to identify g = g∗, and thus the symmetric
algebras S∗(g) and S∗(g∗). We have seen that the quantization q(S∗(g)) is the
universal enveloping algebra U(g), and B allows the same definition to be used
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to quantize S∗(g∗), the polynomials on g. The invariant bilinear form can also
be quantize the anti-commuting analog of S∗(g∗), the exterior algebra Λ∗(g∗),
which can be thought of as functions on a space g of anti-commuting variables.
This quantization gives the Clifford algebra Cliff(g).

The Weil algebra W ∗(g) is defined to be the tensor product

W ∗(g) = S∗(g∗)⊗ Λ∗(g∗)

It is a graded algebra with generators of S∗(g∗) carrying degree two, generators
of Λ∗(g∗) degree one. It is a differential graded algebra, with a differential d
that makes it cohomologically trivial, i.e. H0(W ∗(g)) = C (for more details on
the Weil algebra, a good reference is the book of Guillemin and Sternberg[8].

If g is the Lie algebra of a Lie group G, and P is a principal G-bundle over
a manifold M , then a connection on P corresponds to an equivariant map

θ : g∗ → Ω∗(P )

(Ω∗(P ) is the de Rham complex of differential forms on P ). This can be extended
to a homomorphism of differential algebras

θ : W ∗(g)→ Ω∗(P )

which takes the generators of Λ∗(g∗) to connection one-forms on P , the gener-
ators of S∗(g∗) to curvature two-forms.

W (g∗) and Ω∗(P ) are not just differential graded algebras, but are g-differential
graded algebras. This means their is an action on them of, for each X ∈ g, Lie
derivative operators LX of degree zero, and contraction operators of degree −1,
satisfying certain compatibility conditions, including the Cartan relation

diX + iXd = LX

In each case one can define a basic sub-complex of the algebra, the sub-complex
annihilated by these operators. One has (Ω∗(P ))basic = Ω∗(M), and (W ∗(g))basic =
S∗(g∗)g, the invariant polynomials on g.

Restricting to basic sub-complexes, a connection gives a homomorphism

θ : S∗(g∗)g → Ω∗(M)

This is the Chern-Weil homomorphism which takes invariant polynomials on g
to differential forms on M constructed out of curvature two-forms. Taking co-
homology, for compact G this homomorphism is independent of the connection
and gives invariants of the bundle in H∗(M). In this case one can think of the
complex W ∗(g) as a subcomplex of the de Rham complex Ω∗(EG) of a homo-
topically trivial space EG with free G-action, one that carries its cohomology,
just as the Chevalley-Eilenberg complex is a subcomplex of Ω∗(G) carrying the
cohomology of the manifold G. For the classifying space BG = EG/G, its co-
homology ring can be computed as the cohomology of W ∗(g)basic, which, since
the differential is trivial, is just the ring of invariant polynomials S∗(g∗)g.
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Alekseev and Meinrenken[1] (for some related expository material, see [21])
define a quantization map

q : W ∗(g) = S∗(g∗)⊗ Λ∗(g∗)→W(g) = U(g)⊗ Cliff(g)

On the two factors this restricts to the separate quantization maps discussed
earlier, but the full map q is not just the tensor product map. HereW(g) is called
the quantum (or non-commutative) Weil algebra. It carries a Z-filtration, but
is just Z2-graded, not Z-graded. q is a homomorphism of g-differential graded
algebras, intertwining the actions of the operators d,LX , iX on both algebras.
Restricted to the basic subalgebras it becomes the Duflo map

q : S∗(g)g → U(g)g = Z(g)

which is an ismorphism.
On W(g), d,LX , iX act by inner automorphisms, i.e. (super)-commutation

with specific elements of W(g). In particular, d is given by

d(·) = [��Dg, ·]±

for a special element ��Dg which can be thought of as a sort of algebraic Dirac
operator, with a cubic term. It has some remarkable properties, one of which is
that it can be defined by

��Dg = q(CS)

i.e as the quantization of the Chern-Simons element CS ∈ W (g). Given a con-
nection θ : W (g) → Ω∗(P ), CS is the element that maps to the Chern-Simons
form of the connection. It satisfies d(CS) = C2, where C2 is the quadratic
element of S∗(g∗) constructed from the Killing form.

This way of defining ��Dg appears in [2], for a more explicit definition, see [1].
The same operator appears earlier in the physics literature as the supersymme-
try generator for the superparticle on the group G (see, e.g. [6]).

Another remarkable property of ��Dg is the formula for its square. Using

��D2
g =

1
2

[��Dg,��Dg]± =
1
2
d(��Dg) =

1
2
dq(CS) =

1
2
q(dCS) =

1
2
q(C2)

and the formula for the Duflo map, one finds that

��D2
g = −Ωg −

1
24
trg(Ωg)

where Ωg is the quadratic Casimir element in U(g). Thus ��D2
g ∈ Z(g), so it

commutes with everything and d2 = 0 on W(g).
The cohomology of W(g) with respect to this differential d is just the con-

stants. On an irreducible representation of highest weight λ,

��D2
g = −|λ+ ρg|2Id

where ρg is half the sum of the positive roots. This is negative-definite, so
ker ��Dg = ∅ for the action of Dg on V ⊗ S, for any representation V .
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4 Dirac Cohomology for Quadratic Subalgebras

The quantum Weil algebra of the previous section is a special case of a more
general construction given by Kostant[18] in 2002. The more general context is

• g a complex semi-simple Lie algebra.

• B(·, ·) a non-degenerate, invariant symmetric bilinear form on g (e.g. the
Killing form).

• r a reductive subalgebra of g on which B(·, ·) is non-degenerate.

• V a representation of g, or equivalently, a module for the universal en-
veloping algebra U(g).

In such a situation one can define

• s is the orthocomplement to r with respect to B. One has g = r ⊕ s as
vector spaces and [r, s] ⊂ s. In general s is just a vector subspace, it is not
a Lie sub-algebra of g.

• Cliff(s) is the Clifford algebra associated to s and the inner product
B(·, ·)|s.

• S is a spinor module for Cliff(s). For s even (complex) dimensional, this
is unique up to isomorphism.

4.1 The Vogan Conjecture and the Kostant Dirac Opera-
tor

Given a subgroup R ⊂ G with Lie algebra r, the space EG has a free action
of R, and EG/R = BR. The Weil algebra W (g) provides a tractable algebraic
model for the de Rham cohomology of EG, and the subalgebra W (g)r−basic of
basic elements for the r action (annihilated by LX , iX , for X ∈ r) provides a
model for the deRham cohomology of BR. One has

H∗(W (g)r−basic) = H∗(BR) = S∗(r∗)

In the quantum Weil algebra case, one has

H∗(W(g)g−basic) = Z(g)

and expects that
H∗(W(g)r−basic) = Z(r)

In a more explicit form, this sort of statement was first conjectured by Vogan[24],
then proved by Huang-Pandzic[10], and more generally, by Kostant[18]. For a
more abstract proof, see Alekseev-Meinrenken[2] and [20].

To make this isomorphism more explicit, note first that

W(g)r−basic = (U(g)⊗ Cliff(s))r
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the r-invariant sub-complex of U(g) ⊗ Cliff(s). r acts “diagonally” here, not
just on the U(g) factor. In other words, we are using the homomorphism

ζ : U(r)→ U(g)⊗ Cliff(s)

defined by
ζ(X) = X ⊗ 1 + 1⊗ ν(X)

where
ν : r→ Lie(SO(s)) ⊂ Cliff(s)

is the representation of r on the spinor module S as quadratic elements in
Cliff(s) coming from the fact that the adjoint action of r on s is an orthogonal
action.

The Kostant Dirac operator is defined as the difference of the algebraic Dirac
operators for g and r

��Dg,r = ��Dg −��Dr

It is an element of W(g)r−basic and the restriction of the differential d on W(g)
to W(g)r−basic is given by

d(·) = [��Dg,r, ·]

The map
Z(r) = U(r)r →W(g)r−basic = (U(g)⊗ Cliff(s))r

takes values on cocycles for d and is an isomorphism on cohomology.
Even more explicitly, one can write

��Dg,r =
n∑
i=1

Zi ⊗ Zi + 1⊗ v

where
v =

1
2

∑
1≤i,j,k≤n

B([Zi, Zj ], Zk)ZiZjZk

and the Zi are an orthonormal basis of s.
The square of the Kostant Dirac operator is given by

��D2
g,r = −Ωg ⊗ 1 + ζ(Ωr) + (|ρr|2 − |ρg|2)1⊗ 1

where ρg is half the sum of the positive roots for g, ρr the same for r.

4.2 Dirac Cohomology: Operators

��D2
g,r commutes with all elements of U(g)⊗Cliff(s) so the differential d satisfies

d2 = 0. The differential d is an equivariant map for the U(r) action given by ζ,
so it is also a differential on (U(g)⊗Cliff(s))r. The operator Dirac cohomology
is defined as

H�D(g, r) = Ker d/Im d
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on (U(g) ⊗ Cliff(s))r. The Vogan conjecture says that it is isomorphic to
Z(ζ(r)). Note that in general this will be not Z-graded, but just Z2-graded,
using the Z2 grading of Cliff(s)).

So, for any representation V of g, we have an algebra of operators (U(g) ⊗
Cliff(s))r acting on V ⊗ S, with differential d = ad(��Dg,r) and cohomology
isomorphic to the center Z(r). It is this algebra that will play the role of the
algebra of BRST-invariant operators in this analog of BRST.

4.3 Dirac Cohomology: States

��Dg,r acts on V ⊗ S, and one can define the state Dirac cohomology as

H�D(g, r;V ) = Ker ��Dg,r/(Im��Dg,r ∩Ker ��Dg,r)

Since ��D2
g,r 6= 0, this is not a standard sort of homological differential. In par-

ticular, one has no assurance in general that

Im��Dg,r ⊂ Ker ��Dg,r

However, if V is either finite-dimensional or a unitary representation, then an
inner product on V ⊗S can be chosen so that ��Dg,r will be skew self-adjoint. In
that case Ker(��Dg,r) = Ker(��D2

g,r) and one has

H�D(g, r;V ) = Ker ��Dg,r

For an irreducible representation V of g, a well-known invariant is the in-
finitesimal character χ(V ). Such infinitesimal characters can be identified with
orbits in h∗ (h is a Cartan sub-algebra) under the Weyl group Wg, with a rep-
resentation of highest weight λ ∈ h∗ corresponding to the orbit of λ + δg. The
Dirac cohomology H�D(g, r;V ) of a representation V also provides an invariant
of the representation V . For a finite-dimensional V , it will consist of a collection
of |Wg|/|Wr| r irreducibles. These will all have the same infinitesimal character
as V , when one includes t∗ ⊂ h∗ (t is the Cartan sub-algebra of r) by extending
element of t∗ as zero on h/t. This phenomenon was first noticed by Pengpan
and Ramond for the case G = F4 and R = Spin(9) and was explained in general
in [7], which led to Kostant’s discovery[17] of his version of the Dirac operator.

5 Dirac Cohomology and Lie algebra Cohomol-
ogy

The BRST method uses an operator Q satisfying Q2, and describes states in
terms of Lie algebra cohomology of the gauged subgroup, whereas the Dirac
cohomology construction described above appears to be rather different. It
depends on a choice of un-gauged subgroup R and defines states as the kernel
of an operator that does not square to zero. It turns out though that these two
methods give essentially the same thing in the case that

g/r = u⊕ u
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In this case, u and u are isotropic subspaces with respect to the symmetric
bilinear form B, and one can identify u∗ = u. The spinor module S for Cliff(s)
can be realized explicitly on either Λ∗(u) or on Λ∗(u). However, when one does
this, the adjoint r action on Λ∗(u) differs from the spin(s) action on S = Λ∗(u
by a scalar factor Cρ(u). Here ρ(u) is half the sum of the weights in u.

The Dirac operator in this situation can be written (for details of this, see
[12]) as the sum

��Dg,r = C+ + C−

where (using dual bases ui for u and u∗i for u∗)

C+ =
∑
i

u∗i ⊗ ui + 1⊗ 1
4

∑
i,j

uiuj [u∗i , u
∗
j ]

C− =
∑
i

ui ⊗ u∗i + 1⊗ 1
4

∑
i,j

u∗i u
∗
j [ui, uj ]

The operators C+ and C− are differentials satisfying (C−)2 = (C+)2 = 0,
and negative adjoints of each other. This is very much like the standard Hodge
theory set-up, and one has

V ⊗ S = Ker ��Dg,r ⊕ Im C+ ⊕ Im C−

Ker C+ = Ker ��Dg,r ⊕ Im C+

Ker C− = Ker ��Dg,r ⊕ Im C−

If one identifies S = Λ∗(u), then V ⊗ S with differential C+ is the complex
with cohomology H∗(u, V ), and if one identifies S = Λ∗(u), then V ⊗ S with
differential C− is the complex with homology H∗(u, V ). Both of these can be
identified with the cohomology H�D(g, r;V ) = Ker Dg,r. Note that one gets
not the usual r action on H∗(u, V ) or H∗(u, V ), but the action twisted by the
one-dimensional representation Cρ(u).

6 Examples

For specific choices of g and r one can In each case, determination of the Dirac
cohomology H�D(g, r;V ) depends upon the formula

��D2 = −Ωg ⊗ 1 + ζ(Ωr) + (||ρr||2 − ||ρg||2)1⊗ 1

and the fact that Ωg acts by the scalar

||λ+ ρ||2 − ||ρ||2

on an irreducible representation of highest-weight λ.
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6.1 The cases r = 0 and r = g

• r = ∅
This is the case of no un-gauged symmetry, corresponding to the quantum
Weil algebra itself. Here

H�D(g, ∅) = C

and
H�D(g, ∅;V ) = ∅

for any V .

• r = g

This is the case of no gauged symmetry. Here one has

H�D(g, g) = Z(g)

and
H�D(g, g;V ) = V

6.2 Generalized Highest-weight Theory

The case r = h, the Cartan subalgebra of a complex semi-simple Lie algebra
reproduces the Cartan-Weyl highest-weight theory, of finite dimensional rep-
resentations, as generalized by Bott[3] and Kostantkostant-borelweil. In this
case

g = h⊕ n⊕ n

and one can identify Dirac cohomology and Lie algebra cohomology in the man-
ner discussed above. One has

H�D(g, h) = Z(h) = S∗(h∗)

and
H�D(g, h;Vλ) =

∑
w∈W

Cw(λ+δg)

which has dimension |W |.
The Weyl-character formula for the character ch(Vλ) function on the Cartan

sub-algebra can be derived from this, by taking a supertrace, i.e. the difference
between the part of the Dirac cohomology lying in the half spinor S+ and that
lying in the half spinor S−. One has

Vλ ⊗ S+ − Vλ ⊗ S− =
∑
w∈W

(−1)l(w)Cw(λ+δg)

as h representions. So the character satisfies

ch(Vλ) =
ch(Vλ ⊗ S+ − Vλ ⊗ S−)

ch(S+ − S−)

13



which is ∑
w∈W (−1)l(w)ew(λ+δg)∑
w∈W (−1)l(w)ew(δg)

More generally, if p = l⊕ u is a parabolic sub-algebra of g, with Levi factor
l and nilradical u, then again Dirac cohomology can be identified with the Lie
algebra cohomology for the subalgebra u. One finds

H�D(g, l) = Z(l)

and
H�D(g, l;Vλ) =

∑
w∈W/Wl

Vw(λ+δg)−δl

which is a sum of |W/Wl| l-modules.

6.3 (g, K) modules

For real semi-simple Lie algebras g0, corresponding to real Lie groups G with
maximal compact subgroup K (with Lie algebra k0), the interesting unitary
representations are infinite-dimensional. The simplest example here is g0 =
sl(2,R), K = SO(2) which has important applications in the theory of au-
tomorphic forms. These representations can be studied in terms of the corre-
sponding Harish-Chandra (g,K) modules, using relative Lie algebra cohomol-
ogy H∗(g,K;V ) to produce invariants of the representations (see [13] and [14]).
Here g, k are the complexifications of g0, k0. Dirac cohomology can also be used
in this context, and one finds(see [12], chapter 8)

H∗(g,K;V ⊗ F ∗) = Homk(H�D(g, k;F ), H�D(g, k;V ))

when V is an irreducible unitary (g,K) module with the same infinitesimal
character as a finite dimensional (g,K) module F .

6.4 Examples not related to Lie algebra cohomology

A remarkable property of Dirac cohomology is that it exists and allows the
definition of a physical space of states for a system with a symmetry group G,
where a specified subgroup R remains ungauged, even in cases where g/r is not
a Lie algebra and is not even of the form u ⊕ u for u a Lie algebra. In other
words, there is no Lie algebra to apply Lie algebra cohomology and the BRST
method to.

A simple example is the case g = spin(2n+ 1), r = spin(2n). Here for n > 1
spin(2n+ 1)/spin(2n) cannot be decomposed as u⊕u, which corresponds to the
fact that even dimensional spheres S2n cannot be given an invariant complex
structure for n > 1. In this case

H�D(spin(2n+ 1), spin(2n)) = Z(spin(2n))
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and
H�D(spin(2n+ 1), spin(2n);Vλ)

is a sum of two spin(2n) representations. For the trivial representation, these
are just the two half-spinor representations of spin(2n).

7 Coupling the Kostant-Dirac Operator to a Con-
nection

In [5] Freed, Hopkins and Teleman use a construction related to the one dis-
cussed in this paper. It involves studying not a single algebraic Dirac operator
��Dg, but a family of them parametrized by g∗. For µ ∈ g∗, one takes the operator

��Dg,µ = ��Dg + 1⊗ µ

interpreting µ as an element of Cliff(g). This is an algebraic version of the
construction of coupling a Dirac operator to a connection, with connections
corresponding to elements of g∗.

While ��Dg acting on Vλ ⊗ S has no kernel, ��Dg,µ will have a kernel when µ
is in a specifi co-adjoint orbit. The Kirillov correspondence maps co-adjoint
orbits to irreducible representations, in this case by the Borel-Weil theorem
which shows how to produce an irreducible representation from a co-adjoint
orbit. The FHT construction of a family of Dirac operators gives an inverse
to this map, associating co-adjoint orbits to irreducible representations. This
is somewhat analogous to the way in which Beilinson-Bernstein localization
produces D-modules on flag varieties from representations.

FHT use this construction not for finite dimensional Lie algebras, but for
affine Kac-Moody algebras, finding a theorem identifying the Verlinde ring of
these algebras with twisted equivariant K-theory of the corresponding finite-
dimensional group.

8 Gauge Theory in 0 + 1 dimensions

The physical case for which one needs to handle quantum gauge symmetry is
that of G-gauge theory (G a compact, connected Lie group) coupled to spinor
fields twisted by a representation V ofG in 3+1 dimensions. A toy model for this
would be to take gauge theory in 0+1 dimensions, twisted by a representation V
of G. Taking spacetime to be a circle S1, the basic geometrical set-up is that of
a principal G-bundle P over S1. The fields consist of connections A ∈ Ω(P )⊗g.
and sections of the associated bundle EV with fiber V . The gauge group G
is the group of vertical automorphisms of the bundle. Since the bundle has a
section, G can be identified with Maps(S1 → G).

The subgroup G0 ⊂ G of based gauge transformations acts freely on the space
of connections, with quotientA/G0 isomorphic toG, which can be identified with
the group element one gets from parallel transport around the circle starting
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and ending at the base-point. The remaining gauge symmetry group is G/G0

which is isomorphic to G and acts on the quotient A/G0 by conjugation.
Alternatively, what we have done is used the gauge-freedom to make the con-

nection time independent, so now our space of connections is just the constant
A0 ∈ g, with residual gauge symmetry adjoint action of G on g. This action
is not free. One way to deal with this remaining gauge symmetry is to pick a
maximal torus T (and thus a Cartan subalgebra t = Lie(T ) of g), and choose as
gauge condition A0 ∈ t. After this, the only remaining gauge symmetry will be
the T symmetry. The T symmetry will act trivially on the space of connections,
but it will act non trivially on states, since they include the field V .

So, in this case, we are in exactly the situation where Dirac cohomology can
be applied, giving as space of physical states H�D(gC, tC;V ). This is exactly
one of the examples described earlier, the one that can be used to derive the
Weyl character formula. The Hilbert space is V ⊗ S, with physical states in
Ker ��DgC,tC . Operators are in U(g) ⊗ Cliff(n ⊕ n), with physical operators
cohomology classes, isomorphic to S(t).

9 Higher Dimensional Applications

9.1 Geometric Langlands

BRST symmetry has previously found a role in the geometric Langlands pro-
gram, and it may be possible to use Dirac cohomology for similar purposes. In
local geometric Langlands, the relevant quantum field theory is a QFT on a disc,
with Hilbert space a representation of a loop grou. On hopes to parametrize
reps by an analog of langlands parameters, which here can be thought of as
connections with Langlands dual group.

Feigin-Frenkel implement this by showing that the center of the enveloping
algebra for the affine Lie algebra at the critical level is the space of functions on
the Drinfeld-Sokolov reduction of the right space of connections. They relate
this to a QFT, gauged WZNW, gauging the complex group WZW model by the
nilpotent subgroup.

It may be possible to instead use the Dirac cohomology version of the center,
ending up with a different QFT to study. A construction of this kind may
have interesting generalizations to higher dimensions, involving QFTs much like
the standard model, with connections parametrizing higher dimensional gauge
group representations.

9.2 Geometric Dirac Operators

The Dirac operator appearing here is an algebraic version of the Dirac operator.
For the case of a group manifold, one can get geometric Dirac operators by taking
the representation to be functions on the group.

Relation to the supersymmetric quantum mechanics proof of the index the-
orem, which has sometimes been claimed to come from a BRST-fixing of in-
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finitesimal translations on the manifold.

9.3 Quantization of Higher-Dimensional Gauge Theory

The formalism discussed in this paper has been purely a Hamiltonian formalism.
To generalize to higher dimensions, one would like a Lagrangian formalism, and
to make contact with the path integral and the Faddev-Popov treatment of
gauge fixing. This might resolve some of the problems that have so far thwarted
attempts to treat BRST symmetry non-perturbatively.

10 Conclusion

In a simplified, finite-dimensional context, we have shown that Dirac cohomol-
ogy gives an analog of BRST method for treating gauge symmetry, where

• H�D(g, r;V ) are the analog of BRST-invariant states

• H�D(g, r) = Z(r) are the analog of BRST-invariant operators, acting on
these states.

The operator ��Dg,r plays a role analogous to that of the BRST operator Q, but
its square is not zero.

In the case s = u ⊕ u, this is identical to the BRST formalism, up to a
twist by a scalar factor. It applies also in more general cases where there is Lie
algebra like u to use for the BRST formalism.
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