LIE GROUPS AND REPRESENTATIONS: SYLLABUS

Fall Semester

- Survey and history of Lie groups and representation theory; generalities about quantization and representation theory
- Lie groups and Lie algebras: some examples of closed linear groups
- Review of some differential geometry
- Lie algebras and their classification
- Finite dimensional representations of $\mathfrak{sl}(2, \mathbb{C})$
- Complex semisimple Lie algebras
 - Cartan subalgebras
 - Roots and root systems
 - Weyl groups
 - Classification
- The universal enveloping algebra, Poincare-Birkhoff-Witt theorem
- Finite-dimensional representations, highest-weight theory
 - Highest-weight theorem
 - Verma modules
 - Harish-Chandra homomorphism, the infinitesimal character
 - Weyl character formula, dimension and multiplicity formulae

Spring Semester

- Generalities about representation theory of finite groups
- Review of Fourier analysis, representations of abelian groups
- Representations of compact Lie groups
 - Peter-Weyl theorem
 - Maximal tori
 - Weyl integral formula, character formula and dimension formula
 - Topology and geometry of G/T
 - Borel and Parabolic Subgroups, flag manifolds
 - Induced representations and Frobenius reciprocity

- Borel-Weil theorem
- Examples, representations on homogeneous polynomials
- Applications of SU(2) and SU(3) representations in physics
- Hamiltonian mechanics, symplectic geometry, geometric quantization and the orbit method
- The Spinor Representation
 - Spin(2n) as a double cover of SO(2n)
 - The Clifford Algebra, Canonical Anticommutation Relations
- The Metaplectic Representation
 - The Heisenberg algebra and group, Canonical Commutation Relations
 - Stone-von Neumann Theorem.
 - The Metaplectic double cover of $\operatorname{Sp}(2n)$ and the Metaplectic Representation
 - Theta functions
- Correspondence between representations of GL(n) and S_n
- Structure theory of semisimple groups
 - Iwasawa decomposition
 - Real forms
- Representations of a non-compact semi-simple group: $SL(2, \mathbf{R})$
- Modular forms, Hecke algebras and (very optimistically) an extremely basic introduction to the Langlands program
- Other possible topics
 - Lie algebra cohomology and the Borel-Weil-Bott theorem
 - Kac Moody algebras, the Virasoro algebra and their highest weight representations