GROUPS AND REPRESENTATIONS II: PROBLEM SET 8 Due Monday, April 14

Problem 1: If e_i are a basis of the Clifford algebra C(n), show that the $\frac{1}{2}e_ie_j$,

for i < j, satisfy the same commutation relations as the standard basis $L_{ij} = E_{ij} - E_{ji}$ elements for the antisymmetric n by n matrices. This shows that Lie(Spin(n)) is isomorphic to Lie(SO(n)).

Problem 2: Using the Clifford algebra, derive formulae for

- 1. The action of the Lie algebra of Spin(n) on vectors, i.e for infinitesimal rotations in the i j plane.
- 2. The action of the group Spin(n) on vectors, i.e. the formula for a rotation by angle θ in the i j plane.

Problem 3: The $\frac{1}{2}e_{2j-1}e_{2j}$ provide a basis of a Cartan subalgebra in Lie(Spin(2n)).

Choose a complex structure on \mathbf{R}^{2n} that provides an identification with \mathbf{C}^n . Use this to relate the Clifford algebra and the CAR algebra corresponding to a basis of \mathbf{C}^n .

Use this CAR algebra to construct explicitly a Lie algebra representation of Lie(Spin(2n)) on $\Lambda^*(\mathbb{C}^n)$. Find the weights of this representation, show that it is the sum of two irreducible representations.

Problem 4:

- 1. Explicitly derive the commutation relations for the Lie algebra of $SL(2, \mathbf{R})$.
- 2. Show that $Sp(2, \mathbf{R})$ is isomorphic to $SL(2, \mathbf{R})$.
- 3. Show that the algebra of quadratic polynomials in the variables (p, q) with Poisson bracket under "quantization" becomes the Lie algebra of $SL(2, \mathbf{R})$.

Problem 5: Using the definition of the Bargmann-Fock space given in class,

show that the operators a_i^{\dagger} and a_i corresponding to a basis of \mathbf{C}^n are adjoint operators on this space.