LIE GROUPS AND REPRESENTATIONS, SPRING 2016 Problem Set 3

Due Monday, February 15

Problem 1:

- If $R \subset E$ is a root system, let $R^{\vee} \subset E^*$ be the set of elements given by the co-roots α^{\vee} for $\alpha \in R$. Show that R^{\vee} is a root system.
- Show that if $R = A_n$, then $R^{\vee} = A_n$, and that if $R = B_n$, then $R^{\vee} = C_n$.

Problem 2:

• For the standard basis E, F, H of $\mathfrak{sl}(2, \mathbb{C})$, show that

$$S = exp(\frac{\pi}{2}(E - F)) = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}$$

and that

$$Ad_S(H) = -H$$

• Assume that the Lie algebra \mathfrak{g} is given as a sub-Lie algebra of $\mathfrak{gl}(n, \mathbb{C})$, with compact real form \mathfrak{k} and $K \subset GL(n, \mathbb{C})$ the compact subgroup with Lie algebra \mathfrak{k} . For each root α of \mathfrak{g} , construct $\mathfrak{sl}(\mathfrak{2}, \mathbb{C})_{\alpha}$ as in class, and use the above construction to construct a group element $S_{\alpha} \subset SU(2) \subset K$. Show that $Ad_{S_{\alpha}}$ satisfies

 $Ad_{S_{\alpha}}(\alpha^{\vee}) = -\alpha^{\vee}$

and

$$Ad_{S_{\alpha}}(H) = H$$

if $H \in \mathfrak{h}$ such that $\alpha(H) = 0$. Deduce from this that S_{α} acts on \mathfrak{g}^* preserving \mathfrak{h}^* , in such a way that its restriction to \mathfrak{h}^* is the Weyl reflection s_{α} .

Problem 3: Let

$$\rho = \frac{1}{2} \sum_{\alpha \in R_+} \alpha$$

Show that

$$\rho(\alpha_i^{\vee}) = 1$$

for each co-root of a simple root.

Problem 4: For the root system G_2 , start with the simple roots, identify the Weyl group, drawing the Weyl chambers and full root system in the plane.