Problem 1:

- If $R \subset E$ is a root system, let $R^\vee \subset E^*$ be the set of elements given by the co-roots α^\vee for $\alpha \in R$. Show that R^\vee is a root system.
- Show that if $R = A_n$, then $R^\vee = A_n$, and that if $R = B_n$, then $R^\vee = C_n$.

Problem 2:

- For the standard basis E, F, H of $\mathfrak{sl}(2, \mathbb{C})$, show that
 $$ S = \exp\left(\pi \frac{1}{2} (E - F)\right) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} $$
 and that
 $$ \text{Ad}_S(H) = -H $$
- Assume that the Lie algebra \mathfrak{g} is given as a sub-Lie algebra of $\mathfrak{gl}(n, \mathbb{C})$, with compact real form \mathfrak{k} and $K \subset GL(n, \mathbb{C})$ the compact subgroup with Lie algebra \mathfrak{k}. For each root α of \mathfrak{g}, construct $\mathfrak{sl}(2, \mathbb{C})_\alpha$ as in class, and use the above construction to construct a group element $S_\alpha \subset SU(2) \subset K$.
 Show that Ad_{S_α} satisfies
 $$ \text{Ad}_{S_\alpha}(\alpha^\vee) = -\alpha^\vee $$
 and
 $$ \text{Ad}_{S_\alpha}(H) = H $$
 if $H \in \mathfrak{h}$ such that $\alpha(H) = 0$. Deduce from this that S_α acts on \mathfrak{g}^* preserving \mathfrak{h}^*, in such a way that its restriction to \mathfrak{h}^* is the Weyl reflection s_α.

Problem 3: Let
 $$ \rho = \frac{1}{2} \sum_{\alpha \in R_+} \alpha $$
 Show that
 $$ \rho(\alpha_i^\vee) = 1 $$
 for each co-root of a simple root.

Problem 4: For the root system G_2, start with the simple roots, identify the Weyl group, drawing the Weyl chambers and full root system in the plane.