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1 Characters

We have seen that irreducible representations of a compact Lie group G can be
constructed starting from a highest weight space and applying negative roots
to a highest weight vector. One crucial thing that this construction does not
easily tell us is what the character of this irreducible representation will be.
The character would tell us not just which weights occur in the representation,
but with what multiplicities they occur (this multiplicity is one for the highest
weight, but in general can be larger). Knowing the characters of the irreducibles,
we can use this to compute the decomposition of an arbitrary representation into
irreducibles.

The character of a representation (π, V ) is the complex-valued, conjugation-
invariant function on G given by

χV (g) = Tr(π(g))

The representation ring R(G) of a compact Lie group behaves much the the
same as in the finite group case, with the sum over group elements replaced by
an integral in the formula for the inner product on R(G)

< [V ], [W ] >=

∫
G

χV (g)χW (g)dg

where dg is the invariant Haar measure giving G volume 1. As an inner product
space R(G) has a distinguished orthonormal basis given by the characters χVi(g)
of the irreducible representations. For an arbitrary representation V , once we
know its character χV we can compute the multiplicities ni of the irreducibles
in the decomposition

V =
⊕
i∈Ĝ

niVi

as

ni =

∫
χVi(g)χV (g)dg

Knowing the character of V is equivalent to knowing the weights γi in V ,
together with their multiplicities ni, since if

V =
⊕
i

niCγi

then
TrV (eH) =

∑
i

nie
γi(H)
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2 The Weyl Integral Formula

We’ll give a detailed outline of Weyl’s proof of the character formula for a
highest-weight irreducible. This exploits heavily the orthonormality properties
of characters, and requires understanding the relation between the inner prod-
ucts on R(G) and R(T ), which is described by an integral formula due to Weyl.

We have seen that representations of G can be analyzed by considering their
restrictions to a maximal torus T . On restricting to T , the character χV (g) of
a representation V gives an element of R(T ) which is invariant under the Weyl
group W (G,T ). We need to be able to compare the inner product < ·, · >G on
R(G) to < ·, · >T , the one on R(T ). This involves finding a formula that will
allow us to compute integrals of conjugation invariant functions on G in terms
of integral over T , this will be the Weyl integral formula.

We’ll be considering the map:

q : (gT, t) ∈ G/T × T → gtg−1 ∈ G

An element n of the Weyl group W (G,T ) (i.e. an element nT in N(T )/T ,
N(T ) the normalizer of T ) acts on G/T × T by

(gT, t)→ gn−1T, ntn−1

and all points in a Weyl group orbit are mapped by q to the same point in G.
On “regular” points away from a positive codimension locus of “singular” points
of T the map q is a covering map with fiber W (G,T ). One way to see this is to
consider an element

x ∈ t ⊂ g

Under the adjoint action
x→ gxg−1

T leaves x invariant, elements of G/T move it around in an orbit in g, one that
intersects T at points corresponding to the elements of the Weyl group. For x
regular these points are all distinct (one in the interior of each Weyl chamber).

The map q is a covering map of degree |W | away from the singular elements
of T , these are of codimension one in T . As long as a function f on G doesn’t
behave badly at the images of the singular elements, one can integrate a function
over G by doing the integral over the pull-back function q∗(f) on G/T × T ,
getting |W | copies of the answer one wants.

So ∫
G

f(g)dg =
1

|W (G,T )|

∫
T

∫
G/T

q∗f(gT, t)q∗(dg)

One needs to compute the differential dq of the map q to get the Jacobian factor
in ∫

G

f(g)dg =
1

|W (G,T )|

∫
T

∫
G/T

f(gtg−1)|det(dq)|d(gT )dt

The result of this calculation is the
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Theorem 1 (Weyl Integral Formula). For f a continuous function on a compact
connected Lie group G with maximal torus T one has∫

G

f(g)dg =
1

|W (G,T )|

∫
T

det((1−Ad(t−1))|g/t)(

∫
G/T

f(gtg−1)d(gT ))dt

and if f is a conjugation-invariant function (f(gtg−1) = f(t)), then∫
G

f(g)dg =
1

|W (G,T )|

∫
T

det((1−Ad(t−1))|g/t)f(t)dt

For a detailed proof of this formula, see [1] Chapter IV.1. The essence of the
computation is computing the Jacobian of the map q. Using left invariance of
the measures involved and translating the calculation to the origin of G/T ×T ,
in the decomposition g = g/t + t the Jacobian is trivial on t, but picks up the
non-trivial factor

J(t) = det((I−Ad(t−1))|g/t)

from the the g/t piece.
One can explicitly calculate the Jacobian factor J(t) in terms of the roots,

since they are the eigenvalues of Ad on g/t with the result

J(t = eH) =
∏
α∈R

(1− e−α(H)) =
∏
α∈R+

(1− eα(H))(1− e−α(H))

where R is the set of roots, R+ is the set of positive roots. From this formula
we can see that we can in some sense take the square root of J(t), one choice of
phase for this is to set

δ(eH) = eρ(H)
∏
α∈R+

(1− e−α(H)) =
∏
α∈R+

(e
1
2α(H) − e− 1

2α(H))

where ρ is half the sum of the positive roots. Then

J(t) = δδ

So the final result is that for conjugation invariant f one has∫
G

fdg =
1

|W |

∫
T

f(t)δ(t)δ(t)dt

For the case of G = U(n), the Weyl integration formula gives a very explicit
formula for how to integrate a function of unitary matrices that only depends on
their eigenvalues over the space of all unitary matrices. In this case an element
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of T is a set of n angles eiθi and the Jacobian factor in this case is

J(θ1, · · · , θn) =
∏
α∈R

(1− e−α)

=
∏
j 6=k

(1− ei(θk−θj))

=
∏
j<k

(1− ei(θj−θk))(eiθke−iθk)(1− ei(θk−θj))

=
∏
j<k

(eiθk − eiθj )(e−iθk − e−iθj )

=
∏
j<k

|eiθk − eiθj |2

Note that this factor suppresses contributions to the integral when two eigen-
values become identical. The full integration formula becomes∫

U(n)

f =
1

n!

∫ 2π

0

· · ·
∫ 2π

0

f(θ1, · · · , θ2)
∏
j<k

|eiθk − eiθj |2 dθ1
2π
· · · dθn

2π

For the case G = SU(2), T = U(1), one has∫
SU(2)

f(g)dg =
1

2

∫ 2π

0

f(θ)|eiθ − e−iθ|2 dθ
2π

= 2

∫ 2π

0

f(θ) sin2(θ)
dθ

2π

3 The Weyl Character Formula

The Weyl integral formula was used by Weyl to derive a general formula for
character of an irreducible G representation. In this section we’ll give this
character formula and outline its proof. This proof is somewhat indirect and
we’ll describe later some other different proofs.

Weyl’s derivation of the character formula uses a somewhat surprising trick.
A character of aG representation gives an element of R(T ) (explicitly a complex-
valued function on T ), one that is invariant under the Weyl group W (G,T ). The
trick is to carefully analyze not the Weyl-symmetric character functions on T ,
but the antisymmetric characters, those elements of R(T ) that are antisymmet-
ric under Weyl reflections. These are functions on T that change sign when one
does a Weyl reflection in the hyperplane perpendicular to a simple root, i.e.

f(wt) = sgn(w)f(t)

where sgn(w) is +1 for elements of w ∈ W (G,T ) built out of an even number
of simple reflections, −1 for an odd number. It could also be written

sgn(w) = (−1)l(w)
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where l(w) is the length of w. The character function we want will turn out to
be the ratio of two such antisymmetric characters.

Theorem 2 (Weyl Character Formula). The character of the irreducible G
representation V λ with highest weight λ ∈ t∗ is

χV λ(eH) =

∑
w∈W sgn(w)e(λ+ρ)(wH)

δ

where H ∈ t, ρ is one-half the sum of the positive roots and δ is the function on
T defined in the discussion of the Weyl integral formula

Outline of Proof:
Weyl’s proof begins by showing that the antisymmetric characters

Aγ(eH) =
∑
w∈W

sgn(w)eγ(wH)

for γ a weight in the dominant Weyl chamber form an integral basis for the
vector space of all antisymmetric characters. Furthermore they satisfy the or-
thogonality relations

< Aγi , Aγj >T=

∫
T

AγiAγj = |W |δij

The irreducibility of V implies that < χV , χV >G=
∫
G
χV χV = 1 and the

Weyl integral formula implies this is

1 =
1

|W |

∫
T

χV χV δδdt =
1

|W |

∫
T

(χV δ)(χV δ)dt

Now χV δ is an antisymmetric character since one can show that δ is anti-
symmetric under Weyl reflections and thus must be of the form

χV δ =
∑
β

nβAβ

where β are weights in the dominant Weyl chamber and nβ are integers. So we
must have

1

|W |

∫
T

(
∑
β

nβAβ)(
∑
γ

nγAγ) = 1

but by the orthogonality relations this is

1 =
∑
β

(nβ)2

so only one value of β can contribute, with coefficient ±1. Finally one can show
that for an irreducible representation with highest weight λ, Aλ+δ must occur
in χδ with coefficient 1.

This finishes the outline of the proof, the details are in many textbooks, see
for instance [1] Chapter VI.1.

As usual, the simplest example is the The Weyl character formula has a wide
range of corollaries and applications, for example
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Corollary 1 (Weyl Denominator Formula, alternate form of WCF). Applying
the Weyl character formula to the case of the trivial representation gives

δ(eH) =
∑
w∈W

sgn(w)eρ(wH)

i.e. ∏
α∈R+

(e
1
2α(H) − e− 1

2α(H)) =
∑
w∈W

sgn(w)eρ(wH)

This gives an alternate form of the Weyl character formula:

χV λ(eH) =

∑
w∈W sgn(w)e(λ+ρ)(wH)∑
w∈W sgn(w)eρ(wH)

As usual the simplest example to check is G = SU(2), T = U(1), where the
irreducible representations V n of dimensions n+1 are labeled by n = 0, 1, 2, · · · .
From knowing that V n has every other weight from −n to +n, we know that

χV n(eiθ) = e−inθ + e−i(n−2)θ · · ·+ ei(n−2)θ + einθ

and multiplying this by (e−iθ − eiθ) we get a sum that collapses except for the
first and last terms, giving exactly what the Weyl character formula predicts

χV n(eiθ) =
ei(n+1)θ − e−i(n+1)θ

eiθ − e−iθ
=

sin((n+ 1)θ)

sin(θ)

Using the Weyl integral formula, one can easily see that these are orthonormal∫
SU(2)

χV nχVmdg = 2

∫ 2π

0

sin((n+ 1)θ)

sin(θ)

sin((m+ 1)θ)

sin(θ)
sin2(θ)

dθ

2π
= δnm

Two other corollaries of the Weyl character formula are the following mul-
tiplicity formulae that you are asked to prove in this week’s homework. The
first is equivalent to the WCF, and some proofs of the WCF begin by proving it
instead. Both use the Kostant partition function P (µ). which is defined as the
number of ways one can write the integral weight µ as an integral combination
of the positive roots.

Corollary 2 (Kostant Multiplicity Formula). An integral weight µ occurs in
the highest weight representation V λ with multiplicity∑

w∈W
(−1)l(w)P (w(λ+ ρ)− (µ+ ρ))

and

Corollary 3 (Steinberg Multiplicity Formula). The multiplicity of V λ in the
decomposition of the tensor product V µ ⊗ V ν is∑

w,w′∈W
(−1)l(w)l(w′)P (w(λ+ ρ) + w′(µ+ ρ)− ν − 2ρ)
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4 The Weyl Dimension Formula

By evaluating the character formula at H = 0 one can compute the dimension
of the irreducible representations giving

Corollary 4 (Weyl Dimension Formula). The dimension of the irreducible rep-
resentation with highest weight λ is

dim Vλ =

∏
α∈R+ < α, λ+ ρ >∏
α∈R+ < α, ρ >

Here R+ is the set of positive roots.

Proof:
This calculation is a little bit tricky since the Weyl character formula gives

the character at H = 0 as the quotient of two functions that vanish to several
orders there and so one has to use l’Hôpital’s rule. We’ll compute the values
of the numerator and denominator of the Weyl character formula at sρ̌ ∈ t
(where ∨ denotes the identification of t and t∗ given by the inner product, i.e.
γ(ρ̌) =< γ, ρ > for any γ ∈ t∗) and then take the limit as s goes to 0.

For the numerator of the Weyl character formula we have:

Aλ+ρ(sρ
∨) =

∑
w∈W

sgn(w)es<λ+ρ,wρ>

=
∑
w∈W

sgn(w)es<w(λ+ρ),ρ>

= Aρ(s(λ+ ρ)∨)

= δ(s(λ+ ρ))

=
∏
α∈R+

(e
s
2<α,λ+ρ> − e− s2<α,λ+ρ>)

=
∏
α∈R+

s < α, λ+ ρ > +O(sn+1)

where n is the number of positive roots. Taking the ratio of this to the same
expression with λ = 0 and taking the limit as s goes to zero gives the corollary.

In the SU(2) case there is just one root and the formula gives n+1
1 as ex-

pected.
If an irreducible representation with highest weight ρ exists, the Weyl di-

mension formula implies that its dimension will be

dim Vρ = 2m

where m is the number of positive roots. For G = SU(3), this is the adjoint
representation, which has dimension 8 = 23 as predicted. We will see this
representation occurring again when we study spinors.
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5 Other proofs

We’ve outlined in detail Weyl’s original proof of the Weyl character formula,
but there are several other interesting well-known ones, invoking rather different
kinds of mathematics, always in a quite non-trivial way. Some examples are:

• One can prove the WCF purely algebraically using Verma modules, be-
ginning by calculating the character of the Verma module itself, which is
quite easy:

χV (λ) =
eλ∏

α∈R+(1− e−α)

The Verma module is infinite dimensional, so this formula should be in-
terpreted as a formal sum, using

1

1− e−α
= 1 + e−α + e−2α + · · ·

If you take as given the BGG resolution of a finite-dimensional repre-
sentation V λ with highest-weight λ in terms of Verma modules, the WCF
follows straightforwardly (showing this is one problem in this week’s prob-
lem set).

The WCF can also be proved using Verma modules and weaker informa-
tion than the BGG resolution. You can use the Harish-Chandra isomor-
phism, which we will discuss next time (this proof is given in detail in [3]).
It can also be done using even weaker information about the center Z(g),
just about the Casimir, see for example [2].

• One can also prove the WCF using the construction of V λ as holomorphic
sections of a line bundle that one gets from the Borel-Weil theorem. Here
one shows that for λ integral and dominant V λ = H0(G/T,Lλ) and that
the higher cohomology Hi(G/T,Lλ), i > 0 vanishes. For the alternating
sum of these cohomology groups the Atiyah-Bott-Lefschetz formula (a
generalization of the Lefschetz trace formula to holomorphic complexes)
gives a formula for the character evaluated at a generic element of the
torus in terms of contributions from the fixed points of the torus action
on G/T . There are |W | of these, and the fixed-point contributions are
exactly the terms in the WCF. For more details, see [4] or [5].

• A third and in many ways most straighforward proof of the WCF can
be given once one knows the Lie algebra cohomology groups Hi(n+, V λ).
These turn out to also govern what happens when one takes line bundles
corresponding to non-dominant weights in the Borel-Weil construction.
One gets representations in higher cohomology, and a generalization of
the Borel-Weil theorem known as the Borel-Weil-Bott theorem. We’ll
cover this material in some detail a bit later in the course.
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