
Highest-weight Theory: Verma Modules
Math G4344, Spring 2012

We will now turn to the problem of classifying and constructing all finite-
dimensional representations of a complex semi-simple Lie algebra (or, equiv-
alently, of a compact Lie group). It turns out that such representations can
be characterized by their “highest-weight”. The first method we’ll consider is
purely Lie-algebraic, it begins by constructing a universal representation with
a given highest-weight, then the finite-dimensional representation we want is
found as a quotient of this. These universal representations are known as “Verma
modules”. They are infinite dimensional, not completely reducible, non-unitary
and not representations of the corresponding group, but have quotients that do
have the properties we want.

1 The sl(2,C) case

This is a short review of the sl(2,C) case, which you should have seen last
semester.

One can take as a basis of sl(2,C) elements e, f, h satisfying

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f

Representations decompose according to eigenvalues of h, with Vλ ⊂ V the
eigenspace of weight λ. e raises the weight

e : Vλ → Vλ+2

and f lowers it
f : Vλ → Vλ−2

By induction and use of the commutation relations one finds that

efn+1 = fn+1e+ (n+ 1)fn(h− n)

In non-relativistic quantum physics, the theory of angular momentum opera-
tors is based on representation theory of the compact real form su(2) = spin(3).
Physicists choose rotations about the z-axis as their maximal torus. They name
their operators giving a Lie algebra representation

J1,J2,J3

and choose these to be self-adjoint (so differing by i from mathematician’s con-
vention). J3 is (up to a factor of 2) the operator representing our h. For
computations they often complexify and work with our e, f as J1 ± J2.

Representations V of sl(2,C) are characterized by their highest-weight sub-
space, the v ∈ V such that ev = 0. Irreducible repesentations have a one-
dimensional highest weight subspace, and are characterized by the “highest
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weight”, the h-eigenvalue of this subspace. An irreducible representation V λ of
highest weight λ can be constructed if you start with a v ∈ Vλ and generate
vectors

v, fv, f2v, · · ·
that span V , giving a basis of one-dimensional subspaces of weights

λ, λ− 2, λ− 4. · · ·

If λ is negative or positive non-integral, this sequence never terminates and
one gets an infinite dimensional representation. If λ = n for some non-negative
integer n, then the sequence will terminate, with f annihilating

fnv

. This will give a finite-dimensional representation V n of dimension n+ 1 with
weights

n, n− 2, · · · ,−n+ 2,−n
A physicist would describe V n as the “spin j = n/2” representation.

The Weyl group W = Z2 just acts by changing the sign of a weight, leaving
the set of weights of an irreducible invariant as it should.

One can reformulate the above construction of a representation as the sort of
induced representation discussed earlier in this class. Consider the subalgebra
b ⊂ sl(2,C) generated by h and e. Start with a one-dimensional representation
Cλ of b, with e acting trivially, h by λ and construct the induced representation

V (λ) = Ind
sl(2,C)
b Cλ = U(sl(2,C))⊗b Cλ

This is a Verma module with highest weight λ.
Recall that by the Poincaré-Birkhoff-Witt theorem as a vector space sl(2,C)

has a basis
f ihjek i, j, k = 0, 1, 2, 3, · · ·

and the tensor product over U(b) means we identify

ab⊗ vλ = a⊗ bvλ

for a ∈ sl(2,C), b ∈ b and vλ ∈ Cλ, so

ah⊗ vλ = a⊗ hvλ = λa⊗ vλ

and
ae⊗ vλ = a⊗ evλ = 0

As a vector space, V (λ) is an infinite dimensional module with a basis

vλ, fvλ, f
2vλ · · ·

The Casimir operator for sl(2,C) is

C =
1

2
h2 + ef + fe
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Note that this is the normalization one gets using the inner product (X,Y ) =
tr(XY ) with the trace in the fundamental representation (2 by 2 complex matri-
ces), a factor of 4 different than using the Killing form defined using the adjoint
representation.

Since C is in the center of Z(sl(2,C)) it will act by a scalar on irreducible
modules, a scalar that one can compute by its action on a highest weight vector:

Cvλ = (
1

2
h2 + ef)vλ = (

1

2
h2 + (fe+ h))vλ = (

1

2
λ2 + λ)vλ

So C acts by 1
2λ

2 + λ on V (λ). Note that this is invariant under the operation

λ↔ −λ− 2

which is reflection about λ = −1 The center of U(sl(2,C))) is the polynomial
algebra C[C]. Acting on Verma modules V (λ) one gets polynomials in λ invari-
ant under the above operation of shift by 1 and reflection. We’ll encounter this
peculiar sort of shift repeatedly in this subject. This identification of the center
of the enveloping algebra with an algebra of polynomials invariant under a shift
and Weyl reflection is a simple example of the Harish-Chandra isomorphism we
will study in general later.

Hendrik Casimir, after whom the Casimir operator is named, was a physicist,
whose study of the operator was motivated by its occurrence in this context in
physics. There the operator

J2
1 + J2

2 + J2
3

is in the center of U(su(2)) and takes values j(j + 1) in the spin j (our n/2)
representation.

For λ < 0 or positive non-integral, V (λ) is irreducible. For λ non-negative
integral, it is indecomposable, but has a sub-module V (−λ− 2), with the same
infinitesimal character. The finite dimensional irreducible module with highest
weight λ appears here as the quotient

V λ = V (λ)/V (−λ− 2)

2 The General Case

For a general complex simple Lie algebra g, with a choice of Cartan subalgebra
h positive roots, one has

g = h⊕ n+ ⊕ n−

where
n+ =

⊕
+ roots α

gα

and
n− =

⊕
+ roots α

g−α
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are nilpotent subalgebras. The Cartan subalgebra has dimension l, the rank of
the Lie algebra, and all roots are integral combinations of l simple positive roots

αi ∈ h∗, i = 1, 2, · · · , l

For each such αi we get an sl(2,C) subalgebra sαi of g. General represen-
tations of g will be representations of each of these sαi , and we can apply the
results of the previous section.

For each i we can choose

ei ∈ gαi
, fi ∈ g−αi

, hi ∈ h

satisfying the relations
[ei, fj ] = δijhi

[hi, ej ] = aijej

[hi, fj ] == aijfj

where
aij = αj(hi)

are the entries of the so-called Cartan matrix and satisfy aii = 2. hi ∈ h is
called the “co-root” associated to the root αi.

For each i we have reflection maps

wαi

that act by orthogonal transformations on h∗ (with respect to the invariant
inner product), taking αi to −αi. These generate the Weyl group W .

The co-roots hi span an integral lattice in h, with the dual lattice spanned
by the fundamental weights ωi ∈ h∗, which satisfy

ωi(hj) = δij

For the sl(2,C) case h is one-dimensional, there is one positive root α ∈ h∗ and
one co-root h ∈ h, satisfying α(h) = 2. The fundamental weight ω ∈ h∗ satisfies
ω(h) = 1, so α = 2ω.

(should be a picture here)
We would like to classify all irreducible finite-dimensional representations V

of a complex simple Lie algebra g, and will do this by finding its weights ω.
These are the elements of h∗ we get from diagonalizing the h action:

hv = ω(h)v, v ∈ Vω ⊂ V, h ∈ h

We know the following about the weights of V :

• V will have a highest weight λ and highest weight-space Vλ of vectors
v ∈ V characterized by

n+v = 0, hv = λ(h)v

(otherwise repeated application of the ei would give an infinite-dimensional
module).
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• The weights ω of V lie in the weight lattice of integral combinations of the
fundamental weights ωi (otherwise one would not get finite dimensionality
under the action of the sub-algebra sαi

)

• The highest weight λ is “dominant”, i.e. it satisfies

λ(hi) ≥ 0

for each i (otherwise repeated application of ei would give an infinite-
dimensional module). The subspace of h∗ of elements non-negative on
each of the hi is called the “dominant Weyl chamber. Elements of the
Weyl group permute choices of which roots are positive, and thus change
the dominant Weyl chamber.

• The pattern of weights is invariant under the action so the Weyl group.

The classification theorem is

Theorem 1 (Highest-weight Theorem). Finite dimensional irreducible repre-
sentations of a complex simple Lie algebra g are in one-to-one correspondence
with integral dominant weights λ, which give the highest weight of the represen-
tation.

We have seen that irreducible representations will have a highest weight,
which must be an integral, dominant weight, but we have not shown that a finite
dimensional representation with a given highest weight exists and is unique. One
way to approach this is to generalize what we did for sl(2,C) and to construct
representations with a given highest weight by induction in the Lie algebra,
these are the Verma modules:

Definition 1 (Verma Module). For a complex simple Lie algebra g with Borel
subalgebra b = h⊕ n+, the Verma module with highest weight λ ∈ h∗ is

V (λ) = U(g)⊗b Cλ

Here Cλ is the one-dimensional b module where n+ acts trivially, h by weight
λ.

As in the sl(2,C) case these modules will be infinite-dimensional and in-
decomposable. When λ is dominant integral, they will have maximal proper
sub-modules M such that V (λ)/M is finite-dimensional. The proof of this is
somewhat involved, see for example [1],[2] or [3]. We will try and partially
make up for the lack of a proof of finite dimensionality when we turn to an-
other way of constructing these representations, using induction in the group,
where finite-dimensionality follows from general theorems in either analysis or
algebraic geometry.

The full story of how Verma modules fit together as sub-modules of each
other, providing finite-dimensional modules as quotients is rather complicated
and not so easily proved. It is
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Theorem 2 (Bernstein-Gelfand-Gelfand Resolution). There is an exact se-
quence of Verma modules

0→ V (w0 · λ)→ · · ·
⊕

w∈W,l(w)=k

V (w · λ)→ · · · → V (λ)→ V λ → 0

where
w · λ = w(λ+ ρ)− ρ

l(w) is the length of the Weyl group element w, w0 is the Weyl group element
of maximal length. Here ρ is half the sum of the positive roots.

The subject of “geometric representation theory” relates Verma modules to
the geometry of the flag variety G/B. B acts on the left, with a finite num-
ber |W | of B-orbits (this is the “Bruhat decomposition”). For G = SL(2,C),
G/B = CP 1 and there are two B-orbits: the Riemann sphere minus the South
pole, and the South pole, of dimension 2 and 0 respectively. Verma modules
correspond to delta-function distributions on the B-orbits, dual Verma modules
to holomorphic functions on the orbits, singular at the boundary. For more
details, one source is [4]. For a general introduction to geometric representation
theory techniques, see [5].

Next time we’ll discuss Borel-Weil theory, which provides another sort of con-
struction of these finite-dimensional representations by induction, using “holo-
morphic induction” in the group. There is a third possible way to construct
all irreducibles, which requires a separate analysis though for each class of Lie
algebras. Here one begins by somehow constructing the fundamental represen-
tations then taking tensor powers. The highest weight of the tensor product of
two representations is the sum of the highest weights of the two representations,
so we can get all dominant integral highest weights by tensoring fundamental
representations. These tensor products will not themselves be irreducibles, but
will contain the irreducibles we want.

3 The Casimir

Recall that for a complex semi-simple Lie algebra g we have a non-degenerate
inner product B(·, ·), which can be taken to be the Killing form

B(X,Y ) = tr(ad(X)ad(Y )

(or we could use the trace in another representation). If Xi are an orthonormal
basis of g with respect to B, the Casimir element is a quadratic element in U(g)
given by

C =
∑
i

X2
i

This is in the center Z(g) so will act as a scalar on an irreducible representation.
One of your assignments in the next problem set will be to compute this scalar
in terms of the highest weight of the representation. The answer is:
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Claim: C acts on the irreducible highest weight representation V λ by

Cv = (< λ, λ > +2 < λ, ρ >)v = (< λ+ ρ, λ+ ρ > − < ρ, ρ >)v

In the exercises you will also show that this scalar is invariant under the
transformation

λ→ w(λ+ ρ)− ρ

for any element w in the Weyl group. This generalizes the invariance under

λ↔ −λ− 2

that we saw in the sl(2,C) case. We will see later in our discussion of the Harish-
Chandra isomorphism that this generalizes to other elements in the center, all
of which will act by scalars invariant under this shifted-Weyl action.

Note that, starting a Verma module V (λ) for a dominant integral weight λ,
this gives us |W | Verma modules with the same infinitesimal character, exactly
the ones that occur in the BGG resolution.

4 Examples

The simplest class of examples to work out is that of the Lie algebras sl(n,C).
Here one can work with n by n complex, trace-free matrices M , and make the
following choices:

• The Cartan subalgebra is h= diagonal matricesH with trace 0. Let ei ∈ h∗

be the element that takes a matrix to its i’th diagonal entry:

ei(H) = Hii

The trace-free condition implies that
∑n
i=1 ei = 0

• Let Eij be the matrix M with Mij = 1, all other elements 0. These are
eigenvectors for the adjoint action of h =∈ h:

ad(h)Eij = [H,Eij ] = (Hii −Hjj)Eij = (ei − ej)(H)Eij

• The roots are thus given by

αi,j = ei − ej , i 6= j

and the root spaces are
gαi,j

= CEij

• A standard choice of positive roots is to choose the αij with i < j. Then
n+ is the Lie algebra of strictly upper triangular n by n matrices and n−

is the Lie algebra of strictly lower triangular n by n matrices.
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• With this choice of positive roots, a choice of the n− 1 simple roots is the
αi,i+1, i.e.

e1 − e2, e2 − e3, · · · en−1 − en

• The fundamental weights then are:

ω1 = e1, ω2 = e1 + e2, · · · , ωn−1 = e1 + e2 + · · ·+ en−1

The representation with highest weight e1 is the defining representation
on Cn. The fundamental representation with highest weight ωk is the
wedge-product representation on Λk(Cn). The representation with high-
est weight ke1 is the representation on the symmetric product Sk(Cn),
and for sl(2,C) these are all the irreducibles, on homogeneous k-th order
polynomials . A general irreducible can thus be constructed out of anti-
symmetric and symmetric products of Cn. The subject of “Schur-Weyl”
duality relates representations of the symmetric group and representations
of sl(n,C).

• The Weyl group is W = Sn, generated by n−1 transpositions si that take

ei ↔ ei+1, i = 1, 2, · · · , n− 1

• The dominant integral weights are the

λ1e1 + λ2e2 + · · ·+ λn−1en−1

with
λi ∈ Z+, λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ 0

•
ρ =

1

2

∑
i<j

αi, j = ne1 + (n− 1)e2 + · · ·+ en−1

For the case n = 3 one can draw the weight lattice by starting with three
unit vectors ei, with 2π

3 between any two of them. Then, since e3 = −e1 − e2,
all weights can be written as integral linear combinations of the e1 and e2. In
particular one has

• ω1 = e1, this is the highest weight of the defining representation on C3.
The other two weights in this representation are e2 and e3

• ω2 = e1 + e2, this is the highest weight of the representation Λ2C3.

• Non-negative integral combinations of ω1 and ω2 give all the highest
weights of irreducibles.

• α1,2 = e1 − e2 is one of the simple roots, a weight that is not dominant.

• α2,3 = e2 − e3 is the other simple root, also a non-dominant weight.
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• The third positive root is

α1,3 = e1 − e3 = α1,2 + α2,3 = ρ =
1

2
(α1,2 + α2,3 + α1,3)

It is half the sum of the positive roots, and the highest weight of the
adjoint representation.

• The Weyl group is W = S3, generated by two elements: sα1,2 (reflection
about line perpendicular to α1,2) and sα2,3 (reflection about line perpen-
dicular to α2,3). There are six elements of the Weyl group: 1, of length 0,
sα1,2

, sα2,3
of length 1, sα1,2

sα2,3
, sα2,3

sα1,2
of length 2, and sα1,2

sα2,3
sα1,2

of length 3.

• The BGG resolution of a highest weight representation in terms of Verma
modules is

0→ V (sα1,2
sα2,3

sα1,2
(λ+ ρ)− ρ)→ V (sα1,2

sα2,3
(λ+ ρ)− ρ)⊕ V (sα2,3

sα1,2
(λ+ ρ)− ρ)

→ V (sα1,2
(λ+ ρ)− ρ)⊕ V (sα2,3

(λ+ ρ)− ρ)→ V (λ)→ V λ → 0

• The flag variety SL(3,C)/B = SU(3)/(U(1)×U(1)) is a six real-dimensional
manifold, also a complex 3-dimensional Kähler manifold. The B action
from the left decomposes it into six B-orbits, which can be identified with
a C3. two copies of C2 two copies of C and a point.

Should be two pictures here, one showing the weights described above, the other
the six Weyl chambers.

In the discussion section, Alex Ellis will go over some of the details of what
the weight diagrams for various representations look like in the sl(3,C) case.
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