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I’ll review here some basic facts about representations. Much of this should
be familiar from last semester.

1 Representations, a review

For groups in general

Definition 1 (Group Representation). A representation (π, V ) of a group G
on a vector space V is a homomorphism

π : G→ GL(V )

where GL(V ) is the group of invertible linear transformations of V .

and for Lie algebras

Definition 2 (Lie algebra Representation). A representation of a Lie algebra
g is a module for the algebra U(g). This module is given by a choice of vector
space V , and a homomorphism π : U(g)→ End(V ).

In the group case, one can alternatively define a representation as a module
for the group algebra CG (this is an algebra of functions, with product given
by convolution), we may say more about this when we discuss the Peter-Weyl
theorem.

We’ll sometime refer to a representation (π, V ) as V , with the action of G
or g implicit, sometimes refer to it just using the homomorphism π.

Note that these definitions make sense for vector spaces (respectively mod-
ules) over an arbitrary field k. We’ll restrict our attention to the simplest case,
k = C. The groups and Lie algebras themselves are also defined over a field,
which for us will be R or C. More generally, for the groups we’ll consider one
can keep track of whether the complex representations we study are “real” or
“quaternionic”. If a G-equivariant anti-linear map J : V → V exists satisfy-
ing J2 = 1, one can think of J as a complex conjugation and restriction to its
+1 eigenspace gives a representation on a real vector space. If a G-equivariant
anti-linear map J : V → V exists satisfying J2 = −1, one can use this J to give
V the structure of a vector space over the quaternions.

For applications of representation theory in number theory, one may want
to consider representations over the l-adic numbers Ql for l a prime.

To study representations, one would like to decompose them into simpler
ones,

Definition 3 (Irreducible Representation). A representations is irreducible if
it has no non-trivial sub-representations (i.e. no non-trivial subspace of V is
invariant under the group action).
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A weaker property is

Definition 4 (Indecomposable Representation). A representation is indecom-
posable if it is not the direct sum of two non-trivial proper subrepresentations.

We’ll see that for semi-simple Lie groups irreducibility and indecomposabil-
ity coincide, but for solvable Lie groups one can have representations that are
indecomposable, but not irreducible. For solvable Lie groups one has

Theorem 1 (Lie-Kolchin theorem). If (π, V ) is a representation of a solvable
Lie group G of dimension n, there is a complete flag

V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ V

of invariant subspaces Vi of dimension i.

This implies that any such representation can be put in the form of a sub-
group of the upper-triangular matrices pf GL(V ), and any solvable Lie group
has a one-dimensional irreducible representation (V1). One may however not
be able to find a G-invariant complement to V1, for example in the case of all
upper-triangular matrices in GL(V ) acting on V .

For many purposes it is a good idea to think of the set of representations of
G not just as a set, but as a category Rep(G). We can take the objects of this
category to be the equivalence classes of representations,

Definition 5 (Equivalence of Representations). Two representations π1 and π2
on a vector space V are said to be equivalent (or isomorphic) if they are related
by conjugation, i.e.

π2(g) = h(π1(g))h−1

for h ∈ GL(V ).

The morphisms in the category Rep(G) are not arbitrary linear maps be-
tween the representation space, but G-equivariant maps known as intertwining
operators.

Definition 6 (Intertwining Operators). Given two representations (π1, V1) and
(π2, V2) of G, the space of intertwining operators is the space HomG(V1, V2) of
linear maps φ : V1 → V2 satisfying

φ ◦ π1(g) = π2(g) ◦ φ

A basic fact about intertwining operators is

Theorem 2 (Schur’s Lemma). Given two finite-dimensional complex irreducible
representations V1, V2 of a Lie group G, the intertwiners satisfy

• HomG(V1, V2) = {0} (the zero map) if V1 is not isomorphic to V2.

• HomG(V1, V2) = C if V1 is isomorphic to V2.
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and one has the same fact for Lie algebra representations. Over a general
field k, one gets that HomG(V1, V1) (V1 irreducible) can be a division algebra
over k, not just k. In the case of infinite dimensional complex representations, if
these are unitary Schur’s lemma remains true, with the proof using the spectral
theorem for self-adjoint operators. For Lie algebras, Schur’s lemma remains true
for arbitrary irreducible U(g) modules, even when infinite-dimensional[1].

Note that equivalence classes of representations form a ring

Definition 7 (Representation Ring). The representation ring R(G) is the ring
of equivalence classes [V ] of representations of G, with sum and product given
by

[V1] + [V2] = [V1 ⊕ V2], [V1] · [V2] = [V1 ⊗ V2]

For Lie groups, one way to distinguish non-isomorphic representations is by
their character:

Definition 8 (Character of a representation). The character χV of a represen-
tation (π, V ) of G is the function on G

χV = Tr(π(g))

It gives a ring homomorphism from R(G) to the ring of conjugation-invariant
functions on G.

For infinite-dimensional representations, one can often make sense of the
character as a distribution, defining the Harish-Chandra character on a function
f by

Θπ(f) = Tr(

∫
G

f(g)π(g)dg)

For a Lie algebra g, one can define a different sort of invariant of a represen-
tation:

Definition 9. If the center Z(g) ⊂ U(g) acts by scalars on a representation
(π, V ), the representation is said to have infinitesimal character, and this is
given by a homomorphism

χπ : Z(g)→ C

with χπ(z) the scalar by which z acts.

The infinitesimal character can be used to study Lie algebra representations
that are not representations of the corresponding Lie group. Examples are the
Verma modules we will begin studying next time. One source of Lie algebra
representations that are not Lie group representations is functions on an open
subset of a Lie group G that is invariant under g, but not under G. For represen-
tations that have both a distributional character and an infinitesimal character,
the two are related by

Θπ(zf) = χπ(z)Θπ(f)

i.e. the characters is an eigendistribution for Z(g), with eigenvalues given by
the infinitesimal character.
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2 Lie algebra cohomology

An invariant of representations defined last semester is the Lie algebra coho-
mology H∗(g, V ). An abstract definition can be given as the derived functor
of the invariants functor. A more concrete motivation comes from considering
de Rham cohomology of a group, and taking coefficients in a representation.
Important general properties of this are:

• Zero-dimensional cohomology of a representation is the invariant part of
the representation:

H0(g, V ) = V g

•
H1(g,C) = (g/[g, g])∗

This is the dual of the abelianization of g, zero for semi-simple g.

• Two dimensional cohomology H2(g,C) classifies central extensions

0→ C→ g̃→ g→ 0

This is zero for semi-simple g, but important for affine Lie algebras, which
are non-trivial central extensions of loop algebras.

• One dimensional cohomology classifies extensions of g representations, i.e
isomorphism classes of extensions

0→ V1 → V → V2 → 0

are given by

H1(g, HomC(V2, V1)) = H1(g, V2 ⊗C V1) = Ext1(V2, V1)

• For semi-simple Lie algebras, the invariants functor is exact: it takes ex-
act sequences to exact sequences. One can prove this using the Casimir
operator. One consequence of this is that for a semi-simple Lie algebra

Hi(g, V ) = Hi(g, V g) = Hi(g,C)⊗ V g

By the relation to de Rham cohomology, the Hi(g,C) are just the topo-
logical cohomology groups of the compact Lie group G whose complexified
Lie algebra is g. This is zero for i = 1, 2, non-zero for i = 3.

• A second important consequence is that for semi-simple Lie algebras,
finite-dimensional representations are completely reducible since there are
no non-trivial extensions. If V1 ⊂ V is a subrepresentation, so is V/V1.
Any finite dimensional representation V can be written as a direct sum of
irreducibles Vi:

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn
With Schur’s lemma, the category of representations becomes quite simple,
since there are no morphisms between irreducibles.
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• We will be studying representations by looking at their highest weight
spaces V n+

= H0(n+, V ). The Lie algebra n+ is not semi-simple and its
invariants functor is not exact. The higher cohomology groups H∗(n+, V )
will provide invariants of the representation.
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