GROUPS AND REPRESENTATIONS, SPRING 2012 Problem Set 2 Due Monday, February 27

Problem 1: Show that for a simple Lie algebra \mathfrak{g} the Casimir element $C \in U(\mathfrak{g})$

acts on an irreducible highest weight representation with highest weight λ as multiplication by the scalar

$$<\lambda + \rho, \lambda + \rho > - < \rho, \rho >$$

where ρ is half the sum of the positive roots. Show that this scalar is invariant under the shifted Weyl group action

$$\lambda \to w \cdot \lambda = w(\lambda + \rho) - \rho$$

Problem 2: Show that the dual $(V^{\lambda})^*$ of a finite dimensional highest weight

representation of \mathfrak{g} has highest weight $-w_0\lambda$, where w_0 is the Weyl group element of maximal length, which takes elements in the dominant Weyl chamber to the anti-dominant Weyl chamber (i.e. changes the sign).

Problem 3: For $\mathfrak{g} = \mathfrak{sl}(3)$ use the Weyl integral formula to find the dimensions of the representations with highest weight

$$n_1\omega_1 + n_2\omega_2$$

where ω_1, ω_2 are the fundamental weights.

Pick one of these representations with $n_1 > 1$ and $n_2 > 1$ and draw its weight diagram, showing also the fundamental weights and the roots.

Problem 4: Show that the Verma module $V(\lambda)$ has character (this is a formal series, since this is an infinite dimensional representation)

$$\chi_{V(\lambda)} = \frac{e^{\lambda}}{\prod_{\alpha \in R^+} (1 - e^{-\alpha})}$$

Assuming the BGG resolution of a finite-dimensional representation V^{λ} with highest-weight λ , prove the Weyl character formula using Verma modules.

Problem 5: In class we defined the Kostant partition function $P(\mu)$ as the number of ways one can write the integral weight μ as an integral combination of the positive roots. Use the Weyl character formula to prove the Kostant

multiplicity formula, which says that a weight μ occurs in a the highest weight representation V^λ with multiplicity

$$\sum_{w \in W} (-1)^{l(w)} P(w(\lambda + \rho) - (\mu + \rho))$$

Problem 6: Prove Steinberg's formula: the multiplicity of V^{λ} in the decomposition of the tensor product $V^{\mu} \otimes V^{\nu}$ is

$$\sum_{w,w'\in W} (-1)^{l(w)l(w')} P(w(\lambda+\rho) + w'(\mu+\rho) - \nu - 2\rho)$$