
Harmonic Analysis on Compact Lie Groups:
the Peter-Weyl Theorem

Math G4344, Spring 2012

1 Peter-Weyl as a special case of induction

Last time we discussed induction for Lie group representations. For a pair of
Lie groups H ⊂ G and a representation W of H, the induced G representation
is

IndGH(W ) = MapH(G,W ) = {f : G→W : f(gh) = (π(h−1)f(g)) ∀ g ∈ G, h ∈ H}

with G acting by
π(g)f(g0) = f(g−1g0)

and it satisfies the Frobenius reciprocity relation

HomG(V, IndGH(W )) = HomH(V,W )

Now, consider the special case of H = 1, the trivial subgroup, with W = C, the
trivial representation. Then

IndG1 C = Map(G,C)

and Frobenius reciprocity says

HomG(V,Map(G,C)) = HomC(V,C) = V ∗

So, the space of functions on G decomposes into irreducibles Vi with multiplicity
of Vi just dim V ∗i = dim Vi.

The space Maps(G,C) actually carries two commuting actions of G. The
one we have been considering so far is the left action

πL(g)f(g0) = f(g−1g0)

but there is also a right action

πR(g)f(g0) = f(g0g)

and the two actions commute. The way Maps(G,C) decomposes into irre-
ducibles under these two separate actions is an example of a general principle.
If a representation (π1, V ) of G1 decomposes into irreducibles Vi, and the same
V carries a commuting representation (π2, V ) of a group G2 (which may or may
not be the same as the group G1), then the spaces of intertwining operator
HomG1

(Vi, V ) (also called “multiplicity spaces”) provide representations of G2.
In this case the groups are identical and all you get by this construction is the
dual representation.
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The Peter-Weyl theorem will tell us that

Map(G,C) =
⊕

i∈Irreps(G)

Vi ⊗ V ∗i

as a representation of G×G, with the first G acting on Map(G,C) by the left
regular representation, the second by the right regular representation. The first
G acts on the first factor in each term of the sum, the second G acts on the
second factor. Note that the theorem does not tell us either what the set of
irreducible representatives Irrep(G) is, or how to characterize or construct the
irreducibles Vi.

So far we have carefully avoided specifying what space of functionsMap(G,C)
we are talking about. This subject is in some sense a generalization of Fourier
analysis (the case G = U(1)), and so is sometimes called “non-abelian harmonic
analysis”. For compact Lie groups, the analytic issues are easily dealt with, but
become much trickier in the non-compact case. The Peter-Weyl theorem says
that representations of compact Lie groups behave very much like representa-
tions of finite groups, with the analytic issues similar to those that occur for
Fourier series. So, we’ll start by quickly reviewing these two subjects.

2 Fourier Series

For Fourier series, two important function spaces to consider are

• Trigonometric polynomials: sums of the form

f(θ) =

n=+∞∑
n=−∞

ane
inθ

with a finite number of non-zero terms.

• L2(S1): Lebesque square-integrable functions on U(1) = S1 (or, periodic
functions on R with period 2π). This is an inner-product space with
inner-product

< f, g >=
1

2π

∫ 2π

0

fg

The first space is dense in the second, and the einθ give an orthonormal basis.
Note that the first space carries an action of the Lie algebra and is more tractable
algebraically, the second is complete and more tractable analytically.

We can interpret this in terms of representation theory of G = U(1). Group
elements are given explicitly by g = eiθ and group multiplication is just complex
multiplication. Since the group is Abelian, all irreducible representations are
one-dimensional. They are indexed by an integer n and given by

πn(eiθ) = einθ ∈ U(1) ⊂ GL(1,C)
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U(1) representations are completely reducible, since one can average over U(1)
any inner product on a representation to get an invariant one.

The characters of the irreducible representations are just

χn(eiθ) = einθ

The space of characters is the space of all functions on the group, it is Abelian
so all functions are conjugation invariant. The characters are orthonormal with
respect to the invariant integral on the group:

< χn, χm >=
1

2π

∫ 2π

0

e−inθeimθ =

{
0 if n 6= m

1 if n = m

The analog of the (left) regular representation here is the action on L2(S1)
given by translation:

π(eiθ)f(θ0) = f(θ0 − θ)

(the analog of the right regular representation is essentially the same, except
shifting by a positive angle, so there’s not much use in considering, U(1)×U(1),
i.e. both the right and left actions in this case.) The special case of Peter-Weyl
here says that

Maps(U(1),C) =
⊕
n∈Z

Vn

where the irreducible representations are labeled by n ∈ Z and given explictly
as the 1-dimensional spaces of functions

Vn = {f(θ0) : f(θ0 − θ) = einθf(θ0)} = Ce−inθ0

Here one can interpret Maps(U(1),C) as finite trigonmetric polynomials with
the standard direct sum, or as L2(S1) in which case the direct sum has to be
interpreted as a “completed” direct sum, allowing infinite sequences, as long as
the L2 norm is finite.

3 Convolution

For the case G = U(1) we know the irreducible representations and their char-
acters. Given an arbitrary U(1) representation, we would like to be able to
decompose it into these irreducibles

There is another interesting product that one can define on L2(S1), besides
the usual point-wise multiplication:

Definition 1 (Convolution). The convolution of two functions f1 and f2 in
L2(S1) is the function

f1 ∗ f2 =
1

2π

∫ 2π

0

f1(θ − θ′)f2(θ′)dθ′
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This product is commutative and associative (the generalization we will see
later will be commutative only for commutative groups).

One use of the convolution product is to construct an orthogonal projection

L2(S1)→ Vn

using convolution with an irreducible character. It is easy to show that if

f =
∑
n

ane
inθ

then
f ∗ χn = ane

inθ

and characters provide idempotents in the algebra (L2(S1), ∗), satisfying

χn ∗ χm =

{
0 if n 6= m

χn if n = m

We have
f =

∑
n

f ∗ χn

The construction of the convolution, with the same properties as above,
generalizes to the case of non-abelian groups using the invariant Haar integral∫
G

:

Definition 2. The convolution product on L2(G) is

(f1, f2)→ f1 ∗ f2 =

∫
G

f1(gh−1)f2(h)dh

With this product, the functions on G become an algebra, called the group
algebra, which is non-commutative when the group is non-commutative. Given
a representation (π, V ) of G, one can make V into a module over the group
algebra, defining an algebra homomorphism

π̃ : L2(G)→ End(V )

by

π̃v =

∫
G

f(g)π(g)vdg

One can check that this satisfies

π̃(f1 ∗ f2) = π̃(f1)π̃(f2)

An alternate approach to representation theory of groups is to think of it as
the theory of these algebras and their modules.
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4 Finite Groups

For finite group representations the group algebra is CG = Map(G→ C), with
no question about what this means since it is a finite spaces of maps. The
convolution is the same as in the Lie group case with∫

G

→ 1

|G|
∑
g∈G

One has the following facts:

• The group algebra is a sum of matrix algebras (by Wedderburn’s theorem)

CG = ⊕iM(ni,C) = ⊕iEnd(Vi) = ⊕i(V ∗i ⊗ Vi)

The sum is over the finite number of irreducible representations of G, with
ni the dimension of the i’th irreducible.

• The characters χVi of the irreducible representations provide an orthornor-
mal basis of CGG, the conjugation invariant functions on G.

• The subspaces of CG corresponding to End(Vi) = V ∗i ⊗Vi is the (dim Vi)
2

subspace of matrix elements of the representation (πi, Vi). ToX ∈ End(Vi)
one associates the function

tr(πi(g)X)

or equivalently, to l ∈ V ∗i , v ∈ Vi one associates

l(πi(g)v)

• The subspaces corresponding to irreducibles are orthogonal, with orthog-
onal projection from CG onto the End(Vi) subspace given by

f → f ∗ χVi

The proofs of these facts just use Schur’s lemma, exploiting the fact that

HomG(Vi, Vj) = ∅, i 6= j

A good source for these proofs is Constantin Teleman’s notes[4].

5 Compact Lie Groups and the Peter-Weyl The-
orem

For compact Lie groups, one can proceed as for finite groups, just changing

1

|G|
∑
g∈G
→

∫
G
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and derive the Peter-Weyl theorem, which is essentially the statement that
everything works in the compact Lie group case the same way as in the finite
group case:

Theorem 1 (Peter-Weyl). The matrix elements of finite dimensional irre-
ducible representations form a complete set of orthogonal vectors in L2(G).

Equivalently, this theorem says that every f ∈ L2(G) can be written uniquely
as a series

f =
∑
i

fi, fi ∈ End(Vi)

which we can also write

L2(G) = ⊕̂iEnd(Vi) = ⊕̂i(V ∗i ⊗ Vi)

where ⊕̂ is a completed direct sum.
There’s also an easy corollary, which says that one can expand any conjuga-

tion invariant function in terms of characters of irreducible representations:

Corollary 1. The characters of finite dimensional irreducible reps of G give an
orthonormal basis of L2(G)G (the conjugation invariant subspace of L2(G)).

The one tricky part of the Peter-Weyl theorem is that one has to show that
finite-dimensional representations don’t miss anything. One could in princi-
ple have an infinite dimensional irreducible representation of G whose matrix
elements would be in L2(G), but orthogonal to all matrix elements of finite-
dimensional representations. To show that this doesn’t happen, one can proceed
as follows:

Assume the existence of an f ∈ L2(G) that is orthogonal to all finite dimen-
sional sub-representations in L2(G). Construct a sequence of functions Kn on
G satisfying

Kn(g−1) = Kn(g)

approaching the δ-function at the identity as n→∞. The convolution operator

TKn
: f → f ∗Kn

is a compact self-adjoint operator on L2(G) and by the spectral theorem ker(TKn)⊥

is a direct sum of finite-dimensional eigen-spaces, so orthogonal to f . So
f ∈ ker Kn for each n and in the limit n→∞ one sees that f = 0.

For a more detailed proof of Peter-Weyl, see Terry Tao’s blog entry[1] on
the subject. Chapter 9 of [2] contains an extensive discussion of the various
equivalent forms of the theorem. Chapter 3 of [3] provides a much more detailed
discussion of harmonic analysis on compact Lie groups, with a proof of Peter-
Weyl in section 3.3. For a good discussion of the finite group case, see Constantin
Teleman’s notes[4].
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