
Induced Representations and Frobenius
Reciprocity

Math G4344, Spring 2012

1 Generalities about Induced Representations

For any group G and subgroup H, we get a restriction functor

ResGH : Rep(G)→ Rep(H)

that gives a representation of H from a representation of G, by simply restricting
the group action to H. This is an exact functor. We would like to be able to go
in the other direction, building up representations of G from representations of
its subgroups. What we want is an induction functor

IndGH : Rep(H)→ Rep(G)

that should be an adjoint to the restriction functor. This adjointness relation
is called “Frobenius Reciprocity”.

Unfortunately, there are two possible adjoints, Ind could be a left-adjoint

HomG(IndGH(V ),W ) = HomH(V,ResGH(W ))

or a right-adjoint. Let’s call the right-adjoint “coInd”

HomG(V, coIndGH(W )) = HomH(ResGH(V ),W )

Given an algebra A, with sub-algebra B, tensor product ⊗ and Hom of
modules provide such functors. Since

HomA(A⊗B V,W ) = HomB(V,ResAB(W ))

we can get a left-adjoint version of induction using the tensor product and since

HomA(V,HomB(A,W )) = HomB(ResAB(V ),W )

we can get a right-adjoint version of induction using Hom. So

Definition 1 (Induction for finite groups). For H a subgroup of G, both finite
groups, and V a representation of H, one has representations of G defined by

IndGH(V ) = CG⊗CH V

and
coIndGH(V ) = HomCH(CG,V )

and
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Theorem 1 (Frobenius reciprocity for finite groups). IndGH is a left-adjoint
functor to the restriction functor, coIndGH is a right-adjoint.

It turns out that for finite groups, the Ind and coInd functors are isomorphic,
so you can use either one to taste. An important special case to consider is
induction from the trivial representation, where Frobenius reciprocity says

HomG(CG⊗CH C, V ) = HomH(C, V ) = (HomC(C, V ))H = V H

which implies that the multiplicity of V in IndGHC is given by the dimension of
the H-invariant subspace of V . So, in general induction from the trivial repre-
sentation will give a reducible representation with an interesting endomorphism
algebra, a Hecke algebra:

Definition 2 (Hecke algebra for pair of finite groups). Given a pair of finite
groups H ⊂ G, one can define the Hecke algebra

Hecke(G,H) = HomG(IndGHC, IndGHC) = (IndGHC)H

Note that for any G representation V this algebra acts on

V H = HomG(IndGHC, V )

For some choices of H and G, for example G = GL(n,Fq), H the Borel sub-
group of upper triangular matrices, this allows one to study representation of
the algebra CG in terms of a much simpler algebra Hecke(G,H) (which is
commutative in this case), at least for representations such that V H 6= 0.

Co-induction from the trivial representation gives

coIndGHC = HomCH(CG,C)

which is the space of functions on G, right-invariant under H (G acts on the
left). Here the Hecke algebra is

(coIndGHC)H

which is the convolution algebra of H-biinvariant functions on G. It acts on

HomH(V,C) = (V ∗)H

2 Induction for Lie algebras

To make life confusing, it turns out that the first of these is what is most useful
for Lie algebras, whereas it’s the second that is most useful for Lie groups.
So, for us, induction for Lie algebra representations will be the first version,
for Lie groups something like the second. You just need to be careful to use
the proper version of Frobenius reciprocity (left-adjoint to restriction for Lie
algebras, right-adjoint to restriction for Lie groups).

So, for Lie algebras
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Definition 3. Given a Lie algebra g with subalgebra h, if V is a representation
of h, the induced representation of g is

U(g)⊗U(h) V

This satisfies the Frobenius reciprocity relation

Homg(U(g)⊗U(h) V,W ) = Homh(V,W )

(where I’m dropping making explicit the restriction operation).
Verma modules, which we’ll use in highest-weight theory, are an example of

this. They can be defined as

Mλ = U(g)⊗U(b) Cλ

where b = h ⊕ n+ is a Borel subalgebra, and Cλ is the one-dimensional rep-
resentation of b on which n+ acts trivially, h with weight λ. Here Frobenius
reciprocity tells us that

Homg(Mλ, V ) = Homb(Cλ, V )

Note that these representations will be infinite dimensional, and not necessarily
irreducible. One of our constructions of the finite dimensional representations of
a complex semi-simple Lie algebra g will proceed by starting with this induced
module, then looking for a finite-dimensional quotient by a sub-module (also
infinite-dimensional).

3 Induction for Lie groups

For Lie groups what is easy to work with is an analog of HomH(CG,V ). We’ll
define induction by

Definition 4. Given a Lie group G with subgroup H, and (π, V ) a representa-
tion of H, the induced representation of G is

IndGH(V ) = MapH(G,V )

where

MapH(G,V ) = {f : G→ V, such that f(gh) = (π(h−1)f(g)) ∀ g ∈ G, h ∈ H}

One has Frobenius reciprocity in the form

HomG(V, IndGHW ) = HomH(V,W )

Depending on the sort of group one is dealing with, note that one additionally
has to specify what class of maps one is dealing with. In the first problem set,
one exercise will be to prove Frobenius reciprocity in the Lie algebra case, and
in the Lie group case, for compact Lie groups with continuous maps.
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For non-compact Lie groups and various choices of spaces of maps, one needs
to separately check whether Frobenius reciprocity will hold. In the non-compact
case, induction won’t necessarily take unitary representations to unitary repre-
sentations, and one may want to change one’s definition of induction to a unitary
version.

There is an analog of the Hecke algebra in the Lie group case, using the
convolution algebra of bi-invariant functions on the group (or bi-invariant dif-
ferential operators). Cases where this algebra is commutative give ”“Gelfand
pairs” of groups H ⊂ G.

Note that another language for describing the same space of maps is that
of homogeneous vector bundles. For any representation V of H, one can define
an associated vector bundle EV over the homogeneous space G/H, and its
space of sections Γ(EV ) can be identified with MapH(G,V ), giving another
interpretation of the induced representation. For more details of this, see an
earlier version of these notes[2].

For the case of the trivial representation of H, the induced representation
is just a space Fun(G/H) of functions on G/H and Frobenius reciprocity says
that

HomG(V, Fun(G/H)) = HomH(V,C)

For compact H,G and V a finite dimensional representation irreducible rep-
resentation of G, this says that the multiplicityof V in the decomposition of
Fun(G/H) into irreducibles will be given by the multiplicity of the trivial rep-
resentation of H in V .

Some suggested places to find much more detail about this are [3] and [4].

4 An Example: spherical harmonics

A simple example of how this works is behind an analog of Fourier analysis
for the sphere, where one decomposes functions on the 2-sphere using orthog-
onal functions called “spherical harmonics”. These are often written using the
notation

Y lm(φ, θ)

where φ and θ are angles parametrizing the sphere, l is a non-negative integer
and m is an integer taking on the 2l + 1 values −l,−l + 1, · · · , l − 1, l.

This is a crucial example to understand, since it’s the simplest non-trivial
one for the geometric approach to constructing representations of compact Lie
groups. Consider

G = SU(2) = Spin(3), T = U(1) = Spin(2)

and the quotient
G/T = SO(3)/SO(2) = S2

The irreducible representations of T are labelled by an integer n and the
irreducible representations Vk of SU(2) correspond to non-negative values of k
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(dominant weights in this case) where k is the largest integer that occurs when
you restrict Vk to be a U(1) representation. These irreducible representations of
SU(2) are the same as those for sl(2,C), and you should have seen a construction
of these last semester as homogeneous polynomials of degree k in two variables.
The U(1) weights of Vk are

−k,−k + 2, · · · , k − 2, k

and Frobenius reciprocity tells us that

dim HomSU(2)(Vk,Γ(Ln)) = dim HomU(1)(Vk, n)

Here Ln is the complex line bundle over SU(2)/U(1) constructed by the asso-
ciated bundle construction using the U(1) representation on C labeled by n,
and

Ind
SU(2)
U(1) (n) = Γ(Ln)

The right hand side is the multiplicity of the weight n in Vk. We can see that
the decomposition of Γ(Ln) into irreducibles will include, with multiplicity one,
all Vk where k is the same parity as n and k ≥ n.

Spherical harmonics correspond to the case n = 0, in this case L0 is the
trivial C bundle and Γ(L0) is just the space of complex-valued functions on
S2. All Vk with k even will occur in Γ(L0), each with multiplicity one. The
Vk with k odd do not occur since they do not include the weight 0. This gives
spherical functions that are not only SU(2) representations but also SO(3)
representations, with dimensions 1, 3, 5, · · · . Vk, k even corresponds to the space
of spherical harmonics Y lm(φ, θ) with l = k/2.

Note that here we are using all sections of the line bundles Ln and getting
an infinite-dimensional induced representation that includes an infinite set of
irreducibles. To construct a given irreducible, we would like to have a way of
picking it out of Γ(Ln). You may have seen these line bundles before in an
algebraic geometry class (they’re powers of the tautological line bundle over
CP 1), and in that context it’s clear that they are holomorphic objects and one
can restrict attention to holomorphic sections. It turns out that when one does
this, one gets exactly one irreducible as desired. This is the simplest example
of the Borel-Weil theorem, which we will study later in detail.
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