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We’ll now turn from the general theory to examine a specific class class of
groups: the orthogonal groups. Recall that O(n,R) is the group of n by n
orthogonal matrices (the group preserving the standard inner product on Rn).
This group has two components, with the component of the identity SO(n,R),
the orthogonal matrices of determinant 1. We’ll mostly restrict attention to
SO(n,R).

An important feature of SO(n,R) is that it is not simply-connnected. One
has

π1(SO(n,R)) = Z2

and the simply-connected double cover is the group Spin(n,R) (the simply-
connected double cover of O(n,R) is called Pin(n,R. It is this group for
which we want to find an explicit construction. The Lie algebras spin(n,R) and
so(n,R) are isomorphic, and the complex simple Lie algebra that corresponds
to them is spin(n,C) or so(n,C). The group Spin(n,C) will be the simply-
connected complex Lie group corresponding to the Lie algebra spin(n,R). It’s
compact real form is our Spin(n,R).

Note that one can start more generally with a non-degenerate quadratic form
Q over R. Such quadratic forms can be diagonalized, with p +1s and q −1s as
diagonal entries (p+ q = n, the rank). There are corresponding orthogonal and
spin groups SO(p, q,R) and Spin(p, q,R), which are isometry groups for these
more general quadratic forms. One particular example of interest in physics
is the Lorentz group Spin(3, 1). We will however mostly restrict attention to
the compact case Spin(n,R) = Spin(n, 0,R). The non-compact cases also fall
outside what we have been studying, since they have no finite-dimensional uni-
tary representations (although there are interesting infinite-dimensional unitary
representations of these groups).

For quadratic forms over the complex numbers, the classification is simpler.
All quadratic forms of the same rank are equivalent, so there is only once com-
plex case to consider, Spin(n,C).

The general theory of finite-dimensional representations shows that for com-
pact simple Lie groups, we have fundamental representations, which can be
associated to the nodes of the Dynkin diagram for the corresponding complex
semi-simple Lie algebra. In the case of SU(n) we saw that these representations
were given by the defining representation on Cn and the other exterior algebra
spaces Λ∗(Cn). In the orthogonal group case we again have such representa-
tions on Λ∗(Cn), but these are not the full story. In terms of Dynkin diagrams,
for the odd-dimensional case Spin(2n+ 1) there is an extra node connected to
the others by a double bond, and to this node will correspond an extra fun-
damental representation, the spinor representation. This is a representation of
Spin(2n+ 1), but only a projective representation of SO(2n+ 1). For the even
dimensional case Spin(2n), there are two extra nodes at one end of the Dynkin
diagram. These will correspond to two new fundamental representations, the
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half-spin representations. Again, these are only projective representations of
SO(2n)

Some suggested references with more detail for the material covered here are
[1], [2],[3][4],[5].

1 Low-dimensional Examples

One thing that makes the theory of spin groups and spin representations confus-
ing is that for small values of the rank special phenomena occur, corresponding
to the degenerate nature of the Dynkin diagrams. Here are some facts about
the first few spin groups, the ones that behave in a non-generic way.

• Spin(2) is a circle, double-covering the circle SO(2).

• Spin(3) = SU(2) = Sp(1), and the spin representation is the fundamental
representation of SU(2). The Dynkin diagram is a single isolated node.

• Spin(4) = SU(2)×SU(2), and the half-spin representations are the funda-
mental representations on the two copies of SU(2). The Dynkin diagram
is two disconnected nodes.

• Spin(5) = Sp(2), and the spin representation on C4 can be identified with
the fundamental Sp(2) representation on H2. The Dynkin diagram has
two nodes connected by a double bond.

• Spin(6) = SU(4), and the half-spin representations on C4 can be identi-
fied with the fundamental SU(4) representations on C4 and Λ3(C4). The
Dynkin diagram has three nodes connected by two single bonds.

• The Dynkin diagram for Spin(8) has three nodes, each connected to a
fourth central node. The representations associated to the three notes
are all on C8 and correspond to the two half-spin representations and the
representation on vectors. There is a “triality” symmetry that permutes
these representations, this is a 3! element group of outer automorphisms
of Spin(8).

2 Clifford Algebras

We’ll construct the spin groups as groups of invertible elements in certain al-
gebras. This will generalize what happens in the lowest non-trivial dimension
(3), where one take Spin(3) to be the unit length elements in the quaternion
algebra H. The double-cover homomorphism in this case takes

g ∈ Spin(3) ⊂ H→ {q ∈ H→ g−1qg ∈ H}

Here the right-hand side is a linear transformation preserving Re(q) (the real
part of q ∈ H, and rotating the imaginary part of q (a 3-vector) by an orthogonal
transformation, in SO(3).
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In the four dimensional case Spin(4) = Spin(3) × Spin(3), so an element
of Spin(4) is a pair (q1, q2) of unit quaternions. Here they act on 4-vectors
identified with H as

(q1, q2) ∈ Spin(4)→ {q ∈ H→ q1qq2}

The generalization to higher dimensions will use generalizations of the quater-
nion algebra known as Clifford algebras.

A Clifford algebra is associated to a vector space V with inner product,
in much the same way as the exterior algebra Λ∗V is associated to V . The
multiplication in the Clifford algebra is different, taking into account the inner
product. One way of thinking of a Clifford algebra is as Λ∗V , with a different
product, one that satisfies

v · v = − < v, v > 1 = −||v||21

for v ∈ V . More generally, one can define a Clifford algebra for any vector
space V with a quadratic form Q(·). Note that I’ll use the same symbol for the
associated symmetric bilinear form

Q(v1, v2) =
1

2
(Q(v1 + v2)−Q(v1)−Q(v2))

Definition 1. The Clifford algebra C(V,Q) associated to a real vector space V
with quadratic form Q can be defined as

C(V,Q) = T (V )/I(V,Q)

where T (V ) is the tensor algebra

T (V ) = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·

and I(V,Q) is the ideal in T (V ) generated by elements

v ⊗ v +Q(v, v)1

(where v ∈ V ).

The tensor algebra T (V ) is Z-graded, and since I(V,Q) is generated by
quadratic elements the quotient C(V,Q) retains only a Z2 grading

C(V,Q) = Ceven(V,Q)⊕ Codd(V,Q)

Note the following facts about the Clifford algebra:

• If Q = 0, one recovers precisely the definition of the exterior algebra, so

Λ∗(V ) = C(V,Q = 0)
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• Applying the defining relation for the Clifford algebra to a sum v + w of
two vectors gives

(v + w) · (v + w) = v2 + vw + wv + w2 = −Q(v + w, v + w)

= −Q(v, v)− 2Q(v, w)−Q(w,w)

so the defining relation implies

vw + wv = −2Q(v, w)

which could be used for an alternate definition of the algebra. Also note
that in our case where Q =< ·, · >, this means that two vectors v and w
anticommute when they are orthogonal.

• About half of the math community uses the definition given here for the
defining relation of a Clifford algebra, the other half uses the relation with
the opposite sign

v · v = ||v||21

• Non-degenerate quadratic forms over a real vector space of dimension n
can be put in by a change of basis into a canonical diagonal form with p
+1’s and q −1’s on the diagonal, p+q = n. We will mostly be interested in
studying the Clifford algebra for the case of the standard positive definite
quadratic form p = n, q = 0. Physicists are also quite interested in the case
p = 3, q = −1, which corresponds to Minkowski space, four dimensional
space-time equipped with this kind of quadratic form.

Later on we will be considering the case of complex vector spaces. In this
case there is only one non-degenerate Q up to isomorphism (all diagonal
elements can be chosen to be +1).

• For the case of V = Rn with standard inner product (p = n), we will
denote the Clifford algebra as C(n). Choosing an orthonormal basis
{e1, e2, · · · , en} of Rn, C(n) is the algebra generated by the ei, with rela-
tions

eiej + ejei = −2δij

Clifford algebras are well-known to physicists as “gamma matrices” and were
intoduced by Dirac in 1928 when he discovered what is known as the “Dirac”
equation. Dirac was looking for a version of the Schrödinger equation of quan-
tum mechanics that would agree with the principles of special relativity. One
common guess for this was what is now known as the Klein-Gordon equation
(units with the speed of light c = 1 are being used)

2ψ = (
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
− ∂2

∂x24
)ψ = 0

but the second-order nature of this PDE was problematic, so Dirac was looking
for a first-order operator D/ satisfying

D/2 = −2
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Dirac found that if he defined

D/ =

4∑
i=1

γi
∂

∂xi

then this would work if the γi satisfied the relations for generators of a Clifford
algebra on four dimensional Minkowski space. The Dirac operator remains of
fundamental importance in physics, and over the last few decades its importance
in mathematics in has become widely realized. For any space with a metric one
can define a Dirac operator, which plays the role of a “square-root” of the
Laplacian.

One can easily see that, as a vector space C(n) is isomorphic to Λ∗(Rn).
Any element of C(n) is a linear combination of finite strings of the form

ei1ei2 · · ·

and using the relations
eiej = −ejei

these can be put into a form where

i1 < i2 < · · ·

eliminating any repeated indices along the way with the relation e2i = −1. So,
just as for the exterior algebra, the 2n elements

1

ei

eiej i < j

· · ·

e1e2 · · · en
form a basis.

More abstractly, the Clifford algebra is a filtered algebra

F0 ⊂ F1 ⊂ · · · ⊂ Fn = C(n)

with Fi the part of C(n) one gets from multiplying at most n generators. The
associated graded algebra to the filtration is the exterior algebra

grFC(n) = F1/F0 ⊕ F2/F1 ⊕ · · · ⊕ Fn/Fn−1
= Λ∗(Rn)
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2.1 Examples

Let’s now consider what these algebras C(n) actually are for some small values
of n.

For n = 1, C(1) is the algebra of dimension 2 over R generated by elements
{1, e1} with relation e21 = −1. This is just the complex numbers C, so C(1) = C.

For n = 2, C(2) is the algebra of dimension 4 over R generated by elements
{1, e1, e2} with relations

e21 = −1, e22 = −1, e1e2 = −e2e1

This turns out to be precisely the quaternion algebra H under the identification

i = e1, j = e2, k = e1e2

so C(2) = H.
For higher values of n and for arbitrary signature of the quadratic form, see

chapter 1 of [1] for a calculation of what all these real Clifford algebras are.
We’ll just quote the result here:

C(3) = H⊕H, C(4) = M(2,H), C(5) = M(4,C)

C(6) = M(8,R), C(7) = M(8,R)⊕M(8,R), C(8) = M(16,R)

and for higher values of n, things are periodic with period 8 since

C(n+ 8) = C(n)⊗M(16,R)

3 Spin Groups

One of the most important aspects of Clifford algebras is that they can be used
to explicitly construct groups called Spin(n) which are non-trivial double covers
of the orthogonal groups SO(n).

There are several equivalent possible ways to go about defining the Spin(n)
groups as groups of invertible elements in the Clifford algebra.

1. One can define Spin(n) in terms of invertible elements g̃ of Ceven(n) that
leave the space V = Rn invariant under conjugation

g̃V g̃−1 ⊂ V

2. One can show that, for v, w ∈ V ,

v → v − 2
Q(v, w)

Q(w,w)
w = −wvw/Q(w,w) = wvw−1

is reflection in the hyperplane perpendicular to w. Then Pin(n) is defined
as the group generated by such reflections with ||w||2 = 1. Spin(n) is the
subgroup of Pin(n) of even elements. Any rotation can be implemented
as an even number of reflections (Cartan-Dieudonné) theorem.
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3. One can define the Lie algebra of Spin(n) in terms of quadratic elements
of the Clifford algebra. This is what we will do here.

The Lie algebra of SO(n) consists of n by n antisymmetric real matrices. A
basis for these is given by

Lij = Eij − Eji
for i < j. The Lij generate rotations in the i − j plane. They satisfy the
commutation relations

[Lij , Lkl] = δilLkj − δikLlj + δjlLik − δjkLil
The generators of ei of the Clifford algebra C(n) satisfy the relations

eiej + ejei = −2δij

and one can use these to show that the 1
2eiej satisfy the same commutation

relations as the Lij .

[
1

2
eiej ,

1

2
ekel] = δil(

1

2
ekej)− δik(

1

2
elej) + δjl(

1

2
eiek)− δjk(

1

2
eiel)

This shows that the vector space spanned by quadratic elements of C(n)
of the form eiej , i < j, together with the operation of taking commutators,
is isomorphic to the Lie algebra so(n). To get the group Spin(n), we can
exponentiate these quadratic elements of C(n). Since (to show this, just use the
defining relation of C(n))

(
1

2
eiej)

2 = −1

4
one can calculate these exponentials to find

eθ(
1
2 eiej) = cos(

θ

2
) + eiej sin(

θ

2
)

As θ goes from 0 to 4π this gives a U(1) subgroup of Spin(n). One can check
that, acting on vectors by

v → eθ(
1
2 eiej)v(eθ(

1
2 eiej))−1

rotates the vector v by an angle θ in the i− j plane. As we go around this circle
in Spin(n) once, we go around the the circle of SO(n) rotations in the i − j
plane twice. This is a reflection of the fact that Spin(n) is a double-covering of
the group SO(n).

Just as the adjoint action of the Lie algebra of Spin(n) on itself is given by
taking commutators, the Lie algebra representation on vectors is also given by
taking commutators in the Clifford algebra. One can check that an infinitesimal
rotation in the i− j plane of a vector v is given by

v → [eiej , v]

This is the infinitesimal version of the representation at the group level

v → g̃v(g̃)−1

where g̃ ∈ Spin(n) is gotten by exponentiating eiej .
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4 Maximal Tori

For the even-dimensional case of Spin(2n), one can proceed as follows to identify
its maximal torus, which we’ll call T̃ . Fixing an identification Cn = R2n, we
have

T ⊂ U(n) ⊂ SO(2n)

where T is a maximal torus of both U(n) and SO(2n). T can be taken to be
the group of diagonal n by n complex matrices with k-th diagonal entry eiθk .
As an element of SO(2n) these become 2 by 2 block diagonal real matrices with
blocks (

cos θk − sin θk
sin θk cos θk

)
These blocks rotate by an angle θk in the (2k− 1)− 2k plane, and all commute.
For the odd-dimensional case of SO(2n + 1), which is of the same rank, the
same T can be used, but one has to add in another diagonal entry, 1 as the
(2n+ 1)’th entry, to embed this in 2n+ 1 by 2n+ 1 real matrices.

The double covering of U(n) that is the restriction of the double covering of
SO(2n) by Spin(2n) can be described in various ways. One is to define it as

Ũ(n) = {(A, u) ∈ U(n)× S1 : u2 = detA}

The maximal torus T̃ of Spin(2n) can be given explicitly in terms of n angles
θ̃k as ∏

k

(cos(θ̃k) + e2k−1e2k sin(θ̃k))

and is a double cover of the group T .

5 Spinc(n)

A group related to Spin(n) that has turned out to be of great interest in topology
is the group Spinc(n). This can be defined as

Spin(n)×{±1} S1

i.e. by considering pairs (A, u) ∈ Spin(n) × S1 and identifying (A, u) and
(−A,−u). This group can also be defined as the subgroup of invertible elements
in the complexified Clifford algebra C(n)⊗C generated by Spin(n) and S1 ⊂ C.

A Riemannian manifold M of dimension 2n comes with a bundle of or-
thonormal frames. This is a principal bundle with group SO(2n). Locally it
is possible to choose a double-cover of this bundle such that each fiber is the
Spin(2n) double cover, but globally there can be a topological obstruction to
the continuous choice of such a cover. When such a global cover exists M is
said to have a spin-structure. If M is Kähler, its frame bundle can be chosen
to be a U(n) bundle, but such an M will often not have a spin structure and
one can’t consider the spinor geometry of M . However, one reason for the im-
portance of considering Spinc(2n) is that Kähler manifolds will always have a
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Spinc geometry, i.e the obstruction to a spin-structure can be unwound within
Spinc(2n). This is because while there is no homomorphism

U(n) ⊂ SO(2n)→ Spin(2n)

there is a homomorphism

f : U(n)→ Spinc(2n)

that covers the inclusion

A ∈ U(n)→ (A,detA) ∈ SO(2n)× U(1)

given on diagonal matrices in T by

f(diag(eiθ1 , · · · , eiθn)) =
∏
k

(cos(
θk
2

) + e2k−1e2k sin(
θk
2

))× ei
∑
k

θk
2
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