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We have seen that irreducible finite dimensional representations of a complex
simple Lie algebra g or corresponding compact Lie group are classified and
can be constructed starting from an integral dominant weight. The dominance
condition depends upon a choice of positive roots (or equivalently, a choice of
invariant complex structure on the flag manifold.) An obvious question is that
of what happens if we make a different choice of positive roots, or start with
a non-dominant highest weight. The Weyl group permutes possible choices of
positive roots, at the same time permuting highest weights.

It turns out that there is a generalization of the Borel-Weil theorem which
describes the effect of these Weyl group permutations. This is the Borel-Weil-
Bott theorem, which realizes representations in other cohomology degrees, not
just the degree-zero case of holomorphic sections. This phenomenon is best
understood in terms of the Lie algebra cohomology of the nilpotent radical
subalgebra n+ ⊂ g.

1 Lie algebra cohomology and cohomology of
G/T with coefficients in a line bundle

Recall that one way to motivate Lie algebra cohomology is by starting with de
Rham cohomology of a group. For G a compact, simple Lie group we have the
de Rham complex

(Ω∗(G), d)

of differential forms Ω∗(G) with the de Rham differential d satisfying d2 = 0.
By the de Rham theorem the cohomology of this complex gives the topological
cohomology of the group.

One way to write these differential forms is as

Ωi(G) = HomC(Λi(g), C∞(G))

To get Lie algebra cohomology one simply replaces C∞(G) by an arbitrary
representation V of the Lie algebra of G, so co-chains are

Ci(g, V ) = HomC(Λi(g), V ) ' Λi(g∗)⊗C V

For more details and the formula for d, see [1] or [4]. As usual, one defines
cocycles as

Zi(g, V ) = ker d|Ci(g,V )

coboundaries as
Bi(g, V ) = Im d|Ci−1(g,V )
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and the cohomology as
Hi(g, V )

More abstractly, one can get this definition as the derived functors of the
invariants functor in the category of U(g) modules. The invariants functor is

V → HomU(g)(C, V ) = V g

Replacing the trivial representation C here by a certain free U(g) resolution
called the Koszul resolution gives precisely the complex defined above.

Note that for a compact Lie group the invariants functor is exact, and the
complexification doesn’t change this so for semi-simple complex Lie algebras
one has

Hi(g, V ) = Hi(g,C)⊗ V g

Here Lie algebra cohomology carries no more information about the represen-
tation V than the dimension of its invariant subspace. For non-semi-simple Lie
algebras the invariants functor is no longer exact, and the Lie algebra cohomol-
ogy of a representation is a more interesting invariant than just its degree-zero
piece, the invariants. We will be interested here in such a case, taking the Lie
algebra cohomology with respect to the nilpotent radical n+ of a semi-simple
Lie algebra.

Recall that in our discussion of the Borel-Weil theorem we were using a
complex line bundle Lλ over the flag manifold G/T (G is a compact simple Lie
group, T a maximal torus). The integral weight λ labels a T representation ρλ
on C. Sections of this line bundle are explicitly

Γ(Lλ) = {f : G→ C, f(gt) = ρλ(t−1)f(g)}
= (C∞(G)⊗Cλ)T

= (C∞(G))−λ

and holomorphic sections are the subspace of this invariant under the right
action of n+.

We are interested now in using the structure of G/T as a complex manifold
(which depends on the choice of positive roots) to define a holomorphic version
of cohomology. The usual topological cohomology computes the derived functor
of the functor of taking global sections of the sheaf of locally constant functions.
For a complex manifold, we instead use the sheaf of local holomorphic functions,
or more generally the sheaf of local holomorphic sections of a holomorphic line
bundle such as Lλ. Just as the de Rham theorem allows computation of topo-
logical cohomology using differential forms, the Dolbeault theorem says we can
compute holomorphic cohomology using the the bi-graded complex

(Ω0,i(G/T,Lλ), ∂)

of differential forms with coefficients in line bundle Lλ, of degree i in local
variables dz (and degree 0 in the dz). In degree 0 we just get

H0(G/T,Lλ) = Γhol(Lλ)
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the holomorphic sections, but we can also get higher cohomology, in degrees up
to the complex dimension of G/T .

If one works out explicitly what the Dolbeault complex is in this case, gen-
eralizing the case of holomorphic sections, one finds

(Ω0,i(G/T,Lλ), ∂) = ((Hom(Λi(n+), C∞(G)⊗Cλ))T , d)

where T acts on n+ by the adjoint representation, and the d is the d of Lie
algebra cohomology for n+, with n+ acting on C∞(G) by infinitesimal right
translation.

Note that one has a commuting action of G on this complex, coming from
the left G action on functions on G, so we will get G representations on the
cohomology spaces

Hi(G/T,Lλ)

Recall that the way Borel-Weil works is that one uses Peter-Weyl to see that

Γ(Lλ) = (C∞(G)⊗Cλ)T

= (C∞(G))−λ

=
⊕

µ dominant

(V µ)∗ ⊗ V µ−λ

and thus that
Γhol(L−λ = (V λ)∗

For higher cohomology, one has

H(Ω0,i(G/T,Lλ), ∂) = H((Hom(Λi(n+), C∞(G)⊗Cλ))T , d)

= H(
⊕

µ dominant

(V µ)∗ ⊗ (Hom(Λi(n+), V µ ⊗Cλ))T , d)

=
⊕

µ dominant

(V µ)∗ ⊗ (Hi(n+, V µ ⊗Cλ))T

=
⊕

µ dominant

(V µ)∗ ⊗Hi(n+, V µ)−λ

so
H(Ω0,i(G/T,L−λ), ∂) =

⊕
µ dominant

(V µ)∗ ⊗Hi(n+, V µ)λ

This show that in this case computing holomorphic cohomology comes down
to computing n+ Lie algebra cohomology. For some more details of this argu-
ment, see for instance [2].
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2 Kostant’s Theorem

The computation of the Lie algebra cohomology of the nilpotent radical was
done by Kostant in 1961, with the result

Theorem 1 (Kostant’s Theorem). For a finite dimensional highest-weight rep-
resentation V λ of a complex semi-simple Lie algebra g

Hi(n+, V λ) =
⊕

w∈W :l(w)=i

Cw(λ+ρ)−ρ

There are at least four possible approaches to proving this:

• One can use the BGG resolution and the fact that for Verma modules
Hi(g, V (µ)) is Cµ for i = 0, 0 for i > 0. This requires knowing the BGG
resolution, which is a stronger result since it carries information about
homomorphisms between Verma modules.

• One can prove Borel-Weil-Bott by other (e.g. topological) methods, then
use this to prove Kostant’s theorem. For an example of such a proof of
Borel-Weil-Bott, see Jacob Lurie’s notes[3].

• One can find explicit elements in H∗(n+, V λ) that represent the coho-
mology classes in Kostant’s theorem. One way to do this is to look for
elements in

Ci(n+, V λ) = Λi(n+)∗ ⊗ V λ

that represent these cohomology classes. Note that the weights of (n+)∗

are multiples of −α where α ∈ R+, the positive roots. A choice that gives
the right element in degree i for each Weyl group element w such that
l(w) = i is:

ω−β1 ∧ ω−β2 ∧ · · · ∧ ω−βi ⊗ V λ(wλ)

where
ω−βj ∈ (n+)∗−βj

for βj a positive root such that wβj is a negative root. V λ(wλ) is the
transform by w of the highest weight space. Th more difficult part of this
sort of proof is showing that only these elements can occur. One way to
do this is to construct an analog of the Laplacian, and show that it acts
like the Casimir on cohomology (this was Kostant’s original method). A
generalization of this uses the full center of the enveloping algebra, and the
Casselman-Osborne lemma, which says that the center much act on the
higher cohomology in just the way that the Harish-Chandra ismorphism
says it acts in degree zero cohomology (the highest weight space). For
more details on this argument see Goodman-Wallach[4].

• One can replace the use of the exterior algebra and a Laplacian by closely
related spinors, and a “square-root” of the Laplacian known as the Dirac
operator. We’ll try and come back to this argument after developing the
technology of spinors and Clifford algebras in the next couple weeks.
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3 Borel-Weil-Bott and the Weyl Character For-
mula

Kostant’s theorem gives the Borel-Weil-Bott theorem very directly. Recall that

Hi(G/T,O(L−λ)) =
⊕
µ

(V µ)∗ ⊗Hi(n+, V µ)λ

where the sum is over dominant integral weights µ. By Kostant’s theorem we
have

Hi(n+, V µ)λ = (
⊕

w∈W :l(w)=i

Cw(µ+ρ)−ρ)λ

and this has a one-dimensional contribution iff

w(µ+ ρ)− ρ = λ

or equivalently
w(µ+ ρ) = λ+ ρ

Note that the set of weights of the form µ + ρ for µ dominant integral are in
the interior of the dominant Weyl chamber, and acting on these by Weyl group
elements gives us sets of weights in the interiors of the other Weyl chambers.
Weights λ such that λ+ρ is on the boundary of a Weyl chamber will not occur.
In summary, we have

Theorem 2 (Borel-Weil-Bott). If λ + ρ is a singular weight then for all i we
have

Hi(G/T,O(L−λ)) = 0

If λ+ρ is a non-singular weight, there will be an i such that w(λ+ρ) = µ+ρ
is in the interior of the dominant Weyl chamber for a w : l(w) = i and

Hi(G/T,O(L−λ)) = (V µ)∗

As usual, the simplest example is G = SU(2), G/T = CP 1, and the Borel-
Weil-Bott theorem can be proved via Serre duality, which says that for line
bundles L on a curve C one has

H1(C,L) = H0(C,L∗ ⊗ ωC)

where ωC is the canonical bundle on C. In our case C = CP 1, and line bundles
Ln are labeled by an integer n with ρ corresponding to n = 1. The canonical
bundle is L2.

For n ≥ 0 we have, as in the Borel-Weil theorem

H0(CP 1, L−n) = (V n)∗
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where V n is the irreducible SU(2) representation of dimension n+ 1. By Serre
duality

H1(CP 1, L−n) = H0(CP 1, Ln+2)

which is consistent with Borel-Weil-Bott which tells us that

H1(CP 1, L−n) = (V −n−2)∗

when n < −1 and, in the singular n = −1 case

H1(CP 1, L1) = H0(CP 1, L1) = 0

So, for n > 0 one gets all irreducibles as holomorphic sections, whereas for
n < −1 one gets all irreducibles again, but in higher cohomology (H1).

Working out what happens in the SU(3) case will be on the current problem
set.

Another quick corollary of Kostant’s theorem is the Weyl character formula.
Recall that this says that the character ch(V λ) of a finite-dim irreducible of
highest weight λ is given by

ch(V λ) =

∑
w∈W (−1)l(w)ew(λ+ρ)−ρ∑
w∈W (−1)l(w)ew(ρ)−ρ

This follows from an application of the Euler-Poincaré principle, which says
that in the case of an Abelian invariant like the character, its value on the
alternating sum of the cohomology groups (the Euler characteristic) is the same
as its value on the alternating sum of whatever co-chains ones uses to define
cohomology, i.e. here we have∑

i

(−1)ich(Hi(n+, V )) =
∑
i

(−1)ich(Ci(n+, V ))

This follows from two facts: the first is that

ch(Ci(n+, V )) = ch(Zi(n+, V )) + ch(Bi+1(n+, V ))

since we have an exact sequence

0→ Zi(n+, V ) −→ Ci(n+, V )
d−→ Bi+1(n+, V )→ 0

(here Zi(n+, V ) are the co-cycles on which d = 0, Bi+1(n+, V ) are the co-
boundaries which are in the image of d. Since

Hi(n+, V ) = Zi(n+, V )/Bi(n+, V )

we also have a second fact

ch(Hi(n+, V )) = ch(Zi(n+, V ))− ch(Bi(n+, V ))

and this together with our first fact gives the Euler-Poincaré principle.
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Recall that

Ci(n+, V ) = Hom(Λi(n+), V ) = Λi(n+)∗ ⊗ V

so we have ∑
i

(−1)ich(Ci(n+, V λ)) =
∑
i

(−1)ich(Λi(n+)∗)ch(V λ)

whereas Kostant’s theorem tells us that the Euler characteristic is∑
i

(−1)ich(Hi(n+, V λ)) =
∑
w∈W

(−1)l(w)ew(λ+ρ)−ρ

Applying the Euler-Poincaré principle in the case λ = 0 gives∑
w∈W

(−1)l(w)ew(ρ)−ρ =
∑
i

(−1)ich(Λi(n+)∗)

and thus in the general case the Weyl character formula as∑
w∈W

(−1)l(w)ew(λ+ρ)−ρ = (
∑
w∈W

(−1)l(w)ew(ρ)−ρ)ch(V λ)
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