1. Find all solutions to \(x^2 + 2y^2 = 3 \) with \(x, y \in \mathbb{Q} \), and prove that \(x^2 + 3y^2 = 2 \) has no solutions in \(\mathbb{Q} \). State and prove a generalization for \(ax^2 + by^2 = c \) with \(a, b, c \in k^\times \) and \(k \) an arbitrary field not of characteristic 2 (why is characteristic 2 more difficult?). Draw pictures.

2. Let \(k \) be an algebraically closed field. Give an example of affine algebraic sets \(Z_1, Z_2 \) in \(k^2 \) with \(\mathbb{I}(Z_1 \cap Z_2) \neq \mathbb{I}(Z_1) + \mathbb{I}(Z_2) \). What is the geometric significance? Draw a picture.

3. This exercise develops basic facts for manipulating polynomials in several variables.
 (i) Let \(R \) be a ring. Define \(R[X_1, \ldots, X_n] \) in terms of ‘sequences of coefficients’, define on it a structure of commutative \(R \)-algebra, and prove that it has the following universal mapping property: for any \(R \)-algebra \(A \) and any \(a_1, \ldots, a_n \in A \), there is a unique map of \(R \)-algebras \(R[X_1, \ldots, X_n] \rightarrow A \) which sends \(X_i \) to \(a_i \). The image of \(f \) under this map is called the value of \(f \) at \((a_1, \ldots, a_n) \). Note that when \(R = 0 \), the only \(R \)-algebra is \(R \) itself (e.g., \(R[X] = R \) if \(R = 0 \)).
 (ii) If \(I \) is the ideal in \(R[X_1, \ldots, X_n] \) generated by elements \(f_n \), then state and prove a universal mapping property for the \(R \)-algebra \(R[X_1, \ldots, X_n]/I \). Interpret this in the special case \(I = (X_1 - r_1, \ldots, X_n - r_n) \) for \(r_j \in R \). Conclude that \(R[X] \) is not isomorphic to \(R \) as an \(R \)-algebra if \(R \neq 0 \), but give an example of a non-zero ring \(R \) for which there is an isomorphism \(R[X] \simeq R \) as abstract rings.
 (iii) For \(f \in R[X], g \in R[Y] \), prove that there are unique isomorphisms of \(R \)-algebras
 \[
 (R[Y]/g)[X]/(f) \simeq R[X,Y]/(f,g) \simeq (R[X]/f)[Y]/(g)
 \]
determined by “\(X \mapsto X \)” and “\(Y \mapsto Y \)”. Generalize for any finite number of variables, with \((f) \) and \((g) \) replaced by any ideals in the corresponding polynomial rings.

4. (i) If \(A \) is a UFD, prove that \(A[X_1, \ldots, X_n] \) is a UFD (e.g., \(A = \mathbb{Z} \) or \(A \) a field). Prove rigorously that \(k[X,Y,Z,W]/(XY -ZW) \) is a domain but is not a UFD, where \(k \) is an algebraically closed field.
 (ii) Prove that if \(k \) is a field and \(f \in k[X] \) with positive degree is a product of distinct irreducible polynomials, then \(Y^2 - f \in k[X,Y] \) is irreducible. For \(n > 1 \), prove that \(X^n + Y^n - 1 \in k[X,Y] \) is irreducible if the characteristic of \(k \) does not divide \(n \), but is reducible otherwise.

5. It is a basic fact that the ‘symmetric function’ polynomials \(S_1, \ldots, S_n \in \mathbb{Z}[T_1, \ldots, T_n] \) with
 \[
 S_i := \sum \sum_{\{a_1, \ldots, a_i\}} \prod_{k=1}^i T_{a_k}
 \]
 (ex: if \(n = 3 \), \(S_1 = T_1 + T_2 + T_3 \), \(S_2 = T_1 T_2 + T_1 T_3 + T_2 T_3 \) and \(S_3 = T_1 T_2 T_3 \)) are algebraically independent over \(\mathbb{Q} \) (i.e., the canonical map \(\mathbb{Q}[X_1, \ldots, X_n] \rightarrow \mathbb{Q}[T_1, \ldots, T_n] \) sending \(X_i \) to \(S_i \) is injective) and \(\mathbb{Q}[S_1, \ldots, S_n] \) is the subring of \(\mathfrak{S}_n \)-invariants in \(\mathbb{Q}[T_1, \ldots, T_n] \) (consult Lang’s Algebra, 3rd ed., Ch IV, §6 for a self-contained proof).
 (i) Let \(d \geq 1 \). Prove the existence of a ‘universal discriminant’ polynomial \(\Delta_d \in \mathbb{Z}[a_0, \ldots, a_{d-1}] \), unique up to sign, with the property that if \(k \) is any algebraically closed field and \(f = \sum a_i T^i \) is a monic polynomial of degree \(d \), then \(f \) is a product of \(d \) distinct linear factors if and only if \(\Delta_d(a_0, \ldots, a_{d-1}) \neq 0 \).
 (ii) Let \(f \in k[X,Y] \) be a non-constant polynomial and \(k \) an algebraically closed field. If \(f \) has distinct irreducible factors \(f_1, \ldots, f_s \), prove that \(Z(f) \) is the union of the \(Z(f_i) \)'s, with each \(Z(f_i) \) infinite and all \(Z(f_i) \cap Z(f_j) \) finite for \(i \neq j \). Prove that for any irreducible \(f \) of degree \(d > 1 \), all lines in \(k^2 \) meet \(f \) in \(\leq d \) points (what if \(d = 1 \)?), and the only lines \(y = ax + b \) in \(k^2 \) which fail to meet \(f \) in exactly \(d \) distinct points are those for which \((a, b) \in k^2 \) satisfy a certain non-trivial polynomial relation (depending on \(f \)). In particular, there are infinitely many such exceptional lines. For \(f = Y^2 - X^2 \), what is the geometric meaning of this exceptional set of lines? How about \(f = Y^2 - X^3 \)? Draw pictures.