ON THE EISENSTEIN IDEAL FOR U(2,1)

FABIO MAINARDI

This is a report on work in progress. We want to outline a possible proof of
the Iwasawa conjecture for CM fields. The strategy is to use congruences between
Eisenstein series and cusp forms on U (2, 1) and can be seen as a direct generalization
of Wiles’ proof of Iwasawa conjecture for totally real fields. We will actually see that
there are still some technical obstructions, thus leaving the conjecture unproven so
far.

NOTATION

Let K be a CM field, i.e. a totally imaginary quadratic extension of a totally
real field F of degree d, Ok (resp. Op) the ring of integers of K (resp. of F). We
denote by 7x/p the quadratic Hecke character of F' associated to K/F and Ay p
the discriminant of K/F. The group of pth roots of unity in Q will be denoted by
-

pWe fix an odd rational prime p and we suppose:
(ord): every prime of F above p splits in K

Let ¢ be the non-trivial element of Gal(K/F'). For any set X on which Gal(K/F)
acts, we write X for the set {x € X;2¢ = 2%}. We fix two embeddings:

lo 1 Q—=C, 1,:Q—C,
A CM-type ¥ is a subset of K such that Ix = | |3°.

1. THE MAIN CONJECTURE FOR CM FIELDS

Let K be a CM field; we fix a CM-type X for K and suppose that it induces a p-
adic CM-type X, that is: if S, is the set of p-adic places of K, we have S, = ¥, | | X5
where X, is the set of p-adic places obtained by composing the elements of ¥ with
tp. Such a p-adic CM-type exists because of the hypothesis (ord).

Let ¢ be a non-trivial ideal of K prime to p; this will be the prime-to-p part of
the conductor for our Hecke characters.

Let K¢pm be the ray-class field of K of conductor ¢p™ and Kpoe =, 51 Kepm-
It is well-known that the Galois group G, = Gal(Kp~/K) is a Z,-module of rank
1+d+4, with 6 > 0 (Leopoldt conjecture claims that § = 0, this is known for abelian
number fields ). We fix an isomorphism (not canonical in general) of Z,-modules:

(1.0.1) Ge~ A x W

where W is free of rank 1 + d + 0 over Z, and A, is finite. We can identify W
with Gal(Koo/K), where K is the composite of all the Z,-extensions of K. Of
course, K, is contained in K, , because Z,-extensions are unramified outside p.
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One can always write K peo as K'Ko, with K’ a finite abelian extension of K
such that K’ N Ko = K, so that A, ~ Gal(K'/K).

The automorphism ¢ € Gal(K/F) acts on G, as g — ¢¢ := ¢gé, for any extension
¢ of ¢ to K¢p~. Since p is odd, we have an isomorphism of Z,-modules:

WoeWt x W™

with W+ = (1 £ ¢)WW. We fix a choice of topological generators 71, ..., y14+s of
W and y245, ..., Y1+d+s of W; then we can identify Z,[[G,]] with the Z,-algebra
Z, AT, ..., Th+6, S1, .-, Sd]], via the maps v, — 1+T;, i <1+ dand vy, — 1+5;
if i > 1+ 9. We will assume that T := T3 is the cyclotomic variable, corresponding
to the generator vy; of the Galois group of the cyclotomic Z,-extension of K. We
also fix a p-adic unit u € Zj such that y1¢ = ¢*, for any ¢ € fipe-.

Note that the exact sequence:

1—-AF A - A7 —1

is not necessarily split.
We write My (K p ) for the maximal abelian pro-p-extension of K e unramified
outside the places of K p~ above ¥, and we define:

(1.0.2) X5 = Gal(Ms (K ey )/ Kepeo )

It is a module over the completed group algebra Z,[[G]].

It is known that Xy . is a finitely generated and torsion Z,[[W]]-module, so that
we can associate to Xx . a characteristic ideal Xy in Z,[[W]]. This means that
there is a homomorphism of Z,[[W]]-modules X5, . — Z,[[W]]/ X5, whose kernel
and cokernel vanish when localized at primes of height < 1. The characteristic
ideal turns out to be a product of prime ideals of height 1, therefore it is principal.
Remark that if we had chosen My (K pe) unramified outside all the places over p,
then X5 . would not be a torsion Z,[[W]]-module.

For a p-adic character w of A, we will write Z,[w] for the finite abelian extension
of Zy, generated by the values of w, X . for the maximal quotient of Xx, c®@z, Zj[w]
on which A, acts trough w, and A% . for its characteristic ideal in Zp[w][[W]].

Let us fix a complete discrete valuation ring A contained in C, and containing
Z,|w] for any character w of A.. Put:

Ao = A[[W]]

To the data K,p,X, ¢,w we can associate a p-adic L function, following Katz,
which we view as a power series L3, € Ap. This power series, as well as Xy ., does
depend on the choice of ¥; it is not known how it changes when we make a different
choice.

We can now state the main conjecture:

Conjecture 1.0.1. Suppose that w is primitive outside p. Then the characteristic
ideal X3 is generated by L3, .

This conjecture has been proved, by completely different methods, by K.Rubin
in the quadratic imaginary case. More recently Hida, improving previous results
with Tilouine, has proven the conjecture for the anticyclotomic variables and a
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quite general CM field. Our method permits to extend their result beyond the
anticyclotomic part, though some restrictions are necessary (see theorem 3.0.1).

We use, in the proof of the theorem 3.0.1, the following theorem of A.Wiles,
which establishes the main conjecture for totally real fields. Let F' be a totally
real field as before, 1 a p-adic Artin character of F' and Fy the finite abelian
extension of F' attached to 1, so that v is a faithful representation of Gal(Fy/F).
We assume that v is odd, that is: 1(c) = —1. Let M be the maximal unramified
abelian pro-p-extension of Fy Fiy, (Foo is the cyclotomic Z,-extension of F'); then
Y = Gal(Mw/FyFs) is a finitely generated Z,[[Gal(FyFo/F)]-module. If we
assume Fy, N Foo = F, we have an isomorphism of Z,-modules: Gal(FyFoo/F) =~
Ap x Wy, with Ap = Gal(Fy/F) and Wy ~ Z,,. It is known that the eigenspace
Y%, corresponding to the action of Ap via 1), admits a characteristic ideal Y¥.
Deligne and Ribet proved the existence of a power series G¥(T') € Z,[¢][[T]] such
that

(1.0.3) GY(u" —1) = L(1 —n,¥) [J(1 = ¥ (p)Np" 1)
plp

for any integer n > 1, where u is fixed as before and 7 : Gal(F((p)/F) — pip—1
is the Teichmiiller character.

For a general 9, one can write ¢ = xp, with F}, N F)w = F and F, C F. One
has then: Gy (T) = Gy (p(v)(1 +T) — 1), for a fixed topological generator v of Wj.

Put 9" = ¢~ !7. Then, Wiles proved:

Theorem 1.0.2. Let ¢ be odd and define: £%(T) := G (uw(1+T)"' —1). Then,
if p is odd, LY (T) generates Y.

Note that K F is the cyclotomic Z,-extension of K and the restriction map from
Gal(KFw/K) to Gal(Fs/F) is an isomorphism, therefore a topological generator
of Gal(F /F) gives in a natural way a topological generator of Gal(K Foo /K). In
§5, we will fix an embedding of Gal(Fu/F) into W.

2. THE EISENSTEIN IDEAL

2.1. Unitary groups. Let A € GL3(K) be a matrix such that A¢ = —*A and put:

GU(A) = {g € GL3(K); gA'g" = v(g) A}
We call GU(A) the unitary group associated to A, it is a reductive group defined

over F.
We write GU(2,1) = GU(J), where:

(2.1.1) J = W
-1

and ¥ is an element of K with trace zero over F', such that Im(97) > 0 for all
o € ¥. Then GU(2,1) is quasi-split at all infinite places of F. The kernel of v is
denoted by U(2,1) and it is a semi-simple group defined over F'.

We write P for the standard parabolic subgroup of upper triangular matrices
in G = GU(2,1), with Levi subgroup M and unipotent radical U. We use the
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notation d(z,z) = zdiag(xz¢, 1,2~ ) for the elements of M. The center Z of G is
isomorphic to Ry /r G-

2.2. Eisenstein series: outline of the strategy. To a Hecke character x of K*,
one can associate a holomorphic Eisenstein series E, on U(2, 1), of weight k, whose
constant term is given by the product of L-functions:

(2.2.1) L(k, x)L(2k, xFT)

We refer to Shimura book, 'Euler products and Eisenstein series’, for general
backgroud on these Eisenstein series, and on automorphic forms on unitary groups.
Our plan for the proof of the main conjecture is the following:

(1) normalize and interpolate p-adically the series E,. The resulting p-adic
modular form will have constant term equal to L£L£%. We allow y to vary
in the set of algebraic Hecke characters of K*, unramified outside ¢p, critical
at 0 (a condition on the infinity type) and such that the restriction to A,
of the associated Galois character is w.

(2) prove that such a p-adic Eisenstein series doesn’t vanish modulo its constant
term. Here the major difficulty is the intrinsec complexity of the Fourier-
Jacobi expansion.

(3) introduce an appropriate Eisenstein ideal, say Eis¥, supposed to measure
the congruences between (p-adic) cusp forms and the p-adic Eisenstein series
on U(2,1). The theory of p-adic automorphic forms on unitary groups
(actually, on reductive groups) has been worked out, independently, by
D.Mauger and H.Hida in recent years. The Eisenstein ideal is an ideal of
the universal nearly-ordinary Hecke algebra of GU(2,1) which is finite and
flat over an Iwasawa algebra in 1 4 3d + ¢ variables, containing Ag in a
natural way.

(4) prove the divisibilities:

(2.2.2) LELY|Bisg|Xg LY
(on the right we used Wiles’ theorem). We will see that the can only
prove a weaker divisibility, the problem being related to the existence of
cuspidal endoscopic forms coming from U(1,1).
In the following, we will try to explain in more detail some of these steps, but
we won't discuss the divisibility ££L¥|Eis in this report.

2.3. p-adic Eisenstein series. The basic idea is to use a pullback formula, orig-
nally due to Shimura. We fix an embedding of U(2,1) x U(1) in U(2,2). If E is
an Eisenstein series on U(2,2), of Siegel type, induced by the character x, we can
write:

(2.3.1) E(g) = E(g;s,0) = > ¢(v9)
YEP\U(2,2)
if P’ is the Siegel parabolic and ¢ is a section of the (normalized) induced repre-
. U(2,2)
sentation Indp,
and has a meromorphic continuation to C. Our choice of ¢ is such that F is

holomorphic at s = 1/2.

x| |%. This series converges, as usual, for Re(s) sufficiently large
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Fix a character A of U(1)(A). An easy computation gives:

/ E(g1, 92)A(g2)dgs =/ > 6(v(g1,92)Mg2)dgs =
G2\Ga(A) G2\G2(A) e pihp(2,2)

/GZ\G2(A) Z Z¢(7191,7292)))\(92)d92: Z /G $(1191, 92)\(g2)dgo

Y1€P1\G1 72€G2 v1€P\G1 2(A)

where Go = U(1), Gy = U(2,1). The last series is easily recognized as an Eisen-
stein series on U(2,1). We have used the decomposition:

(2.3.2) U(2,2) = P'(U(2,1) x U(1))

It is important to observe that the last integral is actually a finite sum, so that
the p-integrality for the last Eisenstein series follows easily from the p-integrality
for E.

Now, the point is to choose ¢ such that E(g;s, ) is p-integral at s = 1/2 and
to compute the resulting Eisenstein series on U(2,1). The first problem has been
essentially settled by Harris, Li and Skinner in a recent joint work. The consequent
computations for U(2, 1) will be, hopefully, made public soon by myself.

The section ¢ is to be chosen as follows: let S be the union of the infinite
places, the places above p and the places where y or K/F ramify. Then one defines
¢ = ®¢, such that ¢, is the normalized spherical vector in I(s,x) for v € S, ¢,
is holomorphic at s = 1/2 if v is infinite, ¢, for v|p has support in the big cell of
the Bruhat decomposition and is designed in order to give the right Euler factors
in the constant term. As we said, the choice of ¢, at ramified places is insensitive
to the p-adic variation of x (this is unsatisfactory and it will be dealt with in near
future). With these choices, the Eisenstein series E, as well as the Eisenstein series
on U(2,1) have zero constant term at infinity. We recover the constant term at
another (highly ramified) cusp.

The Fourier coefficients of F at the unramified places were calculated by Shimura
in his book (loc.cit.).

We note that this method works certainly for any unitary group of the form
U(n, 1), using the embedding U(n,1) x U(n — 1) — U(n,n).

As a final remark we note that this method requires a compatibility between
x and A, plus the assumption that the weight of E is o scalar type. In order to
get rid of these restrictions, one has to apply a p-adic version of Maass’ differential
operators, as was done by Katz in his paper on p-adic L-functions for CM fields.

Regarding the non-vanishing modulo the constant term, we content ourselves to
say that one can combine the computations of primitive Fourier-Jacobi coefficients
(cf. Murase, Sugano, J.Math.Sci.Univ.Tokyo 9), with Hida’s theorem on the non-
vanishing modulo p of the special values of Hecke L-series in towers of anticyclotomic
characters with prime-to-p conductor.

3. FROM CONGRUENCES TO COCYCLES

The proof of the next theorem is independent of what we explained in the previ-
ous section; in fact, in order to define Eis$ it suffices to interpolate p-adically the
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Hecke eigenvalues of the Eisenstein series F,, which is clearly easier than interpolate
p-adically the Eisenstein series itself.

In order to state our theorem we need to introduce some notation. Let D,, the
decomposition subgroup of G, at a place w over p; it is a closed subgroup of finite
index in G.. The splitting 1.0.1 induces an isomorphism: D,, ~ D" x Dfree,
with D8 C A, and Dfre¢ Cc W.

We associate a p-adic character of finite order ¥ of F, to any character w of A;
it corresponds to the fixed torsion of the Galois character associated to x p7, with
x varying as explained before.

Our main result is:

Theorem 3.0.1. Let p be odd and let P be a prime ideal of Ay of height 1. Let ¢
be an ideal of K such that ¢ = ¢ and assume Ak p{c¢NOp. Suppose:

(1) pte(Nc) or P # (p);

(2) P mod J # (0) and P mod J { LY(T);

(3) w is a p-adic character of A, which is primitive outside p.

(4) if 6 =0 and ww® is trivial when restricted to D™ at a place w of ¥, then

uw(l+T)—C & P, for every ¢ € fip.
Then, we have:

(3.0.3) vp(Xs) B) > vp(Eisy)

Here B is an Iwasawa algebra in 1 4 3d + § variables containing Ay and Eis$, is
an ideal of B, see §3.2.

Remark 3.0.2. Actually, we could state the theorem in a slightly more general
form: instead of the assumption (2), we could assume that P does not divide the
characteristic ideal of another Iwasawa module (associated to ww®) which, when P
mod J # (0), can be compared to the p-adic L-function £¥ by means of theorem
1.0.2.

We want to stress that the more serious hypothesis in this theorem is the second
one (or its weaker form, as just explained), and it will be probably necessary to
introduce new ideas in order to deal with the cases where P divides £?.

The hypothesis 1,3 and 4 are analog to the assumptions in lemma 6.1 of Wiles’proof
and it should be possible, in principle, to remove them. Note that the condition
p 1 @(N¢) appears also in Hida & Tilouine’s theorem.

MATHEMATICS INSTITUTE, LEIDEN UNIVERSITY
E-mail address: mainardi@math.leidenuniv.nl



