
THE IWASAWA MAIN CONJECTURES FOR GL2

CHRISTOPHER SKINNER AND ERIC URBAN

1. Introduction

In this paper we prove the Iwasawa-Greenberg Main Conjecture for a large class of
elliptic curves and modular forms.

1.1. The Iwasawa-Greenberg Main Conjecture. Let p be an odd prime. Let Q ⊂ C
be the algebraic closure of Q in C. We fix an embedding Q ↪→ Qp. For simplicity we

also fix an isomorphism Qp
∼= C compatible with the inclusion of Q into both. We let

Q∞ be the cyclotomic Zp-extension of Q and ΓQ := Gal(Q∞/Q) its Galois group. The
reciprocity map of class field theory identifies 1 + pZp with ΓQ; we let γ ∈ ΓQ be the
topological generator identified with 1 + p.

Suppose f ∈ Sk(N,χ) is a weight k ≥ 2 newform of level N and Nebentypus χ.
The Hecke eigenvalues of f (equivalently, the Fourier coefficients of f) generate a finite
extension Q(f) of Q in C. Suppose f is ordinary; that is, a(p, f) is a p-adic unit, a(p, f)
being the pth Fourier coefficient of f . Let L be any finite extension of Qp containing

Q(f) and the roots of x2 − a(p, f)x+ χ(p)pk−1. In this setting, Amice-Vélu [AV75] and
Vishik [Vi76] (see also [MTT86]) have constructed a p-adic L-function for f . This is a
power series Lf ∈ ΛQ,OL := OL[[ΓQ]], OL the ring of integers of L, with the property

that if φ : ΛQ,OL → Qp is a continuous OL-homomorphism such that φ(γ) = ζ(1 + p)m

with ζ a primitive ptφ−1th root of unity and 0 ≤ m ≤ k − 2 an integer, then

Lf (φ) := φ(Lf ) = e(φ)
pt
′
φ(m+1)m!L(f, χ−1

φ ω−m,m+ 1)

(−2πi)mG(χ−1
φ ω−m)Ω

sgn((−1)m)
f

,

where χφ is the primitive Dirichlet character modulo ptφ of p-power order such that

χφ(1 +p) = ζ−1; ω is the cyclotomic character modulo p (normalized as in §2); pt
′
φ is the

conductor of ωmχφ; G(τ) denotes the usual Gauss sum for a Dirichlet character τ ; Ω±f
are the canonical periods of f ; and e(φ) is an interpolation factor that involves ωmχφ(p),
χ(p), k, m, and the roots of the aforementioned polynomial. The p-adic L-function Lf
is one of the two main ingredients of the Iwasawa-Greenberg Main Conjecture for f .

The other main ingredient is the characteristic ideal of the p-adic Selmer group of f over
Q∞. Recall that there exists a continuous p-adic Galois representation ρf : Gal(Q/Q)→
AutL(Vf ), Vf a two-dimensional L-space, such that the L-function of ρf is the L-function
of f (we take geometric conventions for all Galois representations). Furthermore, if f is

1
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ordinary, then it is known that there exists a unique Gp-stable unramified line V +
f ⊂ Vf ;

here Gp is a decomposition group at p. Let Tf ⊂ Vf be a Gal(Q/Q)-stable OL-lattice

and let T+
f := Tf ∩V +

f . Let T := Tf (det ρ−1
f ) and T+ := T+

f (det ρ−1
f ) be their respective

twists by det ρ−1
f . We define a p-adic Selmer group of f over Q∞ to be the subgroup

SelQ∞,L(f) ⊂ ker
{
H1(Q∞, T ⊗Zp Qp/Zp)→ H1(Q∞,p, T/T

+ ⊗Zp Qp/Zp)
}

of classes unramified at all finite places not dividing p, where the map is that induced by
restriction and where Q∞,p is the completion of Q∞ at the unique prime above p. This is
a discrete ΛQ,OL-module. Its Pontrjagin dualXQ∞,L(f) := Homcont(SelQ∞,L(f),Qp/Zp)
is a finitely-generated ΛQ,OL-module. The characteristic ideal ChQ∞,L(f) of SelQ∞,L(f)
is defined to be the characteristic ideal in ΛQ,OL of the module XQ∞,L(f). The group
SelQ∞,L(f) depends on the choice of the lattice Tf , but this dependency is reflected in
the characteristic ideal ChQ∞,L(f) only at its valuation at the prime containing p. In
particular, ChQ∞,L(f) is well-defined in ΛQ,OL ⊗Zp Qp. Furthermore, if ρf is residually
irreducible then the isomorphism class of the ΛQ,OL-module SelQ∞,L(f) is independent of
the choice of Tf and so ChQ∞,L(f) ⊆ ΛQ,OL is well-defined. For more precise definitions
and references regarding these Selmer groups and p-adic L-functions see 3.3 and 3.4
below.

Iwasawa-Greenberg Main Conjecture for f .

ChQ∞(f) = (Lf ) in ΛQ,OL ⊗Zp Qp,

and furthermore, if ρf is residually irreducible then this equality holds in ΛQ,OL .

Kato [Ka04, Theorem 17.4] has proven that Lf ∈ ChQ∞,L(f) under certain hypotheses
on f and ρf . The following theorem, establishing the main conjecture in many cases, is
one of the main results of this paper.

Theorem 1 (Theorem 3.6.4). Suppose

• χ = 1 and k ≡ 2 mod p− 1;
• the reduction ρ̄f of ρf modulo the maximal ideal of OL is irreducible;
• there exists a prime q 6= p such that q||N and ρ̄f is ramified at q;
• p - N .

Then ChQ∞,L(f) = (Lf ) in ΛQ,OL ⊗Zp Qp. If furthermore

• there exists an OL-basis of Tf with respect to which the image of ρf contains
SL2(Zp),

then the equality holds in ΛQ,OL; that is, the Iwasawa-Greenberg Main Conjecture for f
is true.

This theorem is deduced by combining Kato’s result with the main theorem of this paper
(Theorem 3.6.1; see also Theorem 3 below) which proves one of the divisibilities (‘p-adic
L-function divides characteristic ideal’) of the Iwasawa-Greenberg Main Conjecture for
a Hida family of eigenforms and an imaginary quadratic field. This main theorem should
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be thought of as part of a three-variable main conjecture, one variable being the variable
in the Hida family and the two other variables being cyclotomic and anti-cyclotomic
characters of the maximal Zp-extension of the imaginary quadratic field. For more on
the general Iwasawa-Greenberg Main Conjectures, the reader should consult §3 for the
special cases of interest for this paper and the papers of Greenberg more generally,
especially [Gr94].

The hypotheses of Theorem 1 intervene at various points in the proof, occasionally only
to shorten an argument. Following the statement of our main theorems - Theorems 3.6.1
and 3.6.4 - we have attempted to indicate the places in the proof where these hypotheses
have been used.

1.2. Applications to elliptic curves. When the f in Theorem 1 is the newform asso-
ciated with an elliptic curve E/Q the hypotheses of this theorem are frequently satisfied.
For example they are always satisfied if E has semistable reduction and p ≥ 11 is a
prime of good ordinary reduction for E. In any case, the above theorem implies the
main conjecture1 for many elliptic curves (see Theorem 3.6.8). As shown by Greenberg,
this has consequences for the Birch-Swinnerton-Dyer formula for E.

Theorem 2 (Theorem 3.6.11). Let E be an elliptic curve over Q with conductor NE.
Suppose

• E has good ordinary reduction at p;
• ρ̄E,p is irreducible;
• there exists a prime q 6= p such that q||NE and ρ̄E,p is ramified at q.

(a) If L(E, 1) 6= 0 and ρ̄E,p is surjective then∣∣∣∣L(E, 1)

ΩE

∣∣∣∣−1

p

= #X(E/Q)p ·
∏
`|NE

c`(E).

(b) If L(E, 1) = 0 then the corank of the Selmer group Selp∞(E/Q) is at least one.

Here ρ̄E,p is the representation of Gal(Q/Q) on E[p], X(E/Q)p is the p-primary part
of the Tate-Shafarevich group of E/Q, c`(E) := |#E(Q`)/E0(Q`)|−1

p is the maximal
power of p that divides the Tamagawa number of E at the prime `, and Selp∞(E/Q)
is the p∞-Selmer group of E/Q. Again we note that the hypotheses of the theorem are
satisfied if E is semistable and p ≥ 11 is a prime of good ordinary reduction.

1.3. The nature of the proof. Iwasawa’s original Main Conjecture (cf. [Gr75]) iden-
tified the Kubota-Leopoldt p-adic L-function of an even Dirichlet character χ as a gener-
ator of the characteristic ideal of the p-adic Selmer group over Q∞ of χε (ε is the p-adic
cyclotomic character; χ is identified with a Galois character with the same L-function as
the Dirichlet character). This conjecture was first proved by Mazur and Wiles [MW84]

1In the case of elliptic curves this conjecture was first stated by Mazur and Swinnerton-Dyer [MSD74].
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by analyzing the cuspidal subgroup of quotients of Jacobians of modular curves; we refer
the interested reader to the original paper of Mazur and Wiles for more history regarding
this conjecture and its proof. Then in [Wi90] Wiles proved the Iwasawa Main Conjec-
ture for all totally real fields. The proof in [Wi90] involves an extensive generalization of
the construction in [Ri76], replacing the analysis of cuspidal subgroups of Jacobians in
[MW84] with congruences between p-adic families of Eisenstein series and p-adic families
of cuspforms. The resulting relation between these congruences and the constant term
of the Eisenstein family (essentially the p-adic L-function) is combined with the Galois
representations associated with families of cuspforms to prove that the p-adic L-function
divides the characteristic ideal. When combined with the analytic class number for-
mula, this implies equality. Subsequent to the work of Mazur and Wiles, another proof
of the Main Conjecture for Q was given by Rubin (based on work of Kolyvagin and
Thaine) using an Euler system. The Euler system argument yields a result opposite to
that obtained via congruences: the characteristic ideal contains the p-adic L-function.
But again, together with the analytic class number formula this implies equality. Rubin
also used Euler systems and the analytic class number formula to prove the one- and
two-variable main conjectures for imaginary quadratic fields [Ru91]; this includes the
Iwasawa-Greenberg Main Conjecture for CM forms. Using an Euler system constucted
from elements in K-groups of modular curves, Kato proved what amounts to half of
the Iwasawa-Greenberg Main Conjecture for modular forms (Theorem 3.5.6). Lacking
an analog of the analytic class number formula, Kato’s result does not imply the main
conjecture in general.

The main result of this paper - Theorem 3 below (also Theorem 3.6.1) - is proved
following the strategy used by Wiles in his proof of the main conjecture for totally
real fields [Wi90]. In essence the result is an inclusion (divisibility) in the opposite
direction from that in Kato’s theorem. Combining the results then yields equality. The
strategy of studying congruences between Eisenstein families and cuspidal families has
also been employed by the second named author [Ur04] to prove many cases of the
Iwasawa-Greenberg Main Conjecture for the adjoint of a modular form; there the class
number formula is the one that appears in the theory of Galois deformations as in the
work of Wiles [Wi95] and its various extensions to totally real fields. There have been
other results proved in the direction of various main conjectures, too many to survey
here. While most have made use of Euler systems, some, most notably [MTi90] and
[HiTi94], have exploited congruences between cuspforms and various ‘special’ modular
forms, analogously to the approach employed in this paper.

In this paper we work in the context of automorphic forms on the unitary group G :=
GU(2, 2)/Q defined by a Hermitian pairing of signature (2, 2) on a four-dimensional
space over an imaginary quadratic field K. The connection with L-functions for elliptic
modular forms comes through constant terms of Eisenstein series. Let P be the maximal
Q-parabolic subgroup of G fixing an isotropic line. Then P has Levi decomposition P =
MN with Levi subgroup M ∼= GU(1, 1)/Q×ResK/QGm. The Eisenstein series on G(AQ)
induced from cuspforms on M(AQ) have constant terms along P that involve L-series of

the form LS(BC(π)⊗ξ, s) where π is a cuspidal automorphic representation of GL2(AQ),
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BC(π) is its base change to GL2(AK), and ξ is an idele class character of A×K. When
interpreted classically, for an appropriate choice of inducing data this yields holomorphic
scalar-valued Hermitian Eisenstein series E on H := {Z ∈ M2(C) : −i(Z − tZ̄) > 0}
(the Hermitian upper half-space) whose singular Fourier coefficients are simple multiples
of products of normalized L-values of the form L := LS(f, ξ, k − 1)LS(χ−1ξ′, k − 2)/Ω.
Here ξ is a finite idele class character, ξ′ := ξ|A×Q , f is a weight k eigenform of character χ,

LS(f, ξ, k−1) := LS(BC(π(f))⊗ξ, (k−1)/2) with π(f) the usual unitary representation
associated with f , and Ω is an explicit algebraic multiple of a product of periods. Also,
LS(−) denote the partial L-function with the Euler factors at the places in S removed.
One might hope that the Fourier coefficients of the Eisenstein series E so-constructed
are p-adic integers and that the singular Fourier coefficients are divisible by L. If L
is not a p-adic unit, then one would expect that E is congruent modulo L to a cusp
form, provided some non-singular Fourier coefficient is a p-adic unit. If such were the
case, then this congruence could be combined with the p-adic Galois representations
associated with cuspidal eigenforms on H to construct classes in a Selmer group related
to f and ξ. This last part is a generalization of the Galois arguements in [Ri76] and
[Wi90]. Carrying this argument out for a p-adic family of Eisenstein series, where L is
replaced by a product of p-adic L-functions, leads to the main theorem of this paper.
We do this as outlined in the following.

1.4. An outline of the proof. The proof of the main result of this paper can be divided
into two parts. The first part, comprising §§2-7, explains how the index of a certain ideal
- the Eisenstein ideal - in the cuspidal p-ordinary Hecke algebra for the unitary group
GU(2, 2) divides the characteristic ideal of a certain three-variable Selmer group and
how this implies the Iwasawa-Greenberg Main Conjecture if the index is divisible by a
certain three-variable p-adic L-function. The second part, comprising §§8-13, constructs
a p-adic family of Eisenstein series for GU(2, 2) with singular Fourier coefficients divisible
by the three-variable p-adic L-function, and this family is then used to relate the index
of the Eisenstein ideal to the p-adic L-function.

1.4.1. Selmer groups. After introducing in §2 the notation and conventions necessary to
describe many of the objects studied in this paper and the main results about them,
in §3 we develop the theory of Selmer groups as used in this paper, particularly the
relations between Selmer groups over various fields and rings and the corresponding
relations between characteristic ideals. This includes the results that allow the deduction
of Theorem 1 from the main theorem of this paper (in combination with Kato’s theorem).
In §3 we state the main results of this paper about Selmer groups and their connections
with p-adic L-functions and explain how they follow from the main theorem.

The Selmer groups that appear in the main results of this paper are associated with
Hida families of ordinary cuspidal eigenforms of tame level N and character χ (a Dirichlet
character modulo Np). Let L be a finite extension of Qp containing the values of χ.
Such a family is a formal q-expansion f =

∑∞
n=1 a(n)qn ∈ I[[q]], I a local reduced finite
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integral extension of ΛW,OL := OL[[W ]], with the property that for a continuous OL-

homomorphism φ : I → Qp with φ(1 + W ) = (1 + p)κφ−2 and κφ ≥ 2 an integer,
fφ :=

∑∞
n=1 φ(a(n))qn is a p-ordinary cuspidal eigenform of weight κφ, level Np, and

character χωκφ−2. Associated with a Hida family f are continuous two-dimensional
semisimple Galois representations ρf : Gal(Q/Q) → GLFI(Vf ), FI being the fraction

field of I, and ρ̄f : Gal(Q/Q)→ GLF(V ), F being the residue field of I, such that for all
primes ` - Np the trace of these representations on a geometric frobenius element for `
is the image of the Fourier coefficient a(`). Assume that

(irred)f ρ̄f is irreducible.

Then there is a basis such that ρf takes values in GLI(Tf ) with TI a free I-module of
rank two. The image of Tf under a homomorphism φ as above is just a lattice Tfφ in the
usual p-adic Galois representation ρfφ associated with the ordinary eigenform fφ. If we
also assume that

(dist)f ρ̄f is Gp-distinquished,

meaning that the semisimplification of ρ̄f |Gp , Gp being a decomposition group at p, is
a sum of two distinct characters, then there exists an unramified Gp-stable rank-one
I-summand T+

f ⊂ Tf .

Let K be an imaginary quadratic field in which the prime p splits. Let K∞ be the
composite of all Zp-extensions of K and ΓK its Galois group over K (so ΓK ∼= Z2

p). Then to

f and any finite set of primes Σ we attach a Selmer group SelΣK∞(f), defined analogously
to the Selmer group for an eigenform. This is a discrete module over IK := I[[ΓK]]. We
explain how it is a consequence of Kato’s work and and the relation of SelΣK∞(f) with

other Selmer groups that the pontrjagin dual XΣ
K∞(f) := Homcont(Sel

Σ
K∞(f),Qp/Zp) is

a finitely-generated torsion IK-module. We can therefore define the characteristic ideal
ChΣ
K∞(f) in IK of XΣ

K∞(f), and having done so we can then state the main result of this
paper:

Theorem 3 (Theorem 3.6.1). Let f be an I-adic ordinary eigenform of tame level N

and trivial character. Assume that L contains Q[µNp, i,D
1/2
K ]. Suppose N = N+N−

with N+ divisible only by primes that split in K and N− divisible only by primes inert
in K. Suppose also

• (irred)f and (dist)f hold;
• N− is square-free and has an odd number of prime factors;
• the reduction ρ̄f of ρf modulo the maximal ideal of I is ramified at all `|N−.

Let Σ be a finite set of primes containing all those that divide NDK and some prime
` 6= p that splits in K. Then

ChΣ
K∞(f) ⊆ (LΣ

f ,K).

Here LΣ
f ,K ∈ IK is a certain three-variable p-adic L-function (described in 3.4.5 but

constructed later on). We explain how to deduce Theorem 1 from this theorem and
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Kato’s theorem using the relations between SelΣK∞(f) and the Selmer groups for the

various fφ together with the corresponding relations between LΣ
f ,K and the usual p-adic

L-functions Lfφ . From this we are also able to deduce that the inclusion in Theorem 3
is often an equality (see Theorem 3.6.6). We also explain other consquences, including
Theorem 2.

We follow the discussion of Selmer groups in §3 with an exposition in §4 of an abstract
set-up and concomitant construction of subgroups of group cohomology classes. This
construction provides a means for relating orders of certain congruence ideals to orders
of characteristic ideals; the setting abstracts that obtained from the Eisenstein ideals
studied later. This generalizes and formalizes the construction of Selmer classes using
Galois representations and congruences that was alluded to in 1.3.

1.4.2. Hida theory, the Eisenstein ideal, and Galois representations. In §5 and §6 we
describe Hida theory for p-adic modular forms for G = GU(2, 2). In particular we
explain the surjectivity of certain Λ-adic Siegel operators. This last point is the key to
connecting the divisibility properties of singular Fourier coefficients of the p-adic families
of Eisenstein series to congruences with cusp forms. Here Λ = Zp[[T (Zp)]] with T ⊂ G
a certain maximal torus. Our exposition of Hida theory generally follows [Hi04], but
whereas Hida restricts attention to cuspidal forms, we require a theory for modular forms
with non-zero constant terms. The explanation of this augmentation of Hida’s results
necessitates that we review (or sketch proofs of) some facts about the construction and
nature of the arithmetic toroidal and minimal compactifications of the Shimura varieties
associated with the unitary similitude groups GU(n, n). After defining the spaces of
ordinary Λ-adic forms (Hida families) for the groups GU(n, n), we define an ideal in a
Hida Hecke algebra for G and explain how, given the existence of a suitable Hida family
of Eisenstein series, its index - the Eisenstein ideal - is related to p-adic L-functions.

A Hida family f and a set of primes Σ as in Theorem 3 gives rise to a tuple D that
we term a p-adic Eisenstein datum. We put ΛD := IK[[Γ−K]], Γ−K the Galois group of the
anticyclotomic Zp-extension of K; this has the structure of a finite Λ-algebra. A Hida
family over ΛD (of prescribed tame level KD ⊂ G(Ap

f )) is then a collection of formal

series F = (Fx) (indexed by certain cusps x) with Fx ∈ ΛD[[qβ]], where β runs over
a lattice of Hermitian matrices in M2(K) that depends on x and KD, such that for a
certain class of continuous OL-homomorphisms φ : ΛD → Qp, the specialization of F at
φ - the collection of formal series obtained from applying φ to the coefficients of the Fx

- is the collection of q-expansions at the cusps x of a p-ordinary holomorphic Hermitian
modular form on H × G(Af ). The set of such forms is a finite free ΛD-module and
there is a natural Hecke action on this space. We let hD be the ΛD-algebra generated
by the Hecke operators acting on the ΛD-cuspforms; this is a finite ΛD-algebra. We
define an ideal ID ⊆ hD - determined by D - and consider the quotient hD/ID. By the
definition of ID, this is a quotient of ΛD via the structure map. The Eisenstein ideal
ED ⊆ ΛD is the kernel of this surjection: ΛD/ED

∼→ hD/ID. The ideal ID is defined
with the expectation that there exists a ΛD-eigenform ED such that ID is generated
by the image in hD of the annihilator of ED in the abstract Hecke algebra and such
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that the singular coefficients of ED are divisible by the three-variable p-adic L-function
LΣ
f ,K ∈ IK. Assuming such a form ED exists, from the aforementioned surjectivity of the

ΛD-Siegel operators we conclude that if P ⊂ IK is a height one prime containing LΣ
f ,K

but ED is non-zero modulo P , then ordP (ED) ≥ ordP (LΣ
f ,K).

In §7 we recall the Galois representations associated with cuspidal representations of G
and explain the existence of Galois representations associated with Hida eigen-families
and particulary with components of hD. Using this we show that the ring hD, the ideal
ID, and a prime P ⊂ IK as in the preceding paragraph give rise to a set-up as formalized
in §4. Assuming the existence of the Hida family ED, the main theorem then follows
from the abstract construction given there and the inequality relating the orders of ED
and LΣ

f ,K.

The rest of the paper is taken up with proving the existence of the three-variable p-adic
L-function LΣ

f ,K and the Hida family ED.

1.4.3. Eisenstein series. After introducing more notation in §8, in §9 we define the Eisen-
stein series that belong to the family ED and describe their Hecke eigenvalues and
constant terms. More specifically, for certain of the homomorphisms φ we define an
Eisenstein datum Dφ and thence an Eisenstein series EDφ . This series is induced from
from a cuspform on M(A) associated with fφ. The singular Fourier coefficients turn out
to be essentially Fourier coefficients of fφ.

In §10 and §11 we recall some auxiliary functions - theta functions and Siegel Eisenstein
series - that show-up in our analysis of the p-adic properties of the EDφ . In particular, in
§11 we recall a formula of Garrett and Shimura that essentially expresses a multiple GDφ
of EDφ as an inner-product of fφ and the pull-back to h×H of a Siegel Eisenstein series on

GU(3, 3). The multiple GDφ is essentially LΣ(fφ, ξφ, kφ − 1)LΣ(χ−1
fφ
ξ′φ, kφ − 2)EDφ , with

ξφ a finite idele class character of K. We use the pull-back formula to express the Fourier
coefficients of GDφ as inner-products of modular forms - the inner-products of fφ with the
restrictions of Fourier-Jacobi coefficients of the Siegel Eisenstein series (these Fourier-
Jacobi coefficients are essentially products of theta functions and Eisenstein series on h).
Similarly, the L-function LΣ(fφ, ξφ, kφ − 1) is realized as an inner product of fφ with the
pull-back to h×h of a Siegel Eisenstein series on GU(2, 2). Much of §11 is taken up with
the definitions of the ramified local sections used to define the Siegel Eisenstein series
and the computations of the Fourier-Jacobi coefficients of these series.

To help orient the reader amidst the notationally dense calculations in §§9,10, and 11,
we have included a more detailed summary of their contents at the start of each of these
sections.

The use of the pull-back formula to express the Fourier coefficients of cuspidal Eisenstein
series like GDφ as inner-products of modular forms was also exploited in [Ur04], and the
idea goes back at least to [BSP]. The work [Ur04] contains a similar analysis of the
ramified local sections defining the Siegel-Eisenstein series. In [Zh07], a similar use
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was made of the pull-back formula to analyze the Fourier-Jacobi expansions of cuspidal
Eisenstein series on GU(3, 1).

The non-singular Fourier coefficients of GDφ are indexed by positive-definite Hermitian
matrices β ∈ GL2(K), and the coefficients for a given β define automorphic functions
on the unitary group U(β) of the Hermitian pairing on K2 defined by β. Pairing these
functions with a suitable automorphic form on U(β) - which amounts to taking a linear
combination of Fourier coefficients of GDφ - results in a Rankin-Selberg convolution of
fφ with a theta lift to GL2 of the form on U(β) (this lift has weight 2). If all the data
has been chosen well (and one is lucky) the resulting formulas are essentially products
of L-functions whose arithmetic properties are sufficiently understood.

1.4.4. p-adic interpolations. In §12 we use the formulas from §11 to construct the ΛD

Hida families ED (which essentially specialize to GDφ) and the three-variable p-adic L-

function LΣ
f ,K (which we relate to the p-adic L-functions Lfφ and other p-adic L-functions

such as the anticyclotomic L-functions of the fφ). That the singular coefficients of ED

are divisible by LΣ
f ,K is immediate. The key to this interpolation is that the Fourier

coefficients of Siegel Eisenstein are particularly simple; they p-adically interpolate by
inspection. Via the pull-back formulas, this p-adic interpolation carries over to the L-
functions and to the Fourier coefficients of the induced Eisenstein series.

1.4.5. Co-primality of the p-adic L-functions and Eisenstein series. Finally, in §13 we
show that the Fourier coefficients of the family ED have the needed properties; essentially,
the non-singular coefficients are prime to the p-adic L-function. Our proof of this involves
some of the formulas from §11 and appeals to the mod p non-vanishing results of Vatsal
[Va03] and Finis [Fi06]. The appeal to the former in particular is responsible for some
of the hypotheses in the main theorem as well as Theorems 1 and 2. An appeal to
Vatsal’s non-vanishing result is also made in [Ur04]. There the resulting formula for the
Fourier coefficient of the Eisenstein series is essentially the Rankin-Selberg convolution
of an eigenform with a weight one theta function (as opposed to the weight two theta
functions that show up in the formulas in this paper), and so a suitable linear combination
of Fourier coefficients is a special value of the twist of the L-function of an eigenform
by a finite Hecke character; Vatsal’s theorem applies directly to this last L-value. The
situation in this paper is less straightforward.

Using our formulas for linear combinations of Fourier coefficients of GDφ , we show that
there is a p-adic family g of CM forms such that a suitable ΛD-combination of non-
singular coefficients of ED factors as AD,gBD,g with AD,g ∈ I[[Γ+

K]] ⊂ IK, Γ+
K the Galois

group of the cyclotomic Zp-extension of K, and BD,g ∈ IK. The factor AD,g interpolates
Rankin-Selberg convolutions of the fφ with weight two specializations of g and so is easily

observed to be non-zero. That AD,g is co-prime to LΣ
f ,K under the hypotheses of the

main theorem then follows from Vatsal’s result on the vanishing of the anticyclotomic
µ-invariant (and the relation of LΣ

f ,K with the p-adic anticyclotomic L-functions). The
factor BD,g specializes under some φ to a convolution of a specialization of g and a
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weight one Eisenstein series, and we show by appeal to the results of Finis that g can
be chosen so that this convolution - and hence BD,g - is a unit.

We have included an index to important notation not defined in §2 or §8
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2. Basic notations and conventions

In this section we collect the notation and conventions for fields, characters, and Galois
representations needed to describe the basic framework and main results of this paper.
For the most part these follow conventional practice. Additional notation will, of course,
be introduced later in the paper; particularly significant notation or conventions will be
given at the start of each section.

Throughout this paper p is a fixed odd prime number.

2.1. Fields and Galois groups.

2.1.1. Number fields. We fix algebraic closures Q and Qp of Q and Qp, respectively. For

the purpose of p-adic interpolation we fix embeddings ιp : Q ↪→ Qp and ι∞ : Q ↪→ C

and a compatible isomorphism ι′p : Qp
∼→ C (so that ι∞ = ι′p ◦ ιp).

The adeles of a number field F are denoted by AF and the finite adeles are denoted
by AF,f . When F = Q we will often drop it from our notation for the adeles. We let

Ẑ :=
∏
` Z` ⊂ Af (so Af = Ẑ ⊗Q). If v is a place of Q and x ∈ AQ then we write xv

for the v-component of x, and similarly for AF . For a place v of Q, | · |v will denote the
usual absolute value on Qv (|`|` = `−1) and | · |Q the corresponding absolute value on
A (|x|Q =

∏
v |xv|v). We define an absolute value | · |F on AF by |x|F := |NF/Q(x)|Q,

where NF/Q(x) is the norm from AF to A. We reserve | · | to denote the usual absolute
value on C and R.

We let K ⊆ Q be an imaginary quadratic extension of Q in which p splits and denote
the ring of integers of K by O. The absolute discriminant, class number, and different
of K are denoted by DK, hK, and d, respectively. We let δK :=

√
−DK (so this generates

d). The action of the nontrivial automorphism of K is often denoted by a ‘bar’ (thus
x ∈ K is sent to x̄ by this automorphism). For any Z-algebra A this extends to O ⊗ A
and K ⊗A through its action on the first factor.

We let v0 be the place of K over Q determined by the fixed embedding Q ↪→ Qp. We
denote its conjugate place by v̄0. We let p be the prime ideal of O corresponding to v0

and let p̄ be its conjugate ideal (so in O, (p) = pp̄).

If v is a finite place of Q then Kv := K ⊗Q Qv and Ov := O ⊗ Zv. If w is a finite
place of K then Kw and Ow have their usual meanings. For a prime `, D` is the absolute
discriminant of K` over Q`. If ` splits in K then we fix a Z`-algebra identification of O`
with Z` × Z` and hence of K` with Q` × Q`. With respect to these identifications, if
(a, b) ∈ K` then (a, b) = (b, a). We assume that the identification Kp = Qp × Qp has
been made so that p = K ∩ (pZp × Zp). We identify K⊗R with C by x⊗ y 7→ ι∞(x)y.

We similary identifty K ⊗C with C×C by x⊗ y 7→ (ι∞(x)y, ι∞(x)y).

We let Q∞ ⊂ Q be the unique Zp-extension of Q and let K∞ ⊂ Q be the unique Z2
p-

extension of K. We let K+
∞ and K−∞ be, respectively, the cyclotomic and anti-cyclomotic
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Zp-extensions (so K+
∞ = KQ∞ and K+

∞ ∩ K−∞ = K). In the context of these extensions
we will write Qn, Kn, and K±n to mean the maximal subfields of conductor pn+1.

2.1.2. Galois groups. For any subfield F ⊆ Q we let GF := Gal(Q/F ). Given a set Σ
of finite places of F , we let GF,Σ := Gal(FΣ/F ), FΣ being the maximal extension of F
unramified at all finite places not in Σ. If Σ is a set of finite places of a subfield of F we
write GF,Σ for GF,Σ′ , where Σ′ is the set of places of F over those in Σ.

A decomposition group at a place v of F will be denoted GF,v and its inertia subgroup
will be denoted IF,v. If the choice of decomposition group is important, the choice will
be made clear in the text. When F is understood we will often drop it from our notation
for decomposition and inertia groups.

If F is finite over Q, then for a finite place v of F we will write frobv for a geometric
Frobenius element (well-defined only in GF,v/IF,v). The L-function of a Galois represen-
tation of GF will always be defined with respect to geometric Frobenius elements.

When F = Q or K we fix choices of decomposition groups. When v = ∞ we assume
that GF,v is the decomposition group determined by the fixed embedding Q ↪→ C. We
let c ∈ GQ,∞ be the unique nontrivial element; this is a complex conjugation which

agrees with the usual complex conjugation on C via the fixed embedding Q ↪→ C.
The restriction of c to K is the nontrivial automorphism of K, so no confusion should
result from our also denoting the action of c on an element of C by ‘bar’ (i.e., writing
x̄ to mean c(x)). When v is the place determined by the fixed embedding Q ↪→ Qp

we assume GF,v is the decomposition group determined by this embedding. We choose
GK,v̄0 = cGK,v0c

−1.

2.1.3. Reciprocity maps. For a local or global field F we normalize the reciprocity map
recF of class field theory so that uniformizers get mapped to geometric Frobenius ele-
ments.

2.1.4. Hodge-Tate weights. Unless otherwise stated, whenever we discuss Hodge-Tate
weights for a p-adic Galois representation of GK they are for the place v0.

2.1.5. The groups ΓQ, ΓK, and Γ±K. We let ΓQ := Gal(Q∞/Q) and ΓK := Gal(K∞/K)

and let Γ±K ⊂ ΓK be the subgroup on which conjugation by c acts as ±1. Then ΓK =

Γ+
K⊕Γ−K. Via the canonical projection ΓK → Gal(K±∞/K), Γ±K is identified with the target.

Via the canonical projection ΓK → ΓQ, Γ+
K is identified with ΓQ. We fix topological

generators γ± ∈ Γ±K and let γ ∈ ΓQ be the topological generator identified with γ+. To
simplify matters we will assume these have been chosen so that recQp(1 + p) = γ and

recKp((1 + p)1/2, (1 + p)−1/2) = γ−.

2.2. Characters. Let F be a number field.
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2.2.1. Idele class characters. For an idele class character χ : A×F → C× (so trivial on
F×) we write fχ for the conductor of χ. If F = Q then we make no distinction between
the ideal fχ and the positive integer that generates it. For any finite set of places S of F
we set

LS(χ, s) :=
∏

v-fχ,v 6∈S

(1− χv($v)q
−s
v )−1, χ = ⊗χv,

where $v is a uniformizer at v. If S is a finite set of places of a subfield of F we use
the same notation for the product over places that do not divide a place in S. The same
convention will be used for Euler products throughout this paper.

Suppose F = Q or K and χ∞(z) = sgn(z)bza if F = Q and χ∞(z) = zaz̄b if F = K, a
and b being integers. We denote by σχ the (unique) p-adic Galois character

σχ : GF → Q
×
p

such that

σχ(frobv) = χv($v), v - pfχ.
For any finite set of places S ⊇ {v|p}

LS(σχ, s) = LS(χ, s).

If F = Q then the motivic weight of σχ is −2a and its Hodge-Tate weight is −a. If
F = K then the motivic weight of σχ is −(a+ b) and its Hodge-Tate weight with respect
to the place v0 is −a. We let σcχ be the composition of σχ with conjugation of GF by c.

Given an idele class character χ of A×K, we let χc(x) := χ(x̄) and χ′ := χ|A×Q , where

AQ ↪→ AK is the canonical inclusion. Then χχc = χ′ ◦NK/Q, so

σχσ
c
χ = σχχc = σχ′◦NK/Q ,

provided σχ exists. Note that σcχ = σχc .

2.2.2. Hecke characters. If ψ is a Hecke character of F of conductor fψ, then we associate

with ψ an idele class character ⊗ψv of A×F in the usual way. In particular, for a finite
place v - fv, ψv($v) = ψ(pv), where $v is a uniformizer at v and pv is the prime ideal
corresponding to v. We will continue to denote ⊗ψv by ψ; this should cause no confusion.

If ψ is a Dirichlet character of conductor N then we associate with it a Hecke character,
which we also denote ψ, of conductor N such that ψ((`)) = ψ(`) for all ` - N . Then
ψ`(`) = ψ(`) for all primes ` - N .

2.2.3. The cyclotomic character. We denote by ε the p-adic Galois character associated
with the character | · |Q. Then ε|GF is the the Galois character associated with | · |F . The
character ε gives the action of Galois on p-power roots of unity: if v - p is a place of F
then ε(frobv) = NF/Qv

−1. The Hodge-Tate weight of ε is −1 and its motivic weight is
−2.
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2.2.4. The Teichmüller character. Let ω be the composition GQ
ε→Z×p → (Zp/pZp)

× →
Z×p , where the second arrow is reduction modulo p and the third is the Teichmüller lift.

Via the reciprocity map, ω induces a character of A×, which we continue to denote by
ω. In this way, we can view ω as a character of Z×p (via the inclusion Qp

× ↪→ A×Q).

2.2.5. The character associated with K. Let χK : A× → C× be the usual quadratic
character associated with K. We also write χK for the p-adic Galois character associated
with this idele class character; this should cause no confusion as which character is meant
will always be clear from the context.

3. Selmer groups

In this section we define the Selmer groups that are the main focus of this paper. The
first two subsections below contain sorites on p-adic Selmer groups; these should be well-
known to experts. In the third subsection we define the Selmer groups studied in this
paper. In the fourth and fifth subsections we recall the p-adic L-functions associated
with modular forms, the main conjectures for the Selmer groups associated with an
ordinary cuspidal eigenform and their corollaries, and the results of Kato [Ka04] about
these conjectures. The last subsection is devoted to the statements of the main results
of this paper.

We make no claim of originality for the results in 3.1 and 3.2 below. Most of the
results therein can be found in different guises elsewhere in the literature, especially in
the papers of Greenberg. In particular, we learned the proof of Proposition 3.2.8 from
[Gr94].

3.1. Sorites on Selmer groups. The following develops the theory of Selmer groups
as needed to understand the main results of this paper and their proofs.

3.1.1. Shapiro’s lemma. Let E/F be a finite Galois extension of fields. By Shapiro’s
lemma, for any discrete GE-module M there is a canonical isomorphism

(3.1.1.a) H i(E,M) = H i(F, IndGFGEM))

with IndGFGEM := {φ : GF → M : φ(gg′) = gφ(g′) ∀g ∈ GE}. If the GE-action on M is
the restriction of a GF -action, then we have an isomorphism of GF -modules

IndGFGEM
∼→ HomZ(Z[Gal(E/F )],M)

given by

φ 7→

 ∑
g∈Gal(E/F )

ngg 7→
∑

g∈Gal(E/F )

nggφ(g−1)

 .
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The action of σ ∈ Gal(E/F ) on HomZ(Z[Gal(E/F )],M) is (σ · f)(x) = σf(σ−1x).
Therefore, if M is a GF -module then there is a canonical isomorphism

H i(E,M) = H i(F,HomZ(Z[Gal(E/F )],M)).

3.1.2. Shapiro’s lemma and restriction. For analyzing Selmer groups, it is useful to know
how Shapiro’s lemma interacts with restrictions at finite places. To this end, let v be a
finite place of F and GF,v a decomposition group for v. Let w0|v be a place of E fixed by
GF,v. Then GE,w0 := GF,v∩GE is a decomposition group for w0. For each place w|v of E
fix gw ∈ GF such that gww0 = w and put GF,w := gwGF,vg

−1
w and GE,w := gwGE,w0g

−1
w .

The latter are decomposition groups for v and w, respectively. There is a GF,v-module
isomorphism

IndGFGEM
∼→
∏
w|v

Ind
GF,w
GE,w

M,

φ 7→ (φw)w|v, φw(g) := φ(ggw).

(3.1.2.a)

The GF,v-action on the right-hand side is given by (g · φw)(g′) = φw(g′gwgg
−1
w ). The

isomorphism (3.1.2.a) induces an isomorphism

H i(Fv, IndGMGE M)
∼→
∏
w|v

H i(Fv, Ind
GF,w
GE,w

M)
∼→
∏
w|v

H i(GF,w, Ind
GF,w
GE,w

M) =
∏
w|v

H i(Ew,M),

with the equality denoting the canonical identification coming from Shapiro’s lemma
and the middle isomorphism given on cocycles by (cw)w|v 7→ (c′w)w|v with c′w(g) =

cw(g−1
w ggw). This isomorphism fits into a commutative diagram

(3.1.2.b)

H i(F, IndGFGEM) H1(E,M)

res

y res

y
H i(Fv, IndGMGE M)

∼−−−−→
∏
w|vH

i(Ew,M).

Let Iv ⊂ GF,v, IF,w ⊂ GF,w, and Iw ⊂ GE,w be the respective inertia subgroups. From
(3.1.2.a) we obtain an isomorphism

(IndGFGEM)Iv
∼→
∏
w|v

(Ind
GF,w
GE,w

M)IF,w

and that the natural inclusion

Ind
Gkv
Gkw

M Iw ↪→ (Ind
GF,w
GE,w

M)IF,w

is an isomorphism. Here kv and kw are, respectively, the residue fields of Fv and Ew.

It follows that the bottom isomorphism of (3.1.2.b) identifies H1(kv, (IndGFGEM)Iv) with∏
w|vH

1(kw,M
Iw). In particular, a class in H1(F, IndGFGEM) is unramified at v if and

only if the corresponding class in H1(E,M) is unramified at all w|v.

Suppose M is a GF -module. The isomorphism (3.1.1.a) can be rewritten as

IndGFGEM
∼→ M ⊗Z HomZ(Z[Gal(E/F )],Z).
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If M+ ⊆M is a GF,v-submodule, then from (3.1.2.a) we obtain an isomophism of GF,v-
submodules

M+ ⊗Z HomZ(Z[Gal(E/F )],Z)
∼→
∏
w|v

M+
w ⊗Z HomZ(Z[Gal(Ew/Fv)],Z),

where M+
w := gwM

+g−1
w , and hence the bottom isomorphism of (3.1.2.b) identifies the

image ofH1(Fv,M
+⊗ZHomZ(Z[Gal(E/F )],Z)) inH1(Fv,M⊗ZHomZ(Z[Gal(E/F )],Z))

with the image of
∏
w|vH

1(Ew,M
+
w ) in

∏
w|vH

1(Ew,M). In particular, the restriction of

a class in H1(F, IndGFGEM) to H1(Fv, IndGFGEM) = H1(Fv,M ⊗Z HomZ(Z[Gal(E/F )],Z))

is in the image of H1(Fv,M
+ ⊗Z HomZ(Z[Gal(E/F )],Z)) if and only if the restric-

tion of the corresponding class in H1(E,M) to
∏
w|vH

1(Ew,M) is in the image of∏
w|vH

1(Ew,M
+
w ).

3.1.3. Σ-primitive Selmer groups. Let F ⊆ Q. Let T be a free module of finite rank over
a profinite Zp-algebra A and assume that T is equipped with a continuous action of GF .
We assume that for each place v|p of F we are given a Gv-stable free A-direct summand
Tv ⊂ T . Let Σ be a set of finite places of F . We denote by SelΣF (T, (Tv)v|p) the kernel of
the restriction map

SelΣF (T, (Tv)v|p) := ker{H1(F, T⊗AA∗)→
∏
v 6∈Σ
v-p

H1(Iv, T⊗AA∗)×
∏
v|p

H1(Iv, T/Tv⊗AA∗)},

where A∗ := Homcont(A,Qp/Zp) is the Pontrjagin dual of A. (We will similarly denote
by M∗ the Pontrjagin dual of any locally compact Zp-module M .) This is the Σ-primitive
Selmer group. The Selmer groups are independent of the choices of the decomposition
groups. If Σ contains all the places at which T is ramified and all the places over p, then

SelΣF (T, (Tv)v|p) = ker{H1(GF,Σ, T ⊗A A∗)→
∏
v|p

H1(Iv, T/Tv ⊗A A∗)}.

We also put
XΣ
F (T, (Tv)v|p) := HomA(SelΣF (T, (Tv)v|p), A

∗).

We will just write XΣ
F (T ) or SelΣF (T ) when the Tv’s are clear from the context or are

not important.

Given T , {Tv}v|p and Σ as above for a given F , for any extension E/F (not necessarily

finite) we put SelΣE(T ) := SelΣEE (T, (Tw)w|p) and XΣ
E(T ) := XΣE

E (T, (Tw)w|p), where ΣE

is the set of places of E over those in Σ and if w|v|p then Tw = gwTv for gw ∈ GF such
that g−1

w GE,wgw ⊆ GF,v. This is independent of the choices of gw’s. We have

SelΣE(T ) = lim
→

F⊆F ′⊆E

SelΣF ′(T ) and XΣ
E(T ) = lim

←
F⊆F ′⊆E

XΣ
F ′(T ),

where F ′ runs over the finite extensions of F contained in E.

When Σ is empty or contains only primes over p we drop it from the notation. The
corresponding Selmer group is called the primitive Selmer group.
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3.1.4. Passing from F to F+. Assume that F is a CM number field and let F+ be its
maximal totally real subfield (so c restricts to the nontrivial element of Gal(F/F+)).
Let T be as above with the additional assumption that the GF action on T is the
restriction of a GF+-action. Let v|p be a place of F+. If v is inert in F then we assume
that GF,v ⊂ GF+,v. If v splits in F then we fix a splitting v = wwc and assume that

GF,w = GF,v and GF,wc = cGF+,vc
−1. For each place v|p of F+, we assume we are given

a GF+,v-stable A-summand Tv ⊂ T . If v splits in F , v = wwc, then we let Tw = Tv and
Twc = cTv.

Let Σ+ be a finite set of finite places of F+ and let Σ be the set of places of F over

those in Σ+. We may then define SelΣF (T ), SelΣ
+

F+(T ), and SelΣ
+

F+(T ⊗ χF ), where χF is

the quadratic character of GF+ corresponding to the extension F/F+. Since p > 2 the
usual action of Gal(F/F+) on H1(F, T ⊗A A∗) yields a decomposition

SelΣF (T ) = SelΣF (T )+ ⊕ SelΣF (T )−,

where the ± superscript denotes that c acts as ±1.

Lemma 3.1.5. The restriction map from GF+ to GF yields isomorphisms

SelΣ
+

F+(T )
∼→ SelΣF (T )+ SelΣ

+

F+(T ⊗ χF )
∼→ SelΣF (T )−.

Proof. This follows easily from Shapiro’s lemma, the inflation-restriction sequence, and
the fact that Zp[Gal(F/F+)] ∼= Zp ⊕ Zp(χF ) as a GF+-module.

3.1.6. Fitting ideals and characteristic ideals. Let A be a noetherian ring. We write
FittA(X) for the Fitting ideal in A of a finitely generated A-module X (and therefore of
finite presentation). This is the ideal generated by the determinant of the r × r-minors
of the matrix giving the first arrow in a given presentation of X:

As → Ar → X → 0.

In particular, if X is not a torsion A-module then FittA(X) = 0.

Fitting ideals behave well with respect to base change. For any noetherian A-algebra
B, FittB(X ⊗A B) = FittA(X)B. In particular, if I ⊂ A is an ideal, then

FittA/I(X/IX) = FittA(X) mod I.

To define the notion of characteristic ideal we need to recall a few facts about divisorial
ideals. Recall first that a divisorial ideal is an ideal which is equal to the intersection of
all principal ideals containing it. In particular any principal ideal is divisorial. Let us
assume now that A is a noetherian normal domain. For any prime ideal Q ⊂ A of height
one, denote by ordQ the essential valuation attached to Q. Then any divisorial ideal I
is of the form

I = {x ∈ A : ordQ(x) ≥ mQ ∀ Q of height one },
where the mQ are non-negative integers almost all equal to zero. The mQ’s are uniquely
determined and we set ordQ(I) := mQ (AQ is a DVR and ordQ(I) is the valuation of any
generator of IAQ). If I and J are two divisorial ideals, then the following are equivalent:
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(i) ordQ(I) ≤ ordQ(J) for all prime ideals Q of height one
(ii) I ⊇ J .

In particular, if I is divisorial and x ∈ A, we have (x) ⊇ I if and only if ordQ(I) ≥ ordQ(x)
for all Q of height one. The characteristic ideal of an A-module X is the divisorial ideal
CharA(X) defined by

CharA(X) := {x ∈ A : ordQ(x) ≥ `Q(X) ∀ Q of height one },

where `Q(X) is the AQ-length of the Q-localization XQ (possibly infinite). One checks
easily that

CharA(A/FittA(X)) = CharA(X).

Unlike Fitting ideals, characteristic ideals do not behave well under base change in
general. This is particularly true if X contains a nontrivial pseudo-null submodule.
However, since inclusion of divisorial ideals is easier to recognize, most of the time we
will work with characteristic ideals. In the cases of interest to us, for the purposes of
base change we are able to make do with a weaker statement (see Corollary 3.2.9).

The following easy lemma will be useful in identifying Fitting and characteristic ideals.

Lemma 3.1.7. Let A be a ring, a ⊂ A a proper ideal contained in the Jacobson radical
of A, and assume that A/a is a domain. Let L ∈ A be such that its reduction L̄ modulo a
is non-zero. Let I ⊆ (L) be an ideal and let Ī its image in A/a. If L̄ ∈ Ī, then I = (L).

Proof. We need to show that L ∈ I. As in the statement of the lemma, we denote
the image of reduction modulo a by a ‘bar.’ By assumption, there exist s α ∈ I such
that ᾱ = L̄. On the other hand, since I ⊆ (L), there exists β ∈ A such that α = βL.
Therefore L̄ = β̄L̄, and hence β̄ = 1 since A/a is a domain and L̄ is non-zero. As a is
contained in the radical of A, it then follows that β is a unit in A, so L = β−1α ∈ I.

3.1.8. Fitting and characteristic ideals of Selmer groups.

Lemma 3.1.9. Let F be a number field and S a finite set of finite places of F . Let
A be a profinite Zp-algebra and let M be a finitely generated A-module equipped with a
continuous action of GF,S. Then H1(GF,S ,M ⊗A A∗) is co-finitely generated over A.

Recall that an A-module X is co-finitely generated if HomA(X,A∗) is finitely generated.
A consequence of this lemma is that the dual Selmer groups XΣ

F (T, (Tv)v|p) defined before
are finitely generated over A.

Proof. See the proposition in Section 4 of [Gr94] where it is essentially deduced from the
arguments used to prove Proposition 3.2.8 below.
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For a number field F and T and A as before, we set

FtΣF,A(T ) := FittA(XΣ
F (T )) and ChΣ

F,A(T ) := CharA(XΣ
F (T )).

Of course, we have only defined ChΣ
F,A(T ) if A is noetherian and normal.

3.2. Iwasawa theory of Selmer groups. We now develop the Iwasawa theory of
Selmer group over the fields Q∞, K∞, and K±∞.

3.2.1. Iwasawa algebras. Let ΛQ := Zp[[ΓQ]], ΛK := Zp[[ΓK]], and Λ±K := Zp[[Γ
±
K]]. The

projection Γ+
K
∼→ ΓQ determines an isomorphism Λ+

K
∼→ ΛQ.

Let εK : GK → ΓK ↪→ Λ×K be the canonical character. We similarly define characters

εK,± : GK → Λ±,×K and εQ : GQ → Λ×. Note that

εQ mod (γ − (1 + p)m) = ω−mεm.

For a profinite Zp-algebra A we set ΛQ,A := A⊗̂ZpΛQ, where ⊗̂Zp denotes the ten-
sor product in the category of profinite Zp-modules (and continuous morphisms); in
particulary ΛQ,A = A[[ΓQ]]. We similarly define ΛK,A and Λ±K,A.

3.2.2. Selmer groups as modules over Iwasawa algebras. Let A be a profinite Zp-algebra
and let T be a free A-module of finite rank equipped with a continuous A-linear action
of GQ. We assume given a Gp-stable A-free direct summand Tp of T .

Shapiro’s lemma provides the following.

Proposition 3.2.3. Let F = Q or K. There is a canonical isomorphism of ΛF,A-modules

SelΣF∞(T ) ∼= SelΣF (T ⊗A ΛF,A(ε−1
F )).

The right-hand side is defined by viewing T⊗AΛF,A as a ΛF,A[GF ]-module. When F = K
the same isomorphism holds with F∞ replaced by K±∞, ΛF,A by Λ±K,A, and εF by εK,±.

Proof. This should be well-known, but for the reader’s convenience we provide a proof.
For this we use Shapiro’s lemma as recalled in 3.1.1, noting first that

lim
→
n

HomZ(Z[Gal(Fn/F )], A∗) = lim
→
n

Homcont(Λn,Qp/Zp)

= Homcont(lim←
n

Λn,Qp/Zp) = Λ∗F,A(ε−1
F ),
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where Λn := A[Gal(Fn/F )] and the last identication is as ΛF,A[GF ]-modules. Appealing
to Shapiro’s lemma, it follows that

H1(F∞, T ⊗A A∗) = lim
→
n

H1(Fn, T ⊗A A∗)

= lim
→
n

H1(F,HomZ(Z[Gal(Fn/F )], T ⊗A A∗))

= lim
→
n

H1(F, T ⊗A HomZ(Z[Gal(Fn/F )], A∗))

= lim
→
n

H1(F, T ⊗A Λ∗n) = H1(F, T ⊗A Λ∗F,A(ε−1
F )).

That this identifies SelΣF∞(T ) with SelΣF (T ⊗A ΛF,A(ε−1
F )) then follows from the analysis

in 3.1.2. The same arguments apply to the situation where F = K and F∞ = K±∞.

Remark 3.2.4. This recovers [Gr94, Prop. 3.2].

As a direct consequence of the preceding proposition and Lemma 3.1.9, the dual group
XΣ

Q∞,A
(T ) = XΣ

Q,ΛQ
(T ⊗A ΛQ,A(ε−1

Q )) is finitely generated over ΛQ,A. We then put

FtΣQ∞,A(T ) := FtΣQ,ΛQ,A
(T ⊗A ΛQ,A(ε−1

Q ))

and

ChΣ
Q∞,A(T ) := ChΣ

Q,ΛQ,A
(T ⊗A ΛQ,A(ε−1

Q )).

These belong to ΛQ,A. We similarly define FtΣK∞,A(T ), ChΣ
K∞,A(T ) ∈ ΛK,A and FtΣK±∞,A

(T ),

ChΣ
K±∞,A

(T ) ∈ Λ±K,A.

Combining Proposition 3.2.3 with Lemma 3.1.5 yields the following.

Lemma 3.2.5. There are Λ+
K,A-isomorphisms

SelΣK+
∞

(T ) ∼= SelΣQ∞(T )⊕ SelΣQ∞(T ⊗ χK)

and

XΣ
K+
∞

(T ) ∼= XΣ
Q∞(T )⊕XΣ

Q∞(T ⊗ χK).

3.2.6. Dual Selmer groups as torsion modules. Suppose that A is a domain and finite
over Zp. Let (T, Tp) be as before and assume that T is geometric (in the sense of Fontaine-
Mazur) and pure with regular Hodge-Tate weights and such that the rank of Tp is equal
to the rank of the +1-eigenspace for the action of the complex conjugation c. Then it
is conjectured (by Greenberg, Bloch-Kato, Fontaine-Perrin-Riou) that XQ∞(T ) (resp.
XK∞(T )) is torsion over ΛQ,A (resp. ΛK,A). When T is one dimensional this fact is a
simple consequence of class field theory. In general, this seems to be a deep fact. It has
been proved by K. Kato [Ka04] when T is the Galois module associated with an elliptic
cuspidal eigenform f of weight k ≥ 2 and p - Nf is a prime at which f is ordinary and
Tp is the rank-one unramified Gp-subrepresentation; Kato’s proof uses an Euler system
constructed from Siegel units and the K-theory of modular curves.
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3.2.7. Control of Selmer groups. Let A be a profinite Zp-algebra. By elementary prop-
erties of Pontrjagin duality, for any ideal a ⊂ A we have a canonical isomorphism

A∗[a] ∼= (A/a)∗

and hence for any free A-module M a canonical identification M/a⊗A/a (A/a)∗ = M ⊗A
A∗[a]. This implies that for any (T, Tp) as in paragraph 3.2.2 we have a canonical map

SelΣF (T/aT )→ SelΣF (T )[a].

Proposition 3.2.8. Suppose the action of Ip on T/Tp factors through the image of Ip
in ΓQ and that Σ ∪ {p} contains all primes at which T is ramified. Let F = Q∞, K∞,
or K+

∞, and suppose also that there is no nontrivial A-subquotient of T ∗ on which GF
acts trivially. Then the above map induces isomorphisms

SelΣF (T/aT ) ∼= SelΣF (T )[a] and XΣ
F (T/aT ) ∼= XΣ

F (T )/aXΣ
F (T ).

Proof. Let S = Σ ∪ {p}. Let x1, . . . , xk be a system of A-generators of a. We prove by
induction on j that H1(GF,S , T ⊗ A∗[x1, . . . , xj ]) → H1(GF,S , T ⊗ A∗)[x1, . . . , xj ] is an
isomorphism. Assume this is known for x1, ...xj replaced with x1, ..., xj−1. Consider the
exact sequence

0→ A∗[x1, . . . , xj ]→ B
×xj→ xjB → 0

with B = A∗[x1, . . . , xj−1]. After tensoring with T , from the associated long exact
cohomology sequence and noting that H0(GF,S , T ⊗A xjB) = 0 by the hypotheses on
T ∗, we find that there is an exact sequence

0→ H1(GF,S , T ⊗A A∗[x1, . . . , xj ])→ H1(GF,S , T ⊗A B)
φ→H1(GF,S , T ⊗A xjB).

From the long exact cohomology sequence associated with 0→ xjB ↪→ B → B/xjB → 0
and the hypotheses on T ∗, we get an exact sequence

0→ H1(GF,S , T ⊗A xjB)
φ′→ H1(GF,S , T ⊗A B).

Since the composition φ′◦φ is just multiplication by xj , it follows that kerφ = H1(GF,S , T⊗A
B)[xj ]. By the induction hypothesis, we thus have

H1(GF,S , T ⊗A A∗[x1, . . . , xj ]) = H1(GF,S , T ⊗A A∗)[x1, . . . , xj ],

and therefore H1(GF,S , T ⊗A A∗[a]) = H1(GF,S , T ⊗A A∗)[a].

Let w|p be a place of F and let Let Iw = gwIpg
−1
w ∩ GQ∞ . By our hypothesis on the

action of inertia at p, Iw acts trivially on T/Tw = T/gwT . Therefore H1(Iw, T/Tw ⊗A
A∗[a]) = HomZ(Iw, T/Tw⊗AA∗[a]) and H1(Iw, T/Tw⊗AA∗) = HomZ(Iw, T/Tw⊗AA∗),
so H1(Iw, T/Tw ⊗A A∗[a]) ↪→ H1(Iw, T/Tw ⊗A A∗).

The proposition now follows from the commutativity of the diagram

H1(GF,S , T ⊗A A∗[a])
res−−−−→

∏
w|pH

1(Iw, T/Tw ⊗A A∗[a])∥∥∥ y
H1(GF,S , T ⊗A A∗)[a]

res−−−−→
∏
w|pH

1(Iw, T/Tw ⊗A A∗)
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where the vertical arrows are the maps from the preceding paragraphs.

Corollary 3.2.9. Let F = Q∞, K∞, or K+
∞. With the hypotheses and notation of the

preceding proposition,

(i) FtΣF,A/a(T/aT ) = FtΣF,A(T ) mod a;

(ii) if A and A/a are noetherian normal domains then (f) mod a divides ChΣ
F,A/a(T/a)

for any principal ideal (f) ⊇ ChΣ
F,A; in particular, if A is a unique factorization

domain then ChΣ
F,A(T ) mod a divides ChΣ

F,A/a(T/a).

Proof. Part (i) follows from basic properties of Fitting ideals (cf. 3.1.6), and part (ii)
follows from the fact that the characteristic ideal is the smallest divisorial ideal containing
the Fitting ideal (and that principal ideals are divisorial).

3.2.10. Descent from K∞ to K+
∞. Let I− ⊂ ΛK be the kernel of the surjection ΛK → ΛQ

induced by the canonical projection ΓK → ΓQ; we also write I− for the kernel of the

map Λ−K → Zp induced by the trivial map Γ−K → 1. Note that the inclusion Λ+
K,A ⊆ ΛK,A

identifies Λ+
K,A with ΛK,A/I

−ΛK,A.

For (T, Tp) and A as in 3.2.2 there is a canonical map

SelΣK+
∞

(T )→ SelΣK∞(T )[I−]

of Λ+
K,A-modules.

Proposition 3.2.11. Under the hypotheses of Proposition 3.2.8, the above map is an
isomorphism and induces an isomorphism

XΣ
K∞(T )/I−XΣ

K∞(T )
∼→ XΣ

K+
∞

(T )

of Λ+
K,A-modules. Furthermore, if A is an unique factorization domain then ChΣ

K∞(T )

mod I− divides ChΣ
K+
∞

(T ).

Proof. The canonical map SelΣK+
∞

(T )→ SelΣK∞(T )[I−] equals the composition map

SelΣK+
∞

(T )
∼→ SelΣK+

∞
(T⊗AΛ−K,A(ε−1

K,−))[I−] = SelΣK(T⊗AΛK,A(ε−1
K ))[I−] = SelΣK∞(T )[I−],

where the first isomorphism comes from Proposition 3.2.8 and the second and third from
Proposition 3.2.3. The claim about characteristic ideals then follows from part (ii) of
Corollary 3.2.9.



THE IWASAWA MAIN CONJECTURES FOR GL2 25

3.2.12. Specializing the cyclotomic variable. Specializing the cyclotomic variable is more
subtle in general; control can fail when the associated p-adic L-function has a trivial
zero. The following proposition establishes a control statement for a situation in which
there should be no trivial zeros.

Let (T, Tp) and A be as in 3.2.2. Let IQ be the kernel of the surjection ΛQ → Zp
induced by the trivial homomorphism ΓQ → 1.

Proposition 3.2.13. Suppose there is no nontrivial A-subquotient of T ∗ on which GQ

acts trivially. Assume Σ ∪ {p} contains all prime at which T is ramified. Then there is
an exact sequence

0→ SelΣQ(T )→ SelΣQ∞(T )ΓQ → H0(Ip, T/Tp ⊗A Λ∗Q,A(ε−1
Q ))⊗ΛQ

ΛQ/IQ)Gp .

In particular, if (H0(Ip, T/Tp⊗A Λ∗Q,A(ε−1
Q ))⊗ΛQ

ΛQ/IQ)Gp = 0, then restriction yields
an isomorphism

SelΣQ(T )
∼→ SelΣQ∞(T )ΓQ

and even an isomorphism

SelΣK(T )
∼→ SelΣK+

∞
(T )Γ+

K .

if there is no non-trivial A-subquotient of T ∗ on which GK acts trivially.

Proof. Let S = Σ ∪ {p}. Arguing as in the proof of Proposition 3.2.8 establishes

H1(GQ∞,S , T ⊗A A∗)
∼→ H1(GQ,S , T ⊗A Λ∗Q,A(ε−1

Q ))[IQ].

On the other hand, the exact sequence

0→ A∗ ↪→ Λ∗Q,A
×(γ−1)−→ Λ∗Q,A → 0

yields an exact sequence

(H0(Ip, T/Tp ⊗A Λ∗Q,A(ε−1
Q ))⊗ΛQ

ΛQ/IQ)Gp ↪→ H1(Ip,T/Tp ⊗A A∗)Gp

→ H1(Ip, T/Tp ⊗A Λ∗Q,A(ε−1
Q ))Gp .

We deduce from this that there is an exact sequence

SelΣQ(T ) ↪→ SelΣQ(T ⊗A ΛQ,A(ε−1
Q ))[IQ]→ H0(Ip, T/Tp ⊗A Λ∗Q,A(ε−1

Q ))⊗ΛQ
ΛQ/IQ)Gp ,

where the first map is induced from the inclusion A ↪→ ΛQ,A and, by Proposition 3.2.3,

is identified with the restriction map SelΣQ(T ) → SelΣQ∞(T )ΓQ . These arguments are

easily adapted to apply to SelΣK(T )→ SelΣK+
∞

(T )Γ+
K .
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3.2.14. Relaxing the ramification. Let T and A be as in 3.2.2.

Lemma 3.2.15. Suppose F is a number field an v - p a place of F at which T is
unramified. Suppose also that A is noetherian and normal. Then

CharA((H1(Iv, T ⊗A A∗)GF,v)∗) = (detA(1− q−1
v frob−1

v |T )).

Here qv is the order of the residue field of v. The lemma is immediate from the hypotheses
on T and v. As an immediate consequence of the lemma we have

Corollary 3.2.16. Suppose F is a number field and S is a finite set of places of F not
dividing p and such that T is unramified at all v ∈ S. Let Σ be any finite set of places
containing S. Suppose also that A is noetherian and normal. Then

ChΣ
F,A(T ) ⊇ ChΣ/S

F,A (T ) · (
∏
v∈S

detA(1− q−1
v frob−1

v |T )).

The relationship between the Selmer groups SelΣQ∞(T ) as Σ varies has been analyzed by

Greenberg and Vatsal in more detail in the second section of [GV00]. Before explaining
their results, we introduce some notation. Let A be a profinite Zp-algebra. For any finite
set of primes Σ and any compact A[GF ]-module M , we put

H1
Σ(F,M) :=

∏
v∈ΣF ,v-p,v

H1(GF,v,M),

where ΣF is the set of places of F over those in Σ.

Let T and A be as in 3.2.2. Let ` be a prime. As explained in 3.1.2, there is an
isomorphism

H1(GQ,`,HomZ(Z[Gal(Qn/Q), T ⊗A A∗))
∼→
∏
w|`

H1(GQn,w, T ⊗A A∗).

Taking the inductive limit over n yields an isomorphism

H1(GQ,`, T ⊗A Λ∗Q,A(ε−1
Q ))

∼→
∏
w|`

H1(GQ∞,w, T ⊗A A∗).

In particular, there is a ΛQ,A-isomorphism

H1
Σ(Q, T ⊗A Λ∗Q,A(ε−1

Q ))
∼→ H1

Σ(Q∞, T ⊗A A∗).

Lemma 3.2.17. Let Σ be a finite set of primes.

(i) H1
Σ(Q∞, T ⊗A A∗)∗ is a finitely generated torsion ΛQ,A-module having no non-

trivial pseudo-null ΛQ,A-submodules.
(ii) If A is noetherian and normal, then the characteristic ideal of H1

Σ(Q∞, T ⊗AA∗)
is the ideal generated by ∏

`∈Σ

PT,`(`
−1εQ(frob`)),
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where PT,`(X) := detFA(1 − X · frob−1
` ; (T ⊗A FA)I`) with FA the total ring of

fractions of A.

Proof. The first part follows from a simple computation and actually holds even if we
assume only that T is finitely generated over A. The second part follows from a simple
adaptation of the proof of Proposition 2.4 in [GV00].

Proposition 3.2.18. Let (T, Tp) and A be as in 3.2.2. Suppose A has a decreasing
sequence of ideals A ⊇ I1 ⊇ I2 ⊇ · · · such that ∩∞n=1In = 0 and each A/In is a free
Zp-module of finite rank. Suppose also that XQ∞,A(T, Tp) is a torsion ΛQ,A-module and
there are no nontrivial A-submodules of T ∗ on which GQ acts trivially. Suppose Σ∪{p}
contains all primes at which T is ramified. For any finite sets of primes Σ′ ⊂ Σ there is
an exact sequence of ΛQ,A-modules

0→ SelΣ
′

Q∞(T, Tp) ↪→ SelΣQ∞(T, Tp)
res→ H1

Σ/Σ′(Q∞, T ⊗A A
∗)→ 0,

and hence a dual exact sequence of ΛQ,A-modules

0→ H1
Σ/Σ′(Q∞, T ⊗A A

∗)∗ → XΣ
Q∞(T, Tp)→ XΣ′

Q∞(T, Tp)→ 0.

Proof. When A is the ring of integers of a finite extension of Qp, this is just Corollary
2.3 of [GV00], proved by a Poitou-Tate duality argument. The general case follows

from this one. Clearly we just need to show that SelΣQ∞(T, Tp)
res→ H1

Σ/Σ′(Q∞, T ⊗A A
∗)

is surjective. But by Proposition 3.2.8, SelQ∞(T/In) = SelQ∞(T )[In], and these are
torsion ΛQ,A/In-modules. Appealing to the case of the proposition proved in [GV00]
(with Zp in place of A) gives a surjection

SelΣQ∞(T )[In]
res→ H1

Σ(Q∞, T ⊗A A∗[In])→ 0

from which the desired surjection follows upon taking the direct limit over n.

3.3. Selmer groups and modular forms. In this section we introduce the Selmer
groups for ordinary modular forms. We begin by recalling some of the standard defini-
tions and results for modular forms.

3.3.1. Elliptic modular forms. For positive integers N and k we let Sk(N) and Mk(N)
denote the space of cusp forms and modular forms, respectively, of weight k for the
congruence subgroups Γ1(N). For a Dirichlet character χ modulo N we let Sk(N,χ) and
Mk(N,χ) be the respective subspaces of Sk(N) and Mk(N) of forms with Nebentypus
χ. For f ∈Mk(N) we write its Fourier expansion (q-expansion) at the infinite cusp as

f(τ) =

∞∑
n=0

a(n, f)qn, q = e2πiτ ,

where τ is an element of the upper half-plane h. For a subring A ⊂ C (resp. a subring
A ⊂ C containing the values of χ) we let Sk(N ;A) and Mk(N ;A) (resp. Sk(N,χ;A) and
Mk(N,χ;A)) be the submodules consisting of forms with q-expansion coefficients in A.



28 CHRISTOPHER SKINNER AND ERIC URBAN

Recalling that we have identified Qp with C this defines modules Sk(N ;A), Mk(N ;A),

Sk(N,χ;A), and Mk(N,χ;A) for subrings A ⊆ Qp.

For a holomorphic function f : h → C and γ =
(
a b
c d

)
∈ SL2(R), we define f |kγ as

usual by (f |kγ)(τ) := (cτ + d)−kf(aτ+b
cτ+d). (So if f ∈ Sk(N,χ), then f |kγ = χ(d)f for all

γ ∈ Γ0(N).)

Recall that there is an action of the Hecke algebra h(N) of level N on the spaces
Sk(N ;A), Mk(N ;A), Sk(N,χ;A), and Mk(N,χ;A). The ring h(N) is generated over Z
by the so-denoted T (n)-operators and the diamond operators 〈c〉 for (c,N) = 1; when n
is a prime T (n) is the double coset Γ1(N) ( 1 0

0 n ) Γ1(N) and 〈c〉 = σc where σc ∈ SL2(Z)
is such that σc ≡

(
c−1 0
0 c

)
mod N . If f ∈ Sk(N,χ;A) then f |k〈c〉 = f |kσc = χ(c)f .

3.3.2. Eigenforms. Let f ∈ Sk(N) be a normalized eigenform for the action of h(N).
Here ‘normalized’ means a(1, f) = 1 (so f |kT (n) = a(n, f)f). Let Nf be the conductor
of f (i.e., the level of the associated newform) and let χf be the Nebentypus of f (the
unique character mod Nf such that f |k〈c〉 = χf (c)f for all c ∈ Z such that (c,N) = 1).
The coefficients a(n, f) generate a finite extension of Q that we denote by Q(f). We
let Z(f) be the ring of integers of Q(f). Let λf : h(N) → Z(f) be the homomorphism
associated with f ; λf is characterized by λf (T (n)) = a(n, f).

3.3.3. Periods of eigenforms. Let f ∈ Sk(N), k ≥ 2, be a normalized eigenform. We
recall the definition of the periods of f that we will use to define the p-adic L-function
of f .

Recall that the Eichler-Shimura map

Per : Sk(N)→ H1(Γ1(N),Symk−2(C2))

is defined by putting Per(g) equal to the class of the cocycle

γ 7→
∫ γ(τ)

τ
g(z)(zk−1, zk−1, . . . , 1)dz,

where the integration is over any path between τ and γ(τ). This map is h(N)-invariant.

Let Z(f)(p) := Q(f) ∩ ι−1
p (Zp) and let

M(f)(p) := H1(Γ1(N), Symk−2(Z(f)(p)))[λf ].

Suppose N = Nf . Then M(f)(p) is free of rank 2 over Z(f)(p), and via the inclusion

Z(f)(p) ⊂ C we can view M(f)(p) as a submodule of H1(Γ1(N),Symk−2(C2)) that

spans the two-dimensional C-space H1(Γ1(N),Symk−2(C2))[λf ]. We fix a Z(f)(p)-basis

(γ+, γ−) such that (γ±)ι = ±γ±, where ι is the involution associated with the conjugation
action of

(
1 0
0 −1

)
on H1(Γ1(N),Symk−2(C2)). We define the periods Ω±f ∈ C× of f by

Per(f) = Ω+
f γ

+ + Ω−f γ
−.

These periods are well-defined up to units in Z(f)(p).
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3.3.4. Galois representations for eigenforms. Let f ∈ Sk(N), k ≥ 2, be a normalized
eigenform. We fix L ⊂ Qp a finite extension of Qp containing Q(f). Let OL be the ring
of integers of L and FL its residue field. As proved by Eichler, Shimura, and Deligne,
there exists a continuous semisimple Galois representation (ρf , Vf ) over L with Vf a
two-dimensional L-space and

ρf : GQ → GLL(Vf )

a continuous homomorphism, characterized by being unramified at primes ` - pNf and
the property that

tr ρf (frob`) = a(`, f), ` - pN.
This representation is irreducible and satisfies

det ρf = σχf ε
1−k.

In particular, det ρf (c) = −1.

By the continuity of ρf there exist GQ-stable OL-lattices in Vf . Let Tf ⊂ Vf be such

a lattice and let T f := Tf ⊗OL FL. Then T f has an induced continuous FL-linear

GQ-action; we denote the corresponding homomorphism GQ → GLFL(T f ) by ρ̄f . We
distinguish the following case:

(irred) the representation ρ̄f is irreducible.

When this is the case for one choice of Tf then it is true for all choices of Tf and the
resulting FL-representations are isomorphic.

3.3.5. p-ordinary eigenforms. Recall that an eigenform of level divisible by p is said to
be ordinary at p (or just ‘ordinary’ since p is fixed) if

(ord) a(p, f) is a unit in Zp.

We will say that an ordinary eigenform f of level Npr, p - N , is a p-stabilized newform
if either Nf = Npr or Nf = N and r = 1.

When the condition (ord) holds, the Galois representation (ρf , Vf ) restricted to Gp
contains a Gp-stable L-line V +

f ⊂ Vf such that the action of Gp on V +
f is given by

the unramified character whose value on frobp is a(p, f). Then Ip acts on the quotient

V −f := Vf/V
+
f by σχf ε

1−k. Let ψ±p denote the O×L -valued character giving the action of

Gp on V ±f . We distinguish the following situation:

(dist) ψ+
p and ψ−p are distinct modulo the maximal ideal of OL.

3.3.6. Selmer groups attached to ordinary eigenforms. Let f ∈ Sk(N), k ≥ 2, be an
ordinary normalized eigenform. Let L ⊂ Qp be a finite extension of Qp containing Q(f).
Let (ρf , Vf ) be the Galois representation associated with f as above. Fix Tf ⊂ Vf a GQ-

stable OL-lattice and let T+
f := Tf ∩ V +

f . Let T := Tf (det ρ−1
f ) and T+ := T+

f (det ρ−1
f ).

Let F = Q, K, Q∞, K∞, or K±∞ and let ξ be a continuous O×L -valued character of GF .
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We define the Selmer groups and dual Selmer groups associated with f and ξ as follows.
For any finite set of primes Σ we set

SelΣF,L(f, ξ) := SelΣF (T ⊗ ξ, T+ ⊗ ξ) and XΣ
F,L(f, ξ) := XΣ

F (T ⊗ ξ, T+ ⊗ ξ).

A priori these groups depend on the choice of Tf . However, if (irred) holds, then any two
such lattices are homothetic and so their corresponding Selmer groups are isomorphic as
ΛF,OL-modules. In general, for different choices of lattices these modules only differ in
their support at primes above p.

For F = Q∞, K∞, or K±∞ we put

ChΣ
F,L(f, ξ) := ChΣ

F,OL
(T ⊗ ξ, T+ ⊗ ξ) and FtΣF,L(f, ξ) := FtΣF,OL(T ⊗ ξ, T+ ⊗ ξ).

When Σ ⊆ {p} or ξ is trivial, then we drop it from our notation.

The following is an important fact about these Selmer groups. Its proof is due to Kato
(see [Ka04, Thm. 17.4(1)]).

Theorem 3.3.7 (Kato). For f as above with p - Nf , the dual Selmer groups XΣ
Q∞

(f, ξ)
are torsion ΛQ,OL-modules.

3.3.8. Some p-adic deformations of characters. For F = Q or K let ΨF : A×F /F
× → Λ×F

be ΨF := εF ◦ recF . We similarly define Ψ±K : A×K/K× → Zp[[Gal(K±∞/K)]]× = Λ±,×K via

the projection Γ±K
∼→ Gal(K±∞/K).

For an indeterminate W we let ΛW := Zp[[W ]], and for any Zp-algebra A we let ΛW,A :=

A[[W ]]. We can identify ΛW with ΛQ (resp. Λ+
K) by indentifying γ (resp. γ+) with 1+W .

Via this identification ΨQ (resp. Ψ+
K) defines a homomorphism ΨW : A×/Q× → Λ×W

(resp. Ψ+
W : A×K/K× → Λ×W ) and εQ defines a homomorphism εW : GQ → Λ×W .

If φ : ΛW → Qp is a Zp-homomorphism such that φ(1 + W ) = ζ(1 + p)k with k an

integer and ζ a primitive prth root of unity, then xk∞x
−k
p (φ ◦ ΨW )(x) = χζω

−k(x)|x|kQ,
where χζ is the unique idele class character of p-power order and conductor such that

χζ,p(1 + p) = ζ. Also, φ ◦ εW = χζω
−kεk.

3.3.9. Arithmetic homomorphisms. Let A be a finite integral extension of Zp in Qp.

Given a topological A-algebra R we let XR,A := HomcontA−alg(R,Qp). If A = Zp then
we just write XR for XR,A. Given r ∈ R and φ ∈ XR we put r(φ) := φ(r). We put
XW,A := XΛW,A,A and XF,A := XΛF,A,A for F = Q or K.

Recall that φ ∈ XΛW is called arithmetic if φ(1 + W ) = ζ(1 + p)k−2 for some p-power
root of unity ζ and some integer k. The integer k is called the weight of φ and denoted
kφ. We let tφ > 0 be the integer such that ζ is a primitive ptφ−1th root of unity; we
sometimes call this the level of φ. We let χφ := χζ−1 with χζ−1 as in 3.3.8.

Let I be a local reduced finite integral extension of ΛW,A. We let

X aI,A := {φ ∈ XI,A : φ|ΛW is arithmetic, kφ|ΛW ≥ 2}.
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Given φ ∈ X aI,A we write kφ, tφ, and χφ for the weight, level, and character of φ|ΛW .

The identification of ΛQ and Λ+
K with ΛW defines a notion of arithmetic homomor-

phisms φ in XΛQ
and XΛ+

K
, with corresponding weights kφ, levels tφ, and characters

χφ.

3.3.10. Hida families. Let χ be an even Dirichlet character modulo Np, p - N . Let I be a
local reduced finite integral extension of ΛW,Zp[χ]. Recall that an I-adic elliptic modular

form of tame level N and character χ is a q-expansion f =
∑∞

n=0 a(n)qn ∈ I[[q]] such that
for all φ ∈ X aI,Zp[χ],

fφ =

∞∑
n=0

φ(a(n))qn ∈Mkφ(Nptφ , χωkφ−2χφ;φ(I)).

If fφ is always an eigenform (resp. cusp form, p-stabilized newform) then we say f is an
I-adic eigenform (resp. cusp form, newform). Similarly, if fφ is always ordinary then we
say f is an ordinary I-adic modular form.

Given an I-adic form f we will write χf for the associated tame character χ; this is
called the Nebentypus of f . We will also write a(n, f) for the coefficient of qn in the
series defining f .

3.3.11. Selmer groups for Hida families. Let f be an I-adic cusp eigenform (so in partic-
ular, I is a local reduced finite integral extension of ΛW,Zp[χf ]). Assume that

(irred)f ρfφ satisfies (irred) for some (hence all) φ ∈ X aI,Zp[χf ].

From the theory of pseudo-representations it then follows that there exists a continuous
I-linear Galois representation (ρf , Tf ) with Tf a free I-module of rank two and ρf : GQ →
GLI(Tf ) a continuous representation characterized by the property that ρf is unramified
at all primes ` - Np and satisfies

traceρf (frob`) = a(`, f), ` - Np,

and

det ρf = σχf
ε−1ε−1

W .

The induced GQ-action on Tf ⊗I φ(I) is isomorphic to ρfφ (possibly after extension of
scalars).

Let Vf = Tf ⊗I FI, where FI is the ring of fractions of I. If f is ordinary, then one can
use the corresponding property for each ρfφ to deduce the existence of a FI-line V +

f ⊂ Vf
which is stable under the action of Gp and on which Gp acts via the unramified character
δf characterized by δf (frobp) = a(p, f). The action of Gp on V −f := Vf/V

+
f is then via

δ−1
f det ρf . The condition (dist) for some (hence all) ρfφ is equivalent to

(dist)f δ2
f 6≡ σχf

ω−1 mod mI,
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where mI is the maximal ideal of I. If (dist)f holds, then T+
f := Tf ∩ V +

f is a free
I-summand of Tf of rank one.

Assuming that (dist)f holds, for any finite set of primes Σ and for F = Q∞, K∞, or
K±∞ we put

SelΣF (f) := SelΣF (Tf (det ρ−1
f ), T+

f (det ρ−1
f )) and XΣ

F (f) := SelΣF (Tf (det ρ−1
f ), T+

f (det ρ−1
f )).

We also put

ChΣ
F (f) := ChΣ

F,I(Tf (det ρ−1
f ), T+

f (det ρ−1
f )) and FtΣF (f) := FtΣF,I(Tf (det ρ−1

f ), T+
f (det ρ−1

f )),

recalling that ChΣ
F (f) has only been defined if I is normal (so ΛK,I is a noetherian normal

domain).

3.3.12. Relating SelΣF (f) to SelΣF,L(fφ). Assume (irred)f and (dist)f hold. Let φ ∈
X aI,Z[χf ] be an arithmetic homomorphism. Let L ⊆ Qp be any finite extension of Qp

containing φ(I) (and hence Q(fφ)). There is a GQ-isomorphism Tfφ
∼= Tf ⊗I,φ OL which

when restricted to Gp determines a Gp-isomorphism T+
fφ
∼= T+

f ⊗I,p OL. Here we have

written ⊗I,φ to emphasize that OL is being considered as an I-module via φ. Let pφ :=
kerφ. If Σ ∪ {p} contains all the primes dividing Np, then for F = Q∞, K∞, or K+

∞
there are isomorphisms

(3.3.12.a) SelΣF (f)[pφ]⊗I,φ OL = SelΣF (Tf/pφTf (det ρ−1
f ))⊗I,φ OL ∼= SelΣF,L(fφ)

and

(3.3.12.b) XΣ
F,L(fφ) ∼= XΣ

F (Tf/pφTf (det ρ−1
f ))⊗I,φ OL = (XΣ

F (f)/pφX
Σ
F (f))⊗I,φ OL.

If F = Q∞ (resp. F = K∞ or K+
∞) these are isomorphisms of ΛQ,I-modules (resp

ΛK,I- or Λ+
K,I-modules). In (3.3.12.a) and (3.3.12.b) respectively, the first and second

identifications follow from Proposition 3.2.8.

Lemma 3.3.13. Let f be an I-adic ordinary eigenform for which (dist)f and (irred)f
hold. Then for F = Q or K, XΣ

F∞
(f) is a torsion ΛF,I-module.

Proof. It is sufficient to prove the lemma under the hypothesis that Σ contains all the
primes dividing Np.

Let φ ∈ X aI,Zp[χf ] be such that p - Nfφ (there are infinitely many such φ) and L ⊂ Qp

containing φ(I). As XΣ
Q∞,L

(fφ) is a torsion ΛQ,OL-module, it follows from (3.3.12.b) that

XΣ
Q∞

(f) is a torsion ΛQ,I-module. The case F = K follows from the case F = Q and
Proposition 3.2.11 and Lemma 3.2.5.
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3.3.14. Relating SelΣQ∞,L(f) to SelΣQ,L(f). Let f ∈ Sk(N), k ≥ 2, be an ordinary nor-

malized eigenform. Let L ⊂ Qp be a finite extension of Qp containing Q(f). Assume
that (irred) and (ord) hold for f and let Σ be a finite set of primes containing all those
dividing pNf . Let ζ be a pth-power root of unity and 0 ≤ m ≤ k − 2 an integer. Let
φ : ΛQ,OL → OL[ζ] the homomorphism sending γ to ζ(1+p)m and let pφ be the kernel of

φ. Let Tf ⊂ Vf be a GQ-stable OL-lattice and let T = (Tf ⊗OLOL[ζ])(det ρ−1
f χφω

mε−m)

and T+ = (T+
f ⊗OL OL[ζ])(det ρ−1

f χφω
mε−m). Then by Proposition 3.2.13 the cokernel

of the restriction map

SelΣQ,L[ζ](f, χφω
mε−m) = SelΣQ(T, T+) ↪→ (SelΣQ∞(f)⊗ΛOL

ΛOL[ζ])[pφ] = SelΣQ∞(T )ΓQ

injects into (H0(Ip, T ⊗OL[ζ] Λ∗OL[ζ](ε
−1
Q )⊗ΛOL[ζ]

OL[ζ])Gp , which vanishes unless m = 1

and ζ = 1, in which case it is isomorphic to 1
a(p,f)−1OL/OL. This proves the following

lemma.

Lemma 3.3.15. With the notation and hypotheses as above

(i) If m 6= 1 or ζ 6= 1 then

(3.3.15.a) SelΣQ,L[ζ](f, χφω
mε−m) = (SelΣQ∞,L(f)⊗ΛOL

ΛOL[ζ])[pφ],

and therefore

(3.3.15.b) XΣ
Q,L[ζ](f, χφω

mε−m) = XΣ
Q∞,L(f)⊗ΛOL

ΛOL[ζ]/pφ(XΣ
Q∞,L(f)⊗ΛOL

ΛOL[ζ]).

(ii) If m = 1 and ζ = 1 then there are exact sequences

(3.3.15.c) 0→ SelΣQ,L](f)→ (SelΣQ∞,L(f)[pφ]→ 1

a(p, f)− 1
OL/OL

and

(3.3.15.d) OL/(a(p, f)− 1)OL → XΣ
Q∞,L(f)/pφX

Σ
Q∞,L(f)→ XΣ

Q,L(f)→ 0.

3.3.16. No pseudo-null submodules. Some of the most arithmetically interesting conse-
quences of main conjectures occur when the dual Selmer groups do not have non-zero
pseudo-null submodules (non-zero submodules whose localizations at each height one
prime are zero). Greenberg [GSel] has identified conditions under which this can hold
for very general Selmer groups. The results in this section should be viewed as special
cases of Greenberg’s.

Let f ∈ Sk(N), k ≥ 2, be an ordinary p-stabilized eigenform. Let L ⊂ Qp be a finite
extension of Qp containing Q(f) and let OL be the ring of integers of L. Assume that
(irred) and (ord) hold for f . Let Σ be a finite set of primes of Q containing all those
that divide pNf .

Let Tf ⊂ Vf be a GQ-stable OL-lattice and T+
f ⊂ Tf the unramified rank one Gp-

stable OL-summand. Let T := Tf (det ρ−1
f ) and T+ := T+

f (det ρ−1
f ). Put M :=

T ⊗OL Λ∗Q,OL(ε−1
Q ), M+ := T+ ⊗OL Λ∗Q,OL(ε−1

Q ), and M− := M/M+. Given an element

0 6= x ∈ ΛQ,OL we put Tx := HomOL(L/OL,M [x]), T±x := HomOL(L/OL,M
±[x]), Vx :=
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HomOL(L,M [x]), and V ±x := Hom(L,M±[x]). Then Vx/Tx
∼→ M [x] and V ±x /T

±
x
∼→ M±[x]

are isomorphisms of GΣ := GQ,Σ-modules.

Lemma 3.3.17. Let x = γ − (1 + p)m ∈ ΛQ,OL with 0 6= m ∈ Z. Then

H1(Ip,M
−)Gp [x] = H1(Ip,M

−[x])Gp ∼= L/OL.

Proof. Since m 6= 0, H1(Ip,M
−[x]) = H1(Ip,M)[x]. Let m be the maximal ideal of

ΛQ,OL . By local duality H2(Qp,M
−[m]) is dual to H0(Qp,M

−[m]∗(1)), and the latter is
zero since M−[m]∗(1) is ramified at p. It follows that H1(Qp,M

−[x]) is divisible (since
m = (x,$L) with $L a uniformizer of L). By the local Euler characteristic formula
dimLH

1(Qp, V
−
x ) = 1 + dimLH

0(Qp, V
−
x ) + dimLH

0(Qp, (V
−
x )∨(1)) = 1, from which

it follows that H1(Qp,M
−[x]) ∼= L/OL. Since M−[x]Ip is finite, it then follows that

H1(Ip,M
−[x])Gp ∼= L/OL.

Lemma 3.3.18. Suppose XΣ
Q∞,L

(f) is a torsion ΛQ,OL-module. Then for all but finitely

many x = γ − (1 + p)m ∈ ΛQ,OL, m ∈ Z:

(i) H1(GΣ,M [x]) � H1(Ip,M
−[x])Gp;

(ii) X1(Σ, T∨x (1)) = 0;
(iii) H2(GΣ,M [x]) = X2(Σ,M [x]) = 0;
(iv) H1(GΣ,M)/xH1(GΣ,M) = 0.

Recall that Xi(Σ, ·) := ker{H i(GΣ, ·)→
∏
v∈ΣH

1(Qv, ·)}. Also, T∨x := HomOL(Tx, OL).

Proof. By Tate-Poitou duality

dimLH
1(GΣ, Vx) = dimLX

1(Σ, V ∨x (1)) + dimLH
0(GΣ, Vx)− dimLH

0(GΣ, V
∨
x (1))

− dimLH
0(R, Vx) +

∑
v∈Σ

dimLH
0(Qv, V

∨
x (1)) + dimL Vx.

As H0(GΣ, Vx) = 0 = H0(GΣ, V
∨
x (1)), dimLH

0(R, Vx) = 1, and H0(Qv, V
∨
x (1)) = 0 for

all but finitely many x, it follows that

(3.3.18.a) dimLH
1(GΣ, Vx) = dimLX1(Σ, V ∨x (1)) + 1

for all but finitely many x. On the other hand, letting H1
ord(GΣ, Vx) be the kernel of the

restriction map H1(GΣ, Vx)→ H1(Ip, V
−
x )Gp and Imx its image, we also have that

dimLH
1(GΣ, Vx) = dimLH

1
ord(GΣ, Vx) + dimL Imx.

Since XΣ
Q∞,L

(f) is a torsion ΛQ,OL-module, SelΣQ∞,L(f)[x] = ker{H1(GΣ,M [x]) →
H1(Ip,M

−)Gp [x]} is finite for all but finitely many x, and hence H1
ord(GΣ, Vx) = 0

for all but finitely many x. In particular, for all but finitely many x

(3.3.18.b) dimLH
1(GΣ, Vx) = dimL Imx.

From Lemma 3.3.17 it follows that dimL Imx ≤ 1. Combining this with (3.3.18.a) and
(3.3.18.b) yields

dimLH
1(GΣ, Vx) = dimL Imx = 1 and dimLX1(Σ, V ∨x (1)) = 0
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for all but finitely many x. Part (i) of the lemma then follows from Lemma 3.3.17 and the
first equality. Part (ii) follows from the second equality and the fact that X1(Σ, T∨x (1))
is torsion-free (which follows from (irred)) with OL-rank equal to dimLX1(Σ, V ∨x (1)).

Since H2(Qv,M [x]) is dual to H1(Qv, T
∨
x (1)) and the latter is zero for all but finitely

many x, it follows that for all but finitely many x, H2(GΣ,M [x]) = X2(Σ,M [x]). But
by global duality X2(Σ,M [x]) is dual to X1(Σ, T∨x (1)), which is zero for all but finitely
many x by (ii). This proves (iii). Part (iv) follows easily from part (iii).

Proposition 3.3.19. Let f ∈ Sk(N), k ≥ 2, be an ordinary p-stabilized eigenform. Let
L ⊂ Qp be a finite extension of Qp containing Q(f). Assume that (irred) and (ord)
hold for f . Let Σ be a finite set of primes of Q containing all those that divide pNf .

If XΣ
Q∞,L

(f) is a torsion ΛQ,OL-module, then XΣ
Q∞,L

(f) has no non-zero pseudo-null
ΛQ,OL-submodules.

Proof. The dual Selmer group XΣ
Q∞,L

(f) has no non-zero pseudo-null ΛQ,OL-submodule

if and only if the Selmer group SelΣQ∞,L(f) has no non-zero finite ΛQ,OL-quotient. We
will prove the latter under the hypotheses of the proposition.

Let Im denote the image of the restriction map H1(GΣ,M) → H1(Ip,M
−)Gp , the

kernel of which is SelΣQ∞,L(f). Let x ∈ ΛQ,OL be as in Lemmas 3.3.17 and 3.3.18

(so in particular such that (i)-(iv) of Lemma 3.3.18 hold for x). Then the image of
H1(GΣ,M [x]) = H1(GΣ,M)[x] in H1(Ip,M

−[x])Gp = H1(Ip,M
−)Gp [x] is contained

in Im[x] but is also everything by part (i) of Lemma 3.3.18, so the restriction map
H1(Ip,M)[x]→ Im[x] is surjective. Multiplying the short exact sequence

0→ SelΣQ∞,L(f)→ H1(GΣ,M)→ Im→ 0

by x, we deduce from the preceding surjection and the snake lemma that there is an
injection

SelΣQ∞,L(f)/xSelΣQ∞,L(f) ↪→ H1(GΣ,M)/xH1(GΣ,M).

The right-hand side is zero by part (iv) of Lemma 3.3.18, hence the left-hand side
is zero. If N is a finite ΛQ,OL-quotient of SelΣQ∞,L(f), then N/xN is a quotient of

SelΣQ∞,L(f)/xSelΣ(Q∞, L)(f) and hence zero. It then follows from Nakayama’s Lemma
that N , being finite, is zero.

When combined with Lemma 3.3.15 this proposition yields the following.

Corollary 3.3.20. In the notation of 3.3.14 and under the hypotheses of Proposition
3.3.19:

(i) If m 6= 1 of ζ 6= 1, then

#XΣ
Q,L[ζ](f, χφω

mε−m) = #ΛQ,OL[ζ]/(pφ, Ch
Σ
Q∞,L(f)).

(ii) If m = 1 and ζ = 1, then

#XΣ
Q,L(f)|#ΛQ,OL/(pφ, Ch

Σ
Q∞,L(f))|#XΣ

Q,L(f) ·#OL/(a(p, f)− 1)OL.
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In particular, if a(p, f)−1 is a unit then #XΣ
Q,L(f) = #ΛQ,OL/(γ−1, ChΣ

Q∞,L
(f)).

(iii) FtΣQ∞,L(f) = ChΣ
Q∞,L

(f).

Here an equality #A = #B is to be understood to mean that if one side is infinite, then
so is the other. Similary, a division #A|#B always holds if B is infinite and if A is
infinite then so is B.

Proof. It is a standard result in Iwasawa theory that if a finite ΛQ,O[ζ]-module M has
no non-zero psuedo-null submodule, then

#M/xM = #ΛQ,O[ζ]/(x,CharΛQ,OL[ζ]
(M)).

Since pφΛQ,OL[ζ] = (γ − ζ(1 + p)m), parts (i) and (ii) then follow from the proposition
and Lemma 3.3.15. To prove part (iii), we begin with the natural surjection

(3.3.20.a) ΛQ,OL/Ft
Σ
Q∞,L(f) � ΛQ,OL/Ch

Σ
Q∞,L(f).

For a φ as in part (i), tensoring (3.3.20.a) with ⊗ΛQ,OL
ΛQ,OL[ζ] and reducing modulo pφ

yields an isomorphism. Since φ can be chosen such that ΛQ,OL[ζ]/(Ch
Σ
Q∞,L

(f)) has no

pφ-torsion, we conclude easily from this that (3.3.20.a) is an isomorphism (after tensoring
with ΛQ,OL[ζ] and so before tensoring by faithful flatness).

3.4. p-adic L-functions. We now introduce the p-adic L-functions that appear in the
statements of the Iwasawa-Greenberg main conjectures for modular forms.

3.4.1. L-functions of Galois representations. Let F be a number field, L ⊆ Qp a finite
extension of Qp, and ρ : GF → GLL(V ) a continuous homomorphism with V a finite-
dimensional L-space. Recall that for a finite place v - p of F one defines the local
L-function ρ by

Lv(ρ, s) := Pρ,v(q
−s
v )−1

with Pρ,v(X) := det(1−X · frobv;V
Iv) and qv the size of the residue field at v. Assuming

that Pρ,v(X) ∈ Q[X] for all v and that V has weight w for almost all v (i.e., for almost all
v, the inverses of the roots of Pρ,v(X), viewed as elements of C via ι′p, all have absolute

value ≤ qw/2v ) then for any finite set of primes S containing p the product

LSF (ρ, s) :=
∏
v 6∈S

Lv(ρ, s)

converges absolutely for Re(s) > 1 + w/2. When F = Q we drop it from the notation.

3.4.2. L-functions for modular forms. For an eigenform f ∈ Sk(N) we let L(f, s) denote
its usual L-function. Let (ρf , Vf ) be the Galois representation associated with f . Then

ρf satisfies the hypotheses of the preceding section with w = k−1
2 , and if S contains all

the primes dividing Np then LS(ρf , s) = LS(f, s). If f is a newform (resp. a p-stabilized
newform) then the same equality holds for any set S (resp. any set S containing p).
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Let ξ be a finite order Hecke character of K. We let

LSK(f, ξ, s) := LSK(ρf ⊗ σξ, s).

If S contains all the primes that divide NpNm(fξ) then

LSK(f, ξ, s) =
∑
a

ξ(a)a(Nm(a), f)Nm(a)−s,

where the sum is over the integral ideals a of K prime to fξ and the primes in S. If π
is the usual unitary automorphic representation of representation of GL2(A) associated
with f , then

LS(f, s) = LS(π, s− k − 1

2
)

if S contains all primes dividing Np. If BCK(π) denotes the base change of π to a
representation of GL2(AK), then, provided S contains all the primes dividing NpNm(fξ),

LS(BCK(π)⊗ ξ, s− k − 1

2
) = LSK(f, ξ, s).

3.4.3. p-adic L-functions for Dirichlet characters. Let L be a finite extension of Qp and
let OL be its ring of integers. Let χ be an even L-valued Dirichlet character. Let S be
any finite set of primes. It is well known from the work of Kubota-Leopoldt that there
exists a p-adic meromorphic function LSp (s, χ) on Zp, such that for any integer m ≥ 1,
we have

LSp (1−m,χ) = L{p}(1−m,χωm)
∏

`∈S, 6̀=p
(1− χ−1ω−m(`)`−m).

When χ 6= 1 or S contains a prime other than p this function is analytic on Zp, and
when χ is the trivial character and S ⊆ {p} it has a pole of order one at s = 1.

We define HS
χ ∈ ΛQ to be γ−1 if χ is trivial and S ⊆ {p} and otherwise we set HS

χ = 1.

We denote by GSχ the unique element in ΛQ,OL such that for any φ ∈ XQ,OL satisfying
φ(γ) = ζ(1 + p)m with m ≥ 1 an integer and ζ a p-power root of unity,

LSp (1−m,χχφ) =
GSχ(φ)

HS
χ (φ)

.

(Recall that χφ is the Dirichlet character corresponding via the reciprocity map to the
finite order character of ΓQ sending γ to ζ−1.) If S ⊆ {p} then we omit it from our

notation. Recall that G1 ∈ Λ×Q and that if S 6⊆ {p} then

(γ − 1)GS1 ∼
∏

`∈S, 6̀=p
(1−ΨQ,`(`)),

where ∼ denotes equality up to a unit in ΛQ.
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3.4.4. The Manin-Vishik p-adic L-function. Let f ∈ Sk(Np
r, χ;L) be an ordinary p-

stabilized newform, L ⊆ Qp being a finite extension of Qp. Given a primitive OL-valued
Dirichlet character ψ of conductor C prime to p, Amice-Vélu [AV75] and Vishik [Vi76]
(but see also [MTT86]) have constructed a p-adic L-function Lf,ψ ∈ ΛQ,OL such that if
φ ∈ XQ,OL satisfies φ(γ) = ζ(1 + p)m, 0 ≤ m ≤ k − 2, with ζ a primitive ptφ−1th root of
unity, then

Lf,ψ(φ) = ep(φ)
(p
t′φC)m+1m!L(f,ψω−mχ−1

φ ,m+1)

(−2πi)mG(ψω−mχ−1
φ )Ω

sgn((−1)mψ(−1))
f

,

ep(φ) = a(p, f)−tφ
(

1− ω−mχ−1
φ ψ(p)χ(p)pκ−2−m

a(p,f)

)(
1− ωmχφψ̄(p)pm

a(p,f)

)
,

where t′φ = 0 if tφ = 1 and p − 1|m and otherwise t′φ = tφ. Here G(ψω−mχ−1
φ ) is the

usual Gauss sum.

For any finite set S of primes we set

LSf,ψ := Lf,ψ
∏

`∈S, 6̀=p

(
1− a(`, f)`−1ψ(`)ΨQ,`(`) + χ(`)`k−3ψ(`2))ΦQ,`(`

2)
)
.

Then for φ as above

LSf,ψ(φ) = ep(φ)
(pt
′
φC)m+1m!LS/{p}(f, ψω−mχ−1

φ ,m+ 1)

(−2πi)mG(ψω−mχ−1
φ )Ω

sgn((−1)mψ(−1))
f

.

We omit the subscript ψ when ψ is trivial and, of course, drop the superscript S when S ⊆
{p}. If f ⊗ ψ is the ordinary p-stabilized newform associated with

∑∞
n=1 ψ(n)a(n, f)qn

and S contains all the primes dividing NC, then

LSf,ψ ∼ LSf⊗ψ.

3.4.5. A three-variable p-adic L-function. Let L ⊂ Qp be a finite extension of Qp with
integer ring OL, and let I be a domain that is a finite integral local reduced extension
of ΛW,OL . Let f be an I-adic ordinary eigenform of tame level N as above. Without
loss of generality we may suppose that L contains the values of χf . Suppose also that L

contains Q[µNp, i,D
1/2
K ].

Put IK := ΛK,I (so IK = I[[ΓK]]) and let

X aIK,OL := {φ ∈ XIK,OL : φ|I ∈ X aI,Zp[χf ], φ(γ+) = ζ+(1 + p)kφ|I−2, φ(γ−) = ζ−}

with ζ± p-power roots of unity. For φ ∈ X aIK,OL we let kφ, tφ, and χφ denote the

corresponding objects for φ|I. For φ ∈ X aIK,OL put

ξφ := φ ◦ (ΨK/Ψ
+
W ) and θφ := ω2−kφχ−1

φ ξφ.

These are finite-order idele class characters of A×K. Let

X ′IK,OL := {φ ∈ X aIK,OL : p|fχf ξφ , p
tφ |Nm(fχf ξφ), p|fθφ}.
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Let S be a finite set of primes containing all those dividing NpDK. Assume there exists
a finite idele class character ψ of A×K unramified outside S and satisfying ψ|A×Q = χf and

cond(ψp)|p. If (irred)f and (dist)f hold, then there exists LSf ,K ∈ IK such that for any

φ ∈ X ′IK,OL we have

(3.4.5.a)

LSf ,K(φ) = ufφa(p, fφ)
−ordp(Nm(fθφ )) ((kφ − 2)!)2g(θφ)Nm(fθφd)kφ−2LSK(fφ, θφ, kφ − 1)

(−2πi)2kφ−2Ω+
fφ

Ω−fφ
,

where ufφ is a p-adic unit depending only on fφ. This is part (ii) of Theorem 12.3.1: take

LSf ,K := LSf ,K,χf
with the latter as in the theorem. Here g(θφ) is a Gauss sum; see 8.1.3

for a definition.

The kernels of the homomorphisms φ ∈ X ′IK ,OL are Zariski dense in Spec IK, so the

specialization property (3.4.5.a) characterizes LSf ,K.

If S′ ⊇ S, then it is easy to see that

(3.4.5.b) LS′f ,K = LSf ,K ·
∏

v|`∈S′\S

det
IK

(1− q−1
v εKρf (frobv)),

where v is a place of K and qv is the order of its residue field.

Remark. This must be a multiple of the p-adic L-function constructed by Hida [Hi88a,
Thm 5.1d] for λ′ (in the notation of loc. cit.) a particular CM Hida family, but we have
not checked this.

3.4.6. One and two variable specializations of LSf ,K. Let f ∈ Sk(Np
r, χ;L), p - N , be

an ordinary eigenform. Write χ = ωk−2χ1χ2 with χ1 a character modulo Np and χ2 a
character modulo pr of p-power order; this decomposition is unique. Suppose (irred)
and (dist) hold for f . Let

X kK,OL := {φ ∈ XK,OL : φ(γ+) = ζ+(1 + p)k−2, φ(γ−) = ζ−}

with ζ± p-power roots of unity. Given φ ∈ X kK,OL let ξφ : A×K → Q
×
p be defined by

ξφ(x) = χ2(x)|x/x∞|2−kK (xv0xv̄0)2−kφ(ΨK(x)).

This is a finite order idele class character. Put θφ := ω2−kχ−1
2 (x)ξφ. Let

X ′K,OL := {φ ∈ X kK,OL : p|fχ0ξφ , p
tφ |Nm(fχ0ξφ), p|fθφ}.

Under the same hypotheses as in 3.4.5 there exists LSf,K ∈ ΛK,OL such that for φ ∈ X ′K,OL
we have

LSf,K(φ) = ufa(p, f)
−ordp(Nm(fθφ )) ((k − 2)!)2g(θφ)Nm(fθφd)k−2LSK(f, θφ, k − 1)

(−2πi)2k−2Ω+
f Ω−f

,

with uf a p-adic unit depending only on f . This is just part (ii) of Theorem 12.3.2,

where LSf,K is constructed as a specialization of LSf ,K for some f ; since f = fφ0 for some
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I-adic ordinary eigenform f as in 3.4.5 with χf = χ1 and some φ0 ∈ XI,OL with χφ0 = χ2,
we have

LSf,K = (φ0 ⊗ id)(LSf ,K),

where
φ0 ⊗ id : IK = I⊗̂ZpΛK → φ(I)⊗Zp ΛK = ΛK,φ(I)

is the obvious extension of φ0.

Let LS,+f,K be the image of LSf,K under the projection ΛK,OL → ΛQ,OL . It follows easily

that
LS,+f,K = afLSfLSf⊗χK ,

where LSf and LSf⊗χK are the p-adic L-functions from 3.4.4 and af is a p-adic unit (see

Proposition 12.3.4).

3.5. The Main Conjectures. Before recalling the main conjectures whose proofs are
the primary goals of this paper, we recall the theorem of Mazur and Wiles [MW84] which
was the original Main Conjecture of Iwasawa. For the history of this conjecture and its
proof we refer the reader to the original paper of Mazur and Wiles.

Let χ be an even Dirichlet character and L a finite extension of Qp containing Zp[χ].
Let S be a finite set of primes. Let XS

Q∞,L
(χε) := XS

Q∞
(Tχ, T

+
χ ) with Tχ := OL(χε) and

T+
χ = 0 and let ChSQ∞,L(χε) := ChSQ∞(Tχ, T

+
χ ).

Theorem 3.5.1 (Mazur-Wiles). ChSQ∞,L(χε) = (GSχ).

We recall now the Iwasawa-Greenberg main conjectures for the Selmer groups associ-
ated with ordinary modular forms (see [Gr94]). In the case of an ordinary elliptic curve,
the cyclotomic case of this conjecture is due to Mazur [Ma72] but the formulation below
is due to Greenberg.

3.5.2. The three-variable main conjecture. Let L ⊆ Qp be a finite extension of Qp and
let I be a local reduced finite integral extension of ΛW,OL . Let f be an I-adic ordinary
eigenform of tame level N as in 3.3.10. From Lemma 3.3.13, we know that the dual
Selmer group XΣ

K∞(f) is torsion over I[[ΓK]].

Conjecture 3.5.3. Suppose I is a normal domain and S is a finite set of primes. The
ideal ChSK∞(f) is principal and generated by an element LSf ,K ∈ I[[ΓK]] satisfying (3.4.5.a)

for all φ ∈ X ′ΛK,I,OL.

Of course, when L contains Q[µNp, χf , i,D
1/2
K ] and S is a finite set of primes containing

all those dividing NDK then the element LSf ,K would be the three-variable p-adic L-
function so-denoted in 3.4.5.

Recall that in defining the Selmer groups for f and their characteristic ideals, we as-
sumed that (irred)f held, so the choice of the lattice Tf does not introduce any ambiguity
into the statement of this conjecture.
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3.5.4. The main conjecture for p-ordinary eigenforms. Let f ∈ Sk(Npr, χ;L), p - N , be
an ordinary eigenform; here we take L ⊂ Qp a finite extension of Qp. By Theorem 3.3.7

(due to Kato), the dual Selmer group XΣ
Q∞,L

(f) is torsion over ΛQ,OL .

Conjecture 3.5.5. For any finite set of primes Σ, the ideal ChΣ
Q∞,L

(f) is principal and

ChΣ
Q∞,L

(f) = (LΣ
f ) in ΛQ,OL⊗ZpQp, with the equality holding in ΛQ,OL if (irred) holds.

The following result, due to Kato (Theorem 17.14 of [Ka04]), was the first major
breakthrough towards this conjecture.

Theorem 3.5.6 (Kato). Suppose p - Nf . The characteristic ideal ChΣ
Q∞,L

(f) divides

LΣ
f in L⊗OL ΛQ,OL. Furthermore, if there exists an OL-basis of Tf with respect to which

the image of ρf contains SL2(Zp), then the divisibility also holds in ΛQ,OL.

3.6. Main results. We deduce the main results of this paper from the following theo-
rem. This theorem will be proved at the end of §7, assuming the existence of a certain
p-adic Eisenstein family. The existence of this family is then established in the remainder
of this paper (§§8-13).

Theorem 3.6.1. Let L ⊆ Qp be a finite extension of Qp and I a normal domain and a
finite integral extension of ΛW,OL. Let f be an I-adic ordinary eigenform of tame level

N with χf = 1. Assume that L contains Q[µNp, i,D
1/2
K ]. Suppose N = N+N− with

N+ divisible only by primes that split in K and N− divisible only by primes inert in K.
Suppose also

• (irred)f and (dist)f hold;
• N− is square-free and has an odd number of prime factors;
• the reduction ρ̄f of ρf modulo the maximal ideal of I is ramified at all `|N−.

Let Σ be a finite set of primes containing all those that divide NDK. Then

ChΣ
K∞(f) ⊆ (LΣ

f ,K).

Remarks on the hypotheses. We comment on the roles played by the various hypotheses
of this theorem.

(i) The hypotheses on L are present as it is only under such conditions that we prove
the existence of LΣ

f ,K.

(ii) The hypotheses on N and N− and ρ̄f |I` for `|N− are needed because of an appeal
to the work of Vatsal [Va03] (see Proposition 12.3.6).

(iii) The hypothesis that χf = 1 is also needed to appeal to the results of Vatsal but
is also used in the Galois arguments in §7.

(iv) The hypotheses (irred)f and (dist)f are used to conclude the existence of the
I-free representations Tf and T−f and to construct LΣ

f ,K and the Eisenstein family
in 12.4 used in the analysis of the Eisenstein ideal.
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(v) The condition that Σ contains all primes dividing NDK is used in the construc-
tion of LΣ

f ,K and the Eisenstein family; it is also made to avoid any need to appeal
to compatibilities of global Galois representations with the local Langlands cor-
respondence in the Galois arguments in §7.

Corollary 3.6.2. Let f ∈ Sk(Npr, χ;L), k ≥ 2 and L ⊆ Qp a finite extension of Qp,

be a p-ordinary cuspidal eigenform. Assume that L contains Q[µNp, i,D
1/2
K ]. Suppose

N = N+N− with N+ divisible only by primes that split in K and N− divisible only by
primes inert in K. Suppose also

• (irred) and (dist) hold;
• χ = ωk−2χ1 with χ1 of p-power order and conductor;
• N− is square-free and has an odd number of prime factors;
• ρ̄f is ramified at all `|N−.

Let Σ be a finite set of primes containing all those that divide NDK. Then

ChΣ
K∞,L(f) ⊆ (LΣ

f,K).

Proof. Note first that the corollary is true if and only if it is true for some finite extension
of L. Since f can be taken to be a specialization of some I-adic ordinary form f as in
Theorem 3.6.1 after possibly replacing L with a finite extension, this corollary follows
from combining Theorem 3.6.1 with (3.3.12.b) and part (ii) of Corollary 3.2.9 and the
relation between LΣ

f ,K and LΣ
f,K explained in 3.4.6.

Corollary 3.6.3. Let f ∈ Sk(Npr, χ;L), k ≥ 2 and L ⊆ Qp a finite extension of Qp, be
a p-ordinary cuspidal eigenform. Suppose

• (irred) and (dist) hold for ρf ;

• χ = ωk−2χ1 with χ1 of p-power order and conductor;
• N− is square-free and has an odd number of prime factors;
• there exists a prime q 6= p such that q||N and ρ̄f is ramified at q.

Then for any finite set of primes Σ

ChΣ
Q∞,L(f)ChΣ

Q∞,L(f ⊗ χK) ⊆ (LΣ
f LΣ

f⊗χK).

Proof. From the definition of LΣ
f and LΣ

f⊗χK and Lemma 3.2.17 it follows that the corol-

lary is true for Σ if it is true for some Σ′ ⊃ Σ with Σ′ ∪ p containing all primes dividing
NDK. We may therefore assume this for Σ. The corollary then follows from combin-
ing Corollary 3.6.2, Proposition 3.2.11, Lemma 3.2.5, Corollary 3.2.9 and the relation
between LΣ

f,K and LΣ
f LΣ

f⊗χK explained in 3.4.6.
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Combining these results with Kato’s theorem (Theorem 3.5.6) we deduce some cases
of the Iwasawa-Greenberg main conjectures.

Theorem 3.6.4. Let f ∈ Sk(Npr, χ;L), k ≥ 2 and L ⊆ Qp a finite extension of Qp, be
a p-ordinary cuspidal eigenform. Suppose

• χ = 1 and k ≡ 2 mod p− 1;
• (irred) and (dist) hold for ρf ;
• there exists a prime q 6= p such that q||Nf and ρ̄f is ramified at q;
• p - Nf .

Then for any set of primes Σ,

ChΣ
Q∞,L(f) = (LΣ

f )

in ΛQ,OL ⊗Zp Qp. If furthermore

• there exists an OL-basis of Tf with respect to which the image of ρf contains
SL2(Zp),

then the equality holds in ΛQ,OL; that is, the Iwasawa-Greenberg Main Conjecture (Con-
jecture 3.5.5) is true for f .

For the proof of this corollary we allow the field K to depend on f .

Proof. Choose an imaginary quadratic field K in which p splits, all prime divisors of
Nf/q split, and q is inert (so N− = q). Suppose first that Σ contains all primes dividing
pNfDK. By Kato’s Theorem 3.5.6

(LΣ
f ) ⊆ ChΣ

Q∞,L(f) and (LΣ
f⊗χK) ⊆ ChΣ

Q∞,L(f ⊗ χK)

in ΛQ,OL ⊗Zp Qp and even in ΛQ,OL if the image of ρf contains SL2(Zp). If the first of
these is not an equality then we have

(LΣ
f LΣ

f⊗χ) ( ChΣ
Q∞,L(f)ChΣ

Q∞,L(f ⊗ χK),

which contradicts Corollary 3.6.3. Therefore it must be that

(LΣ
f ) = ChΣ

Q∞,L(f).

That this holds for all choices of Σ then follows from Proposition 3.2.18 and Lemma
3.2.17 and the relation between LΣ

f and LΣ′
f for Σ′ ⊂ Σ.

Remarks on the hypotheses.

(i) The hypothesis that p - Nf comes from Kato’s theorem (Theorem 3.5.6). When

combined with the condition χ = ωk−2χ1 from Corollary 3.6.3, this forces the
first listed condition of the theorem.

(ii) The condition that Tf have an OL-basis with respect to which the image of ρf
contains SL2(Zp) also comes from Kato’s theorem.
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Theorem 3.6.5. Let f ∈ Sk(Npr, χ;L), k ≥ 2 and L ⊆ Qp a finite extension of Qp,

be a p-ordinary cuspidal eigenform. Assume that L contains Q[µNp, i,D
1/2
K ]. Suppose

N = N+N− with N+ divisible only by primes that split in K and N− divisible only by
primes inert in K. Suppose also

• χ = 1 and k ≡ 2 mod p− 1;
• (irred) and (dist) hold;
• N− is square-free and has an odd number of prime factors;
• ρ̄f is ramified at all `|N−;
• p - Nf ;
• there exists an OL-basis of Tf with respect to which the image of ρf contains

SL2(Zp).

Then for Σ a finite set of primes containing all those that divide NDK,

FtΣK∞,L(f) = ChΣ
K∞,L(f) = (LΣ

f,K).

Proof. Let A := OL[[ΓK]] and let a ⊂ A be the kernel of the the homomorphism
OL[[ΓK]]→ OL[[ΓQ]] induced by the canonical projection ΓK → ΓQ. Put I := ChΣ

K∞,L(f),

J := FtΣK∞,L(f), and L := LΣ
f,K. By Corollary 3.6.2, J ⊆ I ⊆ (L). We also have

J mod a = FtΣQ∞,L(f)FtΣQ∞,L(f ⊗ χ) by Proposition 3.2.11, and the latter ideal equals

ChΣ
Q∞,L(f)ChΣ

Q∞,L(f ⊗ χ) by Corollary 3.3.20(iii), and this ideal equals (LΣ
f LΣ

f⊗χK) =

(L) mod a by Theorem 3.6.4. The equalities J = I = (L) then follows from Lemma
3.1.7.

Theorem 3.6.6. Let L ⊆ Qp be a finite extension of Qp and I a normal domain and a
finite integral extension of ΛW,OL. Let f be an I-adic ordinary eigenform of tame level

N with χf = 1. Assume that L contains Q[µNp, i,D
1/2
K ]. Suppose N = N+N− with

N+ divisible only by primes that split in K and N− divisible only by primes inert in K.
Suppose also

• (irred)f and (dist)f hold;
• N− is square-free and has an odd number of prime factors;
• the reduction of ρf modulo the maximal ideal of I is ramified at all `|N−;
• there exists an arithmetic homomorphism φ ∈ X aI,OL with φ(1 + W ) = (1 + p)kφ

for some kφ > 2 and p− 1|kφ− 2 and such that Tfφ has an OLφ (where Lφ is the
field of fractions of φ(I)) with respect to which the image of ρfφ contains SL2(Zp).

Let Σ be a finite set of primes containing all those that divide NDK. Then

FtΣK∞,L(f) = ChΣ
K∞,L(f) = (LΣ

f ,K).

That is, the three-variable Iwasawa-Greenberg Main Conjecture (Conjecture 3.5.3) holds.

Proof. It is easy to see that the theorem is true if it is true in the case where φ(I) = OL (by
extending scalars so that this holds). So we assume φ(I) = OL. We then let A := I[[ΓK]]
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and a ⊂ A be the kernel of the homomorphism I[[ΓK]] → OL[ΓK] induced by φ. Put
J := FtΣK∞(f), I := ChΣ

K∞
(f), and L := LΣ

f ,K ∈ A. Then J ⊆ I ⊆ (L) by Theorem 3.6.1.
We also have

J mod a = FtΣK∞(fφ) = (LΣ
fφ,K) = (L) mod a

by (3.3.12.b) and Theorem 3.6.5. That J = I = (L) then follows from Lemma 3.1.7.

3.6.7. Elliptic curves. The Iwasawa-Greenberg main conjectures have many consequences
for relations between special values of L-functions and orders of Selmer groups. Here we
record a few such consequences for elliptic curves.

Let E/Q be an elliptic curve over Q having good ordinary reduction at p. Let TpE
be the p-adic Tate-module of E and let ρE,p : GQ → GLZp(TpE) give the action of

GQ on TpE. The usual p-adic Selmer group of E over Q∞ is just SelQ∞(TpE, T
+
p E),

where TpE
+ ⊂ TpE is the rank-one Zp-summand on which Ip acts via ε. Let FE :=

ChQ∞(TpE, TpE
+).

LetNE be the conductor of E and let f ∈ S2(NE ; Zp) be the weight 2 cuspidal eigenform
of trivial character associated with E (so L(E, s) = L(f, s)); this exists by the modularity
of elliptic curves. Then SelQ∞(E) = SelQ∞,Qp(f) (as Tf (det ρ−1

f ) = TpE), so FE =

ChQ∞,Qp(f). Let LE ∈ ΛQ ⊗Zp Qp be the usual p-adic L-function for E. A prioiri this

is a Q×p -multiple of Lf , and if E[p] is an irreducible GQ-representation, then LE is a
p-adic unit multiple of Lf . The main conjecture for E is the following.

Conjecture 3.6.8. FE is principal and generated by LE.

As a special case of the results of the preceding section, we have the following case of
this conjecture.

Theorem 3.6.9. Assume that

• E has good ordinary reduction at p;
• ρ̄E,p := ρE,p mod p is irreducible;
• there exists a prime q||N , q 6= p such that ρ̄E,p is ramified at q.

Then FE = (LE) in ΛQ ⊗Zp Qp. If the image of ρE,p is surjective, then this equality
holds in ΛQ; that is, the main conjecture holds for E.

We note that the conditions on E in this theorem are always satisfied if E has semistable
reduction and p ≥ 11; in this case ρE,p is even surjective. The surjectivity follows from a
celebrated result of Mazur [Ma78] while the second condition follows easily from a result
of Ribet [Ri91].

Corollary 3.6.10. If E is semistable and p ≥ 11 is a prime of good ordinary reduction,
then the main conjecture holds for E.

For each prime `|NE we write c`(E) for the order of the p-primary part of E(Q`)/E0(Q`),
where E0(Q`) ⊆ E(Q`) is the subgroup of points having nonsingular reduction modulo



46 CHRISTOPHER SKINNER AND ERIC URBAN

`; this is the mazimal power of p that divides the Tamagawa number of E at the prime
`. We denote by X(E/Q)p the p-primary part of the Tate-Shafarevich group of E over
Q (by a theorem of Kolyvagin, this is finite if L(E, 1) 6= 0). Let ΩE be the canonical
period of E.

Theorem 3.6.11. Let E be an elliptic curve over Q with conductor NE. Suppose

• E has good ordinary reduction at p;
• there exists a prime q||NE, q 6= p, such that ρ̄E,p is ramified at q;
• ρ̄E,p is irreducible.

(a) If L(E, 1) 6= 0 and ρ̄E,p is surjective then

(3.6.11.a)

∣∣∣∣L(E, 1)

ΩE

∣∣∣∣−1

p

= #X(E/Q)p ·
∏
`|NE

c`(E).

(b) If L(E, 1) = 0 then the corank of the Selmer group Selp∞(E/Q) is at least one.

Proof. This follows from the equality (Lf ) = (LE) = FE , the interpolation properties of
Lf and LE , and Theorem 4.1 of [Gr99].

Remark. (a) In particular, (3.6.11.a) holds if E is semistable and p ≥ 11 is a prime of
good ordinary reduction.

(b) If the sign of the functional equation of L(E, s) is −1 (i.e., if the order of vanishing
at s = 1 is odd) then the positivity of the corank of Selp∞(E/Q) has been established
without assuming the existence of the prime q or the irreducibility of ρ̄E,p (see [Ne01]
and [SU06]). However, the conclusion of (b) is new for the case when the sign is +1, in
which case it can be strengthened in combination with [Ne01, Thm. A] to conclude that
the corank is at least two.

3.6.12. Orders of other Selmer groups. As a consequence of the main conjectures for
modular forms we can deduce that the orders of various Selmer groups are given by
special values of L-functions. We give some examples here.

Theorem 3.6.13. Let f ∈ Sk(Npr, χ;L), k ≥ 2 and L ⊆ Qp a finite extension of Qp,
be a p-ordinary cuspidal eigenform. Suppose

• χ = 1 and k ≡ 2 mod p− 1;
• (irred) and (dist) hold for ρf ;
• there exists a prime q 6= p such that q||Nf and ρ̄f is ramified at q;
• p - Nf .
• there exists an OL-basis of Tf with respect to which the image of ρf contains

SL2(Zp).

Let Σ be a finite set of primes containing all those that divide pNf , and 0 ≤ m ≤ k − 1
be an integer, and let ζ be a primitive pt−1th-power root of unity ζ. If m 6= 0 or ζ 6= 1
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or a(p, f)− 1 ∈ O×L then

#SelΣQ,L(f, ωmχ−1
ζ ε−m) = #OL/L

Σ
p (f, ω−mχζ ,m+ 1),

where

LΣ
p (f, ω−mχζ ,m+ 1) = a(p, f)−t

(
1−

ω−mχζχ(p)pκ−2−m

a(p, f)

)(
1−

ωmχ−1
ζ (p)pm

a(p, f)

)

×
pt
′(m+1)m!LΣ/{p}(f, ω−mχζ ,m+ 1)

(−2πi)mG(ω−mχζ)Ω
sgn((−1)m

f

with t′ = 0 if t = 1 and p− 1|m and otherwise t′ = t.

Proof. This follows from Theorem 3.6.4 and Corollary 3.3.20.

3.6.14. Other main conjectures. It is clearly possible to consider other one- and two-
variable specializations of LSf ,K.

Anticyclotomic Main Conjectures. Specializing the Hida family to some f = fφ of weight

2 and mapping γ+ to 1 defines an anticyclotomic p-adic L-function in Λ−K,OL and an
anticyclotomic Selmer group. When f corresponds to an elliptic curve, under the hy-
potheses on f in Theorem 3.6.5 this anticyclotomic L-function is easily seen to agree
(up to a p-adic unit) with the p-adic L-function considered by Bertolini and Darmon in
[BD05], and it is relatively straightforward to see that the results of this paper complete
the work of Bertolini-Darmon.

Theorem 3.6.15. In the notation of Theorem 1 of [BD05], the characteristic power
series C is generated by the p-adic L-function Lp(E,K).

We leave the details of these anticyclotomic results to the industrious reader.

Cyclotomic Main Conjectures for Hida families. Setting γ− = 1 yields a cyclotomic
p-adic L-function for a Hida family f . In some cases Ochiai [Och06] has extended Kato’s
theorem (Theorem 3.5.6) to this setting. In combination with the preceding results of
this paper, it is possible to show that in many cases the divisibility in Ochai’s main
theorem is actually an equality (i.e., the cyclotomic main conjecture for the Hida family
is true). As the hypotheses become even more cumbersome, we leave the formulation of
such a result to the interested reader.

4. Constructing coycles

In this section we give an abstract framework which gives rise to groups of extensions of
representations. This is later used to construct subgroups of the Selmer groups defined
in §3.
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4.1. Some notations and conventions. Unless otherwise clear, all rings herein are
assumed commutative and to a have a unit element.

4.1.1. Representations. Let G be a group and C a ring. A C-representation of G is a pair
(V, r) consisting of a finite C-module V and a homomorphism r : G → AutC(V ). This
extends by C-linearity to a homomorphism r : C[G] → EndC(V ) of the group algebra
C[G] of G to the C-algebra of C-endomorphisms of V .

If V = Cn then we will just write r : G → GLn(C) to mean such a representation. If
V ∼= Cn then we can define tr r(x),det r(x) ∈ C for any x ∈ C[G]. In particular we can
define the characteristic polynomial of x

Ch(r, x, T ) := det(id− T · r(x)) ∈ C[T ].

We say that r is defined over a subring B of C if Ch(r, x, T ) ∈ B[T ] for all x ∈ G. In
general, however, this does not mean that r can be viewed as taking values in GLn(B).

4.1.2. Residually disjoint representations. Let (V1, σ1) and (V2, σ2) be C-representations
of a group G with each Vi free over C. Assume both are defined over a local henselian
subring B ⊆ C. We say that σ1 and σ2 are residually disjoint modulo the maximal
ideal mB of B (or just residually disjoint if B is clear) if there exists x ∈ B[G] such
that Ch(σ1, x, T ) modmB and Ch(σ2, x, T ) modmB are relatively prime in κB[T ], where
κB := B/mB.

Lemma 4.1.3. Suppose (V1, σ1) and (V2, σ2) as above are residually disjoint. Then there
exists x1, x2 ∈ B[G] such that for i, j ∈ {1, 2}, xi acts as the identity on Vj if i = j and
annihilates Vj if i 6= j.

Proof. Let x ∈ B[G] be such that Ch(σ1, x, T ) modmB and Ch(σ2, x, T ) modmB are
relatively prime in κB[T ]. By Hensel’s lemma there exist Q1, Q2 ∈ B[T ] such that

Q1(T )Ch(σ1, x, T ) +Q2(T )Ch(σ2, x, T ) = 1.

Put x1 := Q2(x)Ch(σ2, x, x) and x2 := Q1(x)Ch(σ1, x, x). We have x1 + x2 = 1, and for
i 6= j, xi acts trivially on Vj by the Cayley identity.

4.2. The set-up. We now explain the set-up in which we construct extensions.

4.2.1. The rings A and R. Let A be a complete local DVR with fraction field F , maximal
ideal m, and residue field κ := A/m. Let R be a local reduced finite flat A-algebra (so
R is also complete). Then R⊗A F is a product of s finite field extensions of F for some
positive integer s. We denote the maximal ideal of R byM. We assume that R/M = κ.

Only in the following abstract discussion will we use a ‘bar’ to denote reduction modulo
m or M. Given an A-representation (resp. R-representation) (M, r) we let (M/mM, r̄)
(resp. (M/MM, r̄)) to mean the reduction of the representation modulo m (resp. M).
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4.2.2. The groups and their representations. Let H be a group with a decomposition
H = G o {1, c} with c ∈ H an element of order two normalizing G. For any C-
representation (V, r) of G, we write rc for the representation defined by rc(g) = r(cgc)
for all g ∈ G. For a character ξ of G we write ξ−c to mean (ξc)−1. We let r∨ be the
dual representation of r; if V is free over C and we fix an identification V = Cn then
the canonical dual basis of the C-dual of Cn identifies r∨(g) with tr(g−1) for all g ∈ G.

Polarizations. Let θ : G→ GLL(V ) be a representation of G on a vector space V over a
finite extension L of F and let ψ : H → L× be a character. We assume that θ satisfies
the ψ-polarization condition

θc ∼= ψ ⊗ θ∨.
By a ψ-polarization of θ we mean a non-degenerate L-bilinear pairing Φθ : V × V → L
such that

Φθ(θ(g)v, v′) = ψ(g)Φθ(v, θ
c(g−1)v′)

for all g ∈ G and v, v′ ∈ V . We let Φt
θ(v, v

′) := Φθ(v
′, v). This defines another ψ-

polarization. We will say that ψ is compatible with the polarization Φθ if

(4.2.2.a) Φt
θ = −ψ(c)Φθ.

When θ is irreducible a ψ-polarization is unique up to non-zero scalar and it is necessarily
true that Φt

θ = ±Φθ. In this case compatibility of ψ just pins down the sign of ψ(c).

We extend the notions of a ψ-polarization and its compatibility with ψ to the situation
of a free R⊗A F -representation θ : G→ AutR⊗AF (V ), V ∼= (R⊗A F )n, and a character
ψ : H → F× in the obvious way. Clearly, ψ is compatible with the polarization Φθ if and
only if for each F -algebra homomorphism λ : R ⊗A F → L, L a finite extension of F ,
ψ is compatible with the induced polarization of θλ : G → GLn(L), the representation
obtained from θ via λ.

4.2.3. The data. The set-up consists of the following data:

(1) a character ν : H → A×;
(2) a character χ : G→ A× such that χ̄ 6= ν̄χ̄−c; let χ′ := νχ−c;
(3) a representation ρ : G→ AutA(V ), V ∼= An, such that

a. ρc ∼= ρ∨ ⊗ ν,
b. ρ̄ is absolutely irreducible,
c. ρ is residually disjoint from χ and χ′;

(4) a representation σ : G→ AutR⊗AF (M), M ∼= (R⊗A F )m, with m = n+ 2, such
that

a. σc ∼= σ∨ ⊗ ν,
b. tr σ(g) ∈ R for all g ∈ G,
c. for any v ∈M , σ(R[G])v is a finitely-generated R-module;

(5) a proper ideal I ⊂ R such that J := A ∩ I 6= 0, the natural map A/J → R/I is
an isomorphism, and

tr σ(g) ≡ χ′(g) + tr ρ(g) + χ(g) mod I

for all g ∈ G.
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Noting that ρ is irreducible, we also assume that

(4.2.3.a) ν is compatible with ρ

in the sense of 4.2.2.

4.2.4. The pairing Φ. It follows from the assumption 4.2.3.(4a) that there exists a non-
degenerate R⊗A F -linear pairing Φ(−,−) : M ×M → R⊗A F such that

Φ(σ(g)v, v′) = ν(g)Φ(v, σc(g−1)v′)

for all g ∈ G and v, v′ ∈M .

We consider the R-linear involution x 7→ x∗ of R[G] defined by g∗ := cg−1c for g ∈ G
and extended R-linearly to R[G]. We consider also the action σ∗ of R[G] on M defined
by

σ∗(g) = ν(g)−1σ(g)

for g ∈ G and extended R-linearly to an action of R[G]. Then

Φ(σ(x)v, v′) = Φ(v, σ∗(x∗)v′).

4.3. The canonical lattice. Here on we assume that κ = A/m = R/M contains at
least m non-zero elements. In our applications κ will be infinite.

4.3.1. Some projectors. From 4.2.3.(4b) and 4.2.3.(5) it follows that for all x ∈ R[G],
Ch(σ, x, T ) ∈ R[T ] and

(4.3.1.a) Ch(σ, x, T ) ≡ (1− Tχ′(x))Ch(ρ, x, T )(1− Tχ(x)) mod I.

Let Ch(σ, x, T ) ∈ κ[T ] be the reduction of Ch(σ, x, T ) modulo M. As ρ̄ is irreducible
and ρ, χ, and χ′ are pair-wise residually disjoint, it follows from Lemma 4.1.3 that
there exists x0 ∈ R[G] such that Ch(σ, x0, T ) splits over κ and has distinct non-zero
roots. Since R is Henselian, Ch(σ, x0, T ) splits in R[T ]. We fix such an x0 and label
the roots of Ch(σ, x0, T ) as α1, · · · , αm ∈ R, ordered so that α1 ≡ χ′(x0) mod I and
αm ≡ χ(x0) mod I. It follows that M has an R⊗A F -basis ε1, ..., εm such that σ(x0)εi =
αiεi. We use this basis to identify M with (R ⊗A F )m and σ with a homomorphism
G→ GLm(R⊗A F ).

Put

xi :=
∏
j 6=i

(x0 − αj)(αi − αj)−1 ∈ R[G]

and

πi := σ(xi).

Then πiεi = εi and πiεj = 0 if j 6= i; that is, πi projects M onto its εi-component (with
respect to the basis ε1, ..., εm). Note that π1 + · · · + πm = 1 and πiπj = πi if i = j and
otherwise πiπj = 0. Put also

xχ := xm, xχ′ := x1, xρ := x2 + · · ·+ xm−1,



THE IWASAWA MAIN CONJECTURES FOR GL2 51

and

πµ := σ(xµ), µ ∈ {χ, χ′, ρ}.

Let β1 := χ′(x0) and βm := χ(x0). Let β2, ..., βm−1 be the eigenvalues of ρ(x0) ∈
Mn(R), ordered so that βi ≡ αi mod I. Define yi, yµ ∈ R[G] just as xi and xµ but with
the αj ’s replaced by the βj ’s. Then µ(yλ) = 0 if µ 6= λ and µ(yµ) = 1. Also, xi ≡ yi mod I
and xµ ≡ yµ mod I.

Let N := V ⊗AR with G-action by ρ. Let δ2, ..., δm−1 be an R-basis such that ρ(x0)δi =
βiδi. This is possible as the βi’s are distinct modulo M. Then Rδi = ρ(yi)N . For
2 ≤ i, j ≤ m − 1 let tij ∈ R[G] be such that the i′, j′-entry of ρ(tij) with respect to the
basis δ2, ..., δm−1 is 0 if (i′+1, j′+1) 6= (i, j) and 1 if (i′+1, j′+1) = (i, j). This is possible
as ρ̄ is irreducible and so ρ(R[G]) = EndR(N). Note that yitij = tijyj = yitijyj = tij .

4.3.2. The parity condition. Recall that we have assumed that ν is compatible with ρ
(see (4.2.3.a)). As ρ̄ and hence ρ is absolutely irreducible, any ν-polarization of ρ satisfies
(4.2.2.a) with ψ replaced by ν. We have not made the same assumption of σ, but as the
next lemma shows this is almost immediate.

Recall that R ⊗A F ∼= L1 × · · · × Ls with each Li a finite field extension of F . Let σi
denote the representation of G on Mi := M ⊗R⊗AF Li ∼= Lmi induced by σ.

Lemma 4.3.3. Assume the characteristic of κ is not 2. Let 1 ≤ i ≤ s. If σi is absolutely
irreducible, then ν is compatible with σi. In particular, if each σj, 1 ≤ j ≤ s, is absolutely
irreducible, then ν is compatible with σ.

Proof. Let L := Li and let B ⊂ L be the integral closure of A in L (so B is also a
complete local DVR). Let κB be the residue field of B. Let v2 be the image of ε2 in
Mi, and let D := B[G]v2 ⊂ Mi, the sub-B[G]-module generated by v2. The absolute
irreducibility of σi means that D is a free B-module of rank m and D ⊗B L = Mi. Let
J ⊂ B be the (proper) ideal generated by the image of I. From 4.3.1.a it follows that

Ch(σi, x, T ) ≡ (1− Tχ′(x))Ch(ρ, x, T )(1− Tχ(x)) mod J

for all x ∈ B[G]. From this and the Brauer-Nesbitt theorem it follows that the semisim-
plification of D := D⊗BκB is isomorphic to χ̄′⊕ ρ̄⊕χ̄. As D is generated by v̄2 := v2⊗1,
which is an eigenvector for ρ̄(x0), it is easily seen that ρ̄ is the unique irreducible κB[G]-
quotient of D. Let σ̄i denote the G-action on D.

Let Φi be the polarization of Mi induced by Φ. Scaling Φ by an appropriate element
of L×, we may assume that Φi(D,D) generates B. Then the reduction Φi of Φi modulo
the maximal ideal of B defines a κB-linear pairing on D ×D satisfying

Φi(σ̄i(x)d, d′) = Φi(d, σ̄
∗
i (x
∗)d′)

for all d, d′ ∈ D
∗

and x ∈ B[G] (i.e., a ν-polarization of σ̄i). It is easily seen that
Φi induces a non-trivial polarization on the unique κB[G]-quotient of D, namely ρ̄.
The compatibility of ν̄ with this polarization (following from our hypothesis that ν is
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compatible with ρ) then implies the compatibility of ν̄ with Φi and hence of ν with Φi

as κB has characteristic different from two.

4.3.4. The lattice. Put ε := εm and let L := σ(R[G])ε. By hypothesis, L is a finitely-
generated R-submodule of M . It has direct sum decompositions

L = L(α1)⊕ L(α2)⊕ · · · ⊕ L(αm) = L(χ′)⊕ L(ρ)⊕ L(χ)

with

L(αi) := πiL = {l ∈ L | σ(x0)l = αil}
and

L(µ) := πµL.

Here L is not necessarily a lattice in the usual terminology; it can be that L ⊗A F 6=
M ⊗A F .

Lemma 4.3.5. As an R-module, L(αm) = L(χ) is free of rank one.

Proof. Let l ∈ L. Then l = σ(x)ε for some x ∈ R[G] and πm(l) = σ(xmxxm)ε =
tr σ(xmxxm)ε. Since tr σ(y) ∈ R for any y ∈ R[G], it follows that L(αm) ⊆ Rε. Since L
is the R[G]-module generated by ε, the opposite inclusion is clear.

For x ∈ R[G] and µ, λ ∈ {χ, χ′, ρ} put

Aµ,λ(x) := σ(xµxxλ) ∈Mm(R⊗A F ).

Note that we can also view Aµ,λ(x) as an element of EndR(L(λ), L(µ)).

Lemma 4.3.6. Let x, y ∈ R[G].

(i) If µ 6= λ, then tr Aµ,λ(x)Aλ,µ(y) ∈ I.
(ii) tr Aµ,µ(x) ≡ tr µ(x) mod I.

Proof. If µ 6= λ then

tr Aµ,λ(x)Aλ,µ(y) = tr σ(xµxxλyxµ)

≡ (χ⊕ ρ⊕ χ′)(xµxxλyxµ) mod I

≡ (χ⊕ ρ⊕ χ′)(yµxyλyyµ) mod I

≡ 0 mod I.

The next to last line vanishes as either θ(yµ) = 0 or θ(yλ) = 0 for θ ∈ {χ, χ′, ρ} if µ 6= λ
(so one of µ and λ is not equal to θ). This proves part (i). Similarly,

tr Aµ,µ(x) = tr σ(xµxxµ) ≡ tr (χ⊕ ρ⊕ χ′)(yµxyµ) = tr µ(x) mod I,

proving part (ii).
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For 2 ≤ i, j ≤ m− 1, let

φij := σ(xitijxj) ∈ HomR(L(αj), L(αi)).

Lemma 4.3.7. Each φij is an isomorphism.

Proof. It suffices to prove that φ := φij◦φji ∈ EndR(L(αi)) is an isomorphism. But φ acts
via multiplication by the i, i-entry of σ(xitijxjtjixi). This entry equals tr σ(xitijxjtjixi)
and we have

tr σ(xitijxjtjixi) ≡ tr ρ(xitijxjtjixi) mod I

≡ tr ρ(yitijyjtjiyi) mod I

≡ tr ρ(tijtji) ≡ 1 mod I.

Therefore φ acts by multiplication by a unit of R and so is an isomorphism.

Lemma 4.3.8. Let x, y ∈ R[G].

(i) If µ 6= λ the image of Aµ,λ(x)Aλ,µ(y) ∈ EndR(L(µ), L(µ)) is contained in IL(µ).
(ii) If µ 6= χ the image of Aχ,µ(x) ∈ EndR(L(µ), L(χ)) is contained in IL(χ) = Iε.

Proof. We first prove (i). Suppose that µ = χ′. As L(χ′) = L(α1) it follows that
Aµ,λ(x)Aλ,µ(y) acts as multiplication by the 1, 1-entry of σ(x1xxλyx1). This entry is
just tr σ(x1xxλyx1) = tr Aµ,λ(x)Aλ,µ(y), which belongs to I by Lemma 4.3.6. The case
µ = χ is proved the same way, but using the m,m-entry instead.

Suppose then that µ = ρ. We need to show that for all 2 ≤ i, j ≤ m − 1, l ∈ L(αj),
πiAρ,λ(x)Aλ,ρ(y)l ∈ IL(αi). As φji is an isomorphism, it suffices then to show that
φjiπiAρ,λ(x)Aλ,ρ(y)l ∈ IL(αj). But φjiπiAρ,λ(x)Aλ,ρ(y) acts on L(αj) by multiplication
by the j, j-entry of σ(xjtjixixρxxλyxρ). This is tr σ(xjtjixixρxxλyxρxj), which equals
tr σ(xρxjtjixixρxxλ)σ(xλyxjxρ) since xρxj = xj = xjxρ, and the latter trace belongs to
I by Lemma 4.3.6. This completes the proof of part (i).

As L is generated by ε over R[G], for any element l ∈ L(µ) we have l = σ(y)ε =
σ(xµyxχ)ε = Aµ,χ(y)ε for some y ∈ R[G]. By part (i) we then have

Aχ,µ(x)l = Aχ,µ(x)Aµ,χ(y)ε ∈ Iε,
proving part (ii).

Put

L := L/IL and L(µ) := L(µ)/IL(µ).

Let Aµ,λ(x) be the image of Aµ,λ(x) in EndR(L(λ),L(µ)).

Corollary 4.3.9. The sub-R-module Sub(L) := L(χ′)⊕L(ρ) ⊂ L is a sub-R[G]-module.
The quotient Quot(L) := L/Sub(L) is isomorphic as an R[G]-module to (R/I)(χ).

Proof. Let x ∈ R[G] and l ∈ L(χ′) ⊕ L(ρ). Then σ(x)l = σ(xxχ′)l + σ(xxρ)l. As the
projection of σ(xxµ)l to L(χ) is σ(xχxxµ)l = Aχ,µ(x)l and so belongs to IL(χ) by part
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(ii) of the preceding lemma if µ 6= χ, the image of σ(x)l in L belongs to Sub(L). Thus
Sub(L) is a sub-R[G]-module.

The sub-R-module L(χ) maps isomorphically onto Quot(L). So to prove the second
claim it suffices to show that for all g ∈ G, σ(g)ε−χ(g)ε ∈ L(χ′)⊕L(ρ)⊕IL(χ); in other
words, that πχ(σ(g)ε − χ(g)ε) ∈ IL(χ) = Iε. But for any x ∈ R[G], πχ(σ(x)ε) = amε,
where am is the m,m-entry of σ(x) and so is equal to tr σ(xmxxm). By part (ii) of
Lemma 4.3.6, tr σ(xmgxm) = tr Aχ,χ(g) ≡ χ(g) mod I.

Lemma 4.3.10.

(i) The map x 7→ Aρ,ρ(x) ∈ EndR(L(ρ)), x ∈ R[G], defines an R-representation.
(ii) There exists a finite torsion R-module N and an isomorphism (L(ρ),Aρ,ρ) ∼=

(N ⊗R N, 1⊗ ρ) of R-representations.
(iii) If L⊗A F = M then FittR(N ) ⊆ I.

Proof. Put A(x) := Aρ,ρ(x). We have

A(xy) =
∑

µ∈{χ,χ′,ρ}

Aρ,µ(x)Aµ,ρ(y) = A(x)A(y),

the last equality by part (i) of Lemma 4.3.8. This proves part (i).

Let L(αi) := L(αi)/IL(αi). For part (ii) we take N := L(α2). For 3 ≤ j ≤ m − 1
the isomorphism φj2 (see Lemma 4.3.7) identifies N with L(αj). As L(ρ) = L(α2) ⊕
· · · ⊕ L(αm−1), L(ρ) is identified with N n. Let B := EndR(N ). Via this identification,
the action of G on L(ρ) through Aρ,ρ defines a homomorphism ρ′ : R[G]→Mn(B). We
claim that the a, b-entry of any ρ′(x) is just the a, b-entry of ρmod I. The isomorphism
of part (ii) follows.

We prove the claim. For x ∈ R[G], let x(a, b) ∈ B be the a, b-entry of ρ′(x); x(a, b) is
just the reduction modulo I of φ−1

a+1,2◦σ(xa+1xxb+1)◦φ2,b+1, where we view σ(xa+1xxb+1)

as defining an element of HomR(L(αb+1), L(αa+1)). Then x(a, a) is just multiplication
by tr σ(xa+1xxa+1) mod I which is just tr ρ(ya+1xya+1) mod I. It follows that for any
x′ ∈ R[G] we have

x′(a, b)x(b, a) = σ(xa+1x
′xb+1xxa+1)(a, a)

= tr σ(xa+1x
′xb+1xxa+1) mod I

= tr ρ(ya+1x
′yb+1xya+1) mod I.

Taking x′ = ta+1,b+1 we have x′(a, b) = 1 and so x(b, a) = tr ρ(ya+1x
′yb+1xya+1) mod I =

tr ρ(ta+1,b+1xya+1) mod I, which is just the b, a-entry of ρ(x) mod I. This proves (ii).

Finally, if L⊗A F = M then L(αi)⊗A F ∼= R ⊗A F . In particular, L(α2) is a faithful
R-module. Hence FittR(N ) = FittR(L(α2)/IL(α2)) ⊆ I.
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Lemma 4.3.11. If for each F -algebra homomorphism λ : R⊗A F → K, K a finite field
extension of F , the representation σλ : G → GLm(M ⊗R⊗AF,λ K) obtained from σ via
λ is either absolutely irreducible or contains an absolutely irreducible two-dimensional
sub-K-representation σ′λ such that tr σ′λ(g) ≡ χ(g)+χ′(g) mod I, then L(χ′) is a faithful
R/I-module.

Proof. It suffices to show that M(χ′) := L(χ′) ⊗A F is a faithful R ⊗A F -module.
Since R ⊗A F is a product of finite extensions of F , it therefore suffices to show that
M(χ′)⊗R⊗AF,λ K 6= 0 for each λ as in the lemma.

Let Mλ := M ⊗R⊗AF,λ K ∼= Km be the representation space of σλ and let ελ be the
image of ε in M . Then Lλ := σλ(K[G])ελ ⊂ Mλ is the K-span of the image of L in
Mλ, and M(χ′) ⊗R⊗AF,λ K ∩ Lλ is the subspace of Lλ on which x0 acts as λ(α1). The
hypotheses on each σλ ensure that this last subspace is always non-zero.

4.3.12. L∗ and L∗. Let L∗ be the R-module L with R[G]-action by σ∗. Then

Ch(σ, x0, T ) = Ch(σ∗, x∗0, T ),

so the eigenvalues of σ∗(x∗0) are just α1,...,αm. We also have

χν−1(x∗0) = χ−cν(x0) = α1 and χ−c(x∗0) = χ(x0) = αm.

Therefore there is a decomposition

L∗ = L∗(χν−1)⊕ L∗(ρ⊗ ν−1)⊕ L∗(χ−c)

where we have set L∗(χν−1) := L∗(α1), L∗(χ−c) := L∗(αm), and L∗(ρ⊗ν−1) := L∗(α2)⊕
· · · ⊕ L∗(αm−1) with L∗(αi) = {l ∈ L| σ∗(x∗0)l = αil} for i ∈ {1, . . .m}. In analogy with
the Aµ,λ(x)’s, we define A∗µ,λ(x) ∈ HomR(L∗(λ), L∗(µ)) for all x ∈ R[G] and µ, λ ∈
{χν−1, ρ⊗ ν−1, χ−c}.

Both σ∗(x∗0)ε and α1ε have the same image in Quot(L). As α1 ∈ R× this image is non-
zero, and it follows that L∗(χν−1) must project surjectively onto Quot(L) and hence
that L∗ = σ∗(R[G])ε∗ for some ε∗ ∈ L∗(χν−1) such that ε∗ ≡ εmod IL. Just as for
L(χ), one easily sees that L∗(χν−1) is free of rank one over R, generated by ε∗.

Let L∗ := L∗/IL∗. This is just L with G-action twisted by ν−1. There is then a
decomposition

L∗ = L∗(χν−1)⊕ L∗(ρ⊗ ν−1)⊕ L∗(χ−c),
where L∗(µ) := L∗(µ)/IL∗(µ). Clearly L∗(µ) is just L(µν) with G-action twisted by ν−1.
For x ∈ R[G] we denote by A∗µ,λ ∈ HomR(L∗(λ),L∗(µ)) the homomorphism induced by
the action of x on L∗; this is just the homomorphism induced by A∗µ,λ. Setting

Sub(L∗) := L∗(ρ⊗ ν−1)⊕ L∗(χ−c) and Quot(L∗) := L∗/Sub(L∗),

the arguments used to prove Corollary 4.3.9 can be used to prove that

(4.3.12.a) Sub(L∗) is a sub-R[G]-module and Quot(L∗) ∼= (R/I)(χν−1).
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4.3.13. The reduction of Φ modulo I. We consider the restriction of the pairing Φ to
L× L∗.

Lemma 4.3.14.

(i) L∗(χν−1)⊕ L∗(ρ⊗ ν−1) is orthogonal to L(χ).
(ii) L(χ)⊕ L(ρ) is orthogonal to L∗(χν−1).

(iii) Let P := Φ(L,L∗). Then

P = Φ(L(χ), L∗(χ−c)) = Φ(L(χ−cν), L∗(χν−1)).

In particular, there are R-isomorphisms P ∼= L(χ−cν) ∼= L∗(χ−c).

Proof. If l ∈ L(αi) and l′ ∈ L∗(αj), then

αiΦ(l, l′) = Φ(σ(x0)l, l′) = Φ(l, σ∗(x∗0)l′) = αjΦ(l, l′).

Therefore Φ(l, l′) = 0 if i 6= j. Parts (i) and (ii) follow.

For any l ∈ L there exists x ∈ R[G] such that l = σ(x)ε. Therefore Φ(l, l′) =
Φ(σ(x)ε, l′) = Φ(ε, σ∗(x∗)l′), hence P = Φ(ε, L∗) = Φ(ε, L∗(χ−c)) = Φ(L(χ), L∗) =
Φ(L(χ), L∗(χ−c)) by part (i). Then l′ 7→ Φ(ε, l′) is a surjective R-homomorphism from
L∗(χ−c) onto P . As Φ is non-degenerate, this map must also be an isomorphism. Simi-
larly, we have P = Φ(L, ε∗) = Φ(L(χ−cν), ε∗) = Φ(L(χ−cν), L∗(χν−1)) and l 7→ Φ(l, ε∗)
defines an isomorphism of L(χ−cν) with P .

4.4. The cocycle construction. We now explain how the previously defined objects
give rise to various extensions of representations and hence to subgroups of cocycle
classes.

4.4.1. The extensions. Let

J (χ′) :=
∑

x∈R[G]

Im(Aχ′,ρ(x)) ⊂ L(χ′) and J (ρ) :=
∑

x∈R[G]

Im(Aρ,χ′(x)) ⊂ L(ρ).

The R-submodules L(ρ)⊕J (χ′) and L(χ′)⊕J (ρ) are both sub-R[G]-modules of Sub(L).
Also for any x ∈ R[G], Aχ′,χ′(x)J (χ′) ⊆ J (χ′) andAρ,ρ(x)J (ρ) ⊆ J (ρ). As explained in
Lemma 4.3.10(i), x 7→ Aρ,ρ(x) defines an R[G]-action on L(ρ) (and hence on L(ρ)/J (ρ)).
Similary, x 7→ Aχ′,χ′(x) defines an R[G]-action on L(χ′) (and hence on L(χ′)/J (χ′));
this action is just given by χ′(x). Therefore there are exact sequences of R[G]-modules

(4.4.1.a) 0→ L(χ′)/J (χ′)→ L/(L(ρ)⊕ J (χ′))→ Quot(L) ∼= R/I(χ)→ 0

and

(4.4.1.b) 0→ L(ρ)/J (ρ)→ L/(L(χ′)⊕ J (ρ))→ Quot(L) ∼= R/I(χ)→ 0.

The proof of Lemma 4.3.10(ii) can be adapted to prove that there is a sub-R-module
N ′ ⊆ N such that an isomorphism (L(ρ),Aρ,ρ) ∼= (N⊗RN, 1⊗ρ) induces an isomorphism
(J (ρ),Aρ,ρ) ∼= (N ′ ⊗R N, 1⊗ ρ). Hence there is an R[G]-isomorphism

(4.4.1.c) L(ρ)/J (ρ) ∼= (N/N ′)⊗R N.
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Lemma 4.4.2. There are no proper sub-R[G]-modules of L that project surjectively to
Quot(L). The same is then true of L/(L(ρ)⊕ J (χ′)) and L/(L(χ′)⊕ J (ρ)).

Proof. Let L′ ⊆ L be a sub-R[G]-module projecting onto Quot(L). The image L′ of L′
in L := L⊗R κ contains an eigenvector for σ(x0) with eigenvalue ᾱm. But in L any such

eigenvector belongs to κε̄ and ε̄ generates L over R[G]. Thus L′ = L and hence L′ = L.

4.4.3. Relations with cohomology groups. Suppose now that

(1) A0 is a pro-finite Zp-algebra and a noetherian normal domain;

(2) P ⊂ A0 is a height one prime and A = Â0,P is the completion of the localization
of A0 at P ;

(3) R0 is a local reduced finite A0-algebra;

(4) Q ⊂ R0 is prime such that Q ∩A0 = P and R = R̂0,Q;
(5) there exist ideals J0 ⊂ A0 and I0 ⊂ R0 such that I0 ∩ A0 = J0, A0/J0 = R0/I0,

J = J0A, I = I0R, J0 = J ∩A0, and I0 = I ∩R0;
(6) G and H are pro-finite groups
(7) ν and χ are continuous A×0 -valued characters;
(8) ρ is the scalar extension from A0 to A of some continuous representation

ρ0 : GK,Σ → AutA0(V0), V0
∼= An0 ;

(9) σ is defined over the image of R0 in R.

Let L ⊂ L/(L(ρ) ⊕ J (χ′)) be the sub-R0[G]-module generated by the image ε̄∗ of ε∗.
Let L1 := L∩L(χ′)/J (χ′). These are finite R0-modules with continuous R0[G]-actions.
The G-action on L1 is via χ′ and we have

L/L1
∼= (R0/I0)ε̄∗ = (A0/J0)ε̄∗

with G-action via χ.

For each φ ∈ HomA0(L1, A
∗
0) we define an A∗0(χ′/χ)-valued 1-cocycle cφ of G by

cφ(g) = φ(χ−1(g)σ(g)ε̄∗ − ε̄∗),

which equals φ(χ−1(g)πχ′σ(g)ε̄∗). Mapping φ to the class of cφ defines anA0-homomorphism

(4.4.3.a) HomA0(L1, A
∗
0)→ H1(G,A∗0(χ′/χ)), φ 7→ [cφ].

Dualizing we get a map

(4.4.3.b) H1(G,A∗0(χ′/χ))∗ → HomA0(L1, A
∗
0)∗.

The character χ−c−1 extends uniquely to a character ψ of H such that ψ(c) = 1. As p
is odd the restriction map

H1(H,A∗0(ψν))→ H1(G,A∗0(χ′/χ))H

is an isomorphism.
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Proposition 4.4.4.

(i) The map (4.4.3.b) is a surjection after localizing at P .
(ii) If ν is compatible with Φ, then the image of (4.4.3.a) is contained in H1(H,A∗0(ψν)).

Proof. Let K be the kernel of (4.4.3.a) and L′1 := ∩φ∈K kerφ. By Pontryagin duality
K∗P 6= 0 if and only if (L1/L

′
1)P 6= 0. The L1-valued cocycle

c(g) = χ−1(g)σ(g)ε̄∗ − ε̄∗

defines a class [c] in H1(G,L1/L
′
1(χ−1)) (continuous cohomology). We will show that

there exists a ∈ A0, a 6∈ P , such that a[c] is zero. From this it follows that

0→ (L1/L
′
1)P → L/(L(ρ)⊕ J (χ′))→ Quot(L)→ 0

is split. If (L1/L
′
1)P were non-zero this would contradict Lemma 4.4.2.

For S ⊆ K a finite set, let LS = ∩φ∈S kerφ; this has finite index in L1. Then
H1(G,L1/L

′
1(χ−1)) = proj limS H

1(G,L1/LS(χ−1)), so a[c], a ∈ A0, is zero if its im-
age a[c]S in each H1(G,L1/LS(χ−1)) is zero.

The map L1/LS ↪→ ⊕φ∈SA∗0 defined by l 7→ ⊕φ(l) induces a homomorphism

H1(G, (L1/LS)(χ−1))→ ⊕φ∈SH1(G,A∗0(χ′/χ)).

The image of [c]S in the right-hand side is ⊕φ∈S [cφ] and so is zero, hence [c]S belongs
to the kernel. But the kernel of this map is a quotient of some H0(G,C) with C a
quotient of ⊕φ∈SA∗0(χ′/χ). In particular the kernel is a union of submodules isomorphic
to subquotients of A∗0(χ′/χ) that are fixed by G. As χ′/χ is non-trivial modulo P (see
4.2.3(2)), it is easily seen that there exists a ∈ A0, a 6∈ P , such that a annihilates all such
subquotients (so a can be chosen independent of S). Thus a[c]S = 0. This completes
the proof of part (i).

To prove part (ii) we note that

χ−1(g)Φ(πχ′σ(g)ε∗, ε∗) = χ−1(g)Φ(σ(g)ε∗, ε∗)

= ψν(g)χc(g)Φ(ε∗, σ(cg−1c)ε∗)

= −ν(c)ψν(g)χc(g)Φ(σ(cg−1c)ε∗, ε∗)

= −ν(c)ψν(g)χc(g)Φ(πχ′σ(cg−1c)ε∗, ε∗),

the third equality following from the compatibility of ν with Φ. It then follows from
Lemma 4.3.14(iii) that

χ−1(g)πχ′σ(g)ε̄∗ = −ν(c)ψν(g)χc(g)πχ′σ(cg−1c)ε̄∗.

Since ε∗ ≡ εmod IL, the value of φ on the left-hand side is cφ(g) while the value on
the right-hand side is −ν(c)ψν(g)cφ(cg−1c), which equals ψν(c)cφ(cgc). Therefore [cφ] ∈
H1(G,A∗0(χ′χ))H .
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Now let L ⊆ L/(L(χ′)⊕ J (ρ)) be the sub-R0[G]-module generated by the image ε̄∗ of
ε∗, and let L1 := L∩L(ρ)/J (ρ). As before L/L1

∼= (R0/I0)ε̄∗ = (A0/J0)ε̄∗ with G-action
by χ.

Let N ⊆ N/N ′ be a finitely generated sub-R0-module such that via some fixed isomor-
phism L(ρ)/J (ρ) ∼= (N/N ′) ⊗A0 V0, L1 ⊆ N ⊗A0 V0. (For example, fixing an A0-basis
of V0, let N be the sub-R0-module generated by the coordinate entries of each element
of L1 ⊆ (N/N ′)n.) For each φ ∈ HomA0(N, A∗0) we define a V0 ⊗A0 A

∗
0-valued 1-cocycle

cφ of G by

cφ(g) = (φ⊗ id)(χ−1(g)σ(g)ε̄∗ − ε̄∗).
This defines an A0-homomorphism

(4.4.4.a) HomA0(N, A∗0)→ H1(G,V0 ⊗A0 A
∗
0(χ−1)), φ 7→ [cφ],

and by duality an A0-homomorphism

(4.4.4.b) H1(G,V0 ⊗A0 A
∗
0(χ−1))∗ → HomA0(N, A∗0)∗.

Proposition 4.4.5. The map (4.4.4.b) is a surjection after localization at P .

Proof. The proof is essentially the same as for Proposition 4.4.4(i).

4.5. Local conditions. We fix a subgroup D ⊂ G for which we make the following
hypotheses. In applications, G will be GK,Σ for some finite set of primes Σ containing p
and D will be a decomposition group at a prime above p.

4.5.1. Local condition for σ. There is a D-stable sub-R ⊗A F -module M+ ⊆ M such
that M+ and M− := M/M+ are free R⊗A F -modules.

4.5.2. Local condition for ρ. There is a D-stable A0-submodule V +
0 ⊆ V0 such that V +

0

and V −0 := V0/V
+

0 are free A0-modules. Let V ± := V ±0 ⊗A0 A.

4.5.3. Compatibility with the congruence condition. We further assume that for all x ∈
R[D], we have the congruence relation

Ch(M+, x, T ) ≡ Ch(V +, x, T )(1− Tχ(x)) mod I.

It then follows from (4.3.1.a) that for all x ∈ R[D]

Ch(M−, x, T ) ≡ Ch(V −, x, T )(1− Tχ′(x)) mod I.

Proposition 4.5.4. Assume that hypotheses (4.5.1), (4.5.2), and (4.5.3) hold. Assume
also that the D-representations V +⊕A(χ) and V −⊕A(χ′) are residually disjoint modulo
P .

(i) There exists t ∈ A0, t 6∈ P , such that t · (image of (4.4.3.a)) lies in the kernel of
the restriction map

H1(G,A∗0(χ′/χ))
res→ H1(D,A∗0(χ′/χ)).
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(ii) There exists t ∈ A0, t 6∈ P , such that t · (image of (4.4.4.a)) lies in the kernel of
the map

(4.5.4.a) H1(G,V0 ⊗A0 A
∗
0(χ−1))→ H1(D,V −0 ⊗A0 A

∗
0(χ−1)).

induced by the restriction map.

Proof. By the assumptions of the proposition there exists x ∈ A[D] such that the char-
acteristic polynomials Ch(M+, x, T ) and Ch(M−, x, T ) are relatively prime modulo the
maximal ideal of R. As R is local and complete, arguing as in the poof of Lemma 4.1.3
we can construct an element x+ ∈ R[D] such that x+ acts as the identity on M+ and an-
nihilates M−. We note that by 4.5.3 and the construction of x+, x+ acts as the identity
on V + ⊗A R/I and (R/I)(χ) and annihilates V − ⊗A R/I and (R/I)(χ′).

We now prove (ii); part (i) can be proved similarly.

Let L1 := L(ρ)/J (ρ). Let L+ := x+L and L+
1 := x+L1 = L1 ∩ L+. With respect

to a fixed isomorphism L1
∼= N/N ′ ⊗A V , L+

1
∼= N/N ′ ⊗A V +. Let L1 and N be

as in the definition of (4.4.4.a) (in particular, L1 := L ∩ L1). Let L+ := L ∩ L+ and
L+

1 := L1 ∩ L+
1 . Since N ⊗A0 V = N/N ′ ⊗A V it follows that L+

1 = L1 ∩ N ⊗A0 V
+

0 .
Therefore L1/L

+
1 ↪→ N⊗A0 V

−
0 .

We claim that the R[D]-extension

0→ L1/L+
1 → L/L

+
1 → L/L1

∼= (R/I)(χ)→ 0

is split. This follows by applying the projector x+ to this sequence. Consequently, the
class in H1(G,L1/L

+
1 (χ−1)) of the 1-cocycle of G defined by c1(g) = χ−1σ(g)ε̄∗ − ε̄∗

has zero image in H1(G,L1/L+
1 (χ−1)) (the usual group cohomology). It follows that

there exists t ∈ A0, t 6∈ P , such that tc1 has zero image in H1(G,L1/L
+
1 (χ−1)). Given

φ ∈ HomA0(N, A∗0), the image of t[c1] in H1(G,V −0 ⊗A0 A
∗
0(χ−1)) under the map induced

by the composition homomorphism

L1/L
+
1 ↪→ V −0 ⊗A0 N

id⊗φ−→ V −0 ⊗A0 A
∗
0

equals the image of t[cφ] under (4.5.4.a), so the latter is zero.

4.5.5. Consequences for Selmer groups. Keeping the notation introduced so far, suppose
now that H = GQ,Σ for some finite set of primes Σ containing p and G = GK,Σ and that
c is the usual complex conjugation. Assume that

(4.5.5.a) ν is compatible with Φ.

Suppose (4.5.1), (4.5.2), and (4.5.3) and the hypotheses of Proposition 4.5.4 hold for
D = GK,p with V +

0 ⊆ V0 an A0-free direct summand stable under the action of the
decomposition group GQ,p. By the polarization condition (4.5.5.a), the correspond-

ing hypotheses are then also satisfied for D = GK,p̄. For F = Q or K let SelΣF (ψν)

and SelΣF (ρ0 ⊗ χ−1) be the Selmer groups associated with the pairs (A0(ψν), 0) and
(V0(χ−1), V +

0 (χ−1)) as in §3. Suppose further that A0 is a noetherian normal domain
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and let ChΣ
F (ψν) and ChΣ

F (ρ0 ⊗ χ−1) be the respective characteristic ideals of the Pon-
tryagin duals of these Selmer groups.

Proposition 4.5.6. With the above assumptions,

(i) ordP (ChΣ
Q(ψν)) ≥ `P (L(χ′)/J (χ′));

(ii) ordP (ChΣ
K(ρ0 ⊗ χ−1)) ≥ `P (N/N ′); in particular, if N ′ = 0 then

ordP (ChΣ
K(ρ0 ⊗ χ−1)) ≥ ordP (J).

Proof. Proposition 4.5.4 shows that the maps (4.4.3.b) and (4.4.4.b) factor through the
duals of the Selmer groups of interest. The proposition then follows easily from Propo-
sitions 4.4.4 and 4.4.5.

Corollary 4.5.7. With the assumptions of Proposition 4.5.6, if ordP (ChΣ
Q(ψν)) = 0

then ordP (ChΣ
K(ρ0 ⊗ χ−1)) ≥ ordP (J).

Proof. From part (i) of the preceding proposition it follows that J (χ′) = L(χ′). It then
follows that from Lemma 4.3.8(i) that J (ρ) = 0, and so N ′ = 0. The corollary then
follows from part (ii) of the proposition.

Proposition 4.5.8. Suppose the hypotheses of Lemma 4.3.11 hold. With the assump-
tions of Proposition 4.5.6, if ordP (J) > ordP (ChΣ

Q(ψν)), then ordP (ChΣ
K(ρ0⊗χ−1)) ≥ 1.

Proof. By Lemma 4.3.11, L(χ′) is a faithful R/I = A/J-module. In combination with
part (i) of Proposition 4.5.6 and the hypothesis on `P (A/J), it follows that J (χ′) 6= 0
and hence that L(ρ)/J (ρ) 6= 0. As L(ρ)/J (ρ) ∼= (N/N ′)n it also follows thatN/N ′ 6= 0.
The conclusion of the proposition now follows from part (ii) of Proposition 4.5.6.

5. Shimura varieties for some unitary groups

5.1. The groups Gn. For any group scheme G/Z there is a canonical action of the non-
trivial automorphism of K on G(O ⊗ A), A a Z-algebra, arising from its action on the
first factor of O ⊗ A. For g ∈ G(O ⊗ A) we write g 7→ ḡ for this action. If ` splits in
K and A is any Z`-algebra, then G(O` ⊗Z` A) is identified with G(A) × G(A) via our
identification O` = Z` × Z`, and if g = (a, b) ∈ G(O` ⊗Z` A) then ḡ = (b, a). If v is a
place of Q and g ∈ G(A) then we write gv for the v-component of g. (When G = Ga or
Gm this is all consistent with our previously introduced notation.)

5.1.1. The unitary similitude groups Gn. For an integer n ≥ 1 we let

wn :=

(
0 1n
−1n 0

)
,

and let Gn be the group scheme over Z such that for any Z-algebra A

Gn(A) = {g ∈ GL2n(O ⊗A) : gwn
tḡ = λgwn, λg ∈ A×}.
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We define µn : Gn → Gm by µn(g) = λg and let Un ⊂ Gn be the kernel of µn.

The matrix wn defines a skew-Hermitian pairing ψn on the 2n-dimensional K-space
Vn := K2n. Our convention is to have elements of EndK(Vn) act on the right. The
unitary similitude group of this pairing (an algebraic group over Q) is then Gn/Q and
µn is its similitude character; the unitary group of the pairing is Un/Q.

For each prime ` we let K0
n,` := Gn(Z`). If ` - DK, then this is a hyperspecial compact

subgroup of Gn(Q`).

If ` splits in K then for any Z`-algebra A, Gn(A) ⊆ GL2n(O ⊗Z` A) = GL2n(A) ×
GL2n(A). Using this identification to write g ∈ Gn(A) as g = (g1, g2) with g1 ∈ GL2n(A),

the map g 7→ (g1, µn(g)) defines an isomorphism Gn(A)
∼→ GL2n(A)×A× and hence an

identification of Gn/Z` with GL2n×Gm, which identifies Un/Z` with the GL2n-factor. We

will frequently use this identification. Note that K0
n,` is identified with GL2n(Z`)× Z×` .

Similarly, for any O[1/DK]-algebra A the embedding O⊗ZO ↪→ O×O, x⊗y 7→ (xy, x̄y)
identifiesGL2n(O ⊗Z A) with GL2n(A) × GL2n(A). Using this identification to write
g ∈ Gn(A) as g = (g1, g2), the map Gn(A) → GL2n(A) × A×, g 7→ (g1, µn(g)), is an
isomorphism and so defines an identification of Gn/O with GL2n ×Gm. If ` splits in K
then projection onto the first factor of O` = Z`×Z` defines an O[1/DK]-algebra structure
on Z`. The associated base change to Z` of the identification Gn/O[1/DK] = GL2n ×Gm

is the identification of the preceding paragraph.

For g ∈ Gn(R) let Ag, Bg, Cg, Dg ∈ Mn(O ⊗R) be defined by

g =
(
Ag Bg
Cg Dg

)
.

If g is understood, then we may drop the subscript.

We let Tn/O be the diagonal torus of GL2n = Un/O and let Bn/O be the Borel of

GL2n = Un/O defined by requiring Cg = 0 and Ag and tDg to be upper-triangular. One
could also take the upper-triangular Borel in place of Bn; the choice here reflects the
conventions adopted in calculations in the rest of this paper2.

When n is understood we drop it from our notation. In later sections we will be
primarily interested in the case n = 2, and then we will drop it only in that case.

5.1.2. Connection with GL2/Z. The canonical inclusion of GL2 into G1 extends to an
exact sequence of group schemes over Z:

1→ Gm → ResO/ZGm ×GL2 → G1 → 1,

where the second arrow is a 7→ (a, a−1) and the third is (a, g) 7→ ag.

2This makes no real difference: the modules of (ordinary) p-adic modular forms defined using either
choice of Borel are isomorphic; one passes from one setting to the other by conjugation.
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5.1.3. Hermitian half-spaces. Let

Hn := {Z ∈Mn(C) : −i(Z − tZ̄) > 0}.

This is the Hermitian upper half-space of degree n. Note that H1 = h, the latter being
the usual Poincaré upper half-plane. The group Gn(R)+ := {g ∈ Gn(R) : µn(g) > 0}
acts on Hn as

g(Z) := (AgZ +Bg)(CgZ +Dg)
−1, g ∈ G+

n (R).

Putting i := i1n ∈ Hn we let K+
n,∞ := {g ∈ Un(R) : g(i) = i} and let Kn,∞ be

the group generated by K+
n,∞ and diag(1n,−1n). Then K+

n,∞ is a maximal compact of

Un(R) and so also of G+
n (R), and Kn,∞ is a maximal compact of Gn(R). The center of

Gn(R) is Zn,∞ := C×12n; it is contained in G+
n (R).

Let X±n := Gn(R)/K+
n,∞Zn,∞ and X+

n := G+
n (R)/K+

n,∞Zn,∞. There is a real-analytic
isomorphism

X+
n
∼→ Hn, g 7→ g(i).

5.2. The Shimura varieties over C.

5.2.1. Real Hodge structures. Let W be a vector space over Q. Recall that a real Hodge
structure on WR := W ⊗Q R is an algebraic R-linear action of S := ResC/RGm on
WR (i.e., a homomorphism of R-algebraic groups S → GL(WR)). Given a real Hodge
structure on WR, there is a decomposition

WC := WR ⊗R C =
⊕
p,q

W p,q
C

with W p,q
C the subspace on which z ∈ S(R) = C× acts by multiplication by zpz̄q. The

Hodge structure is pure of weight w if p+ q = w whenever W p,q
C 6= 0.

5.2.2. Variation of Hodge structures of Gn-type. Let h : S→ G/R be the R-homomorphism
defined by

h(x+ iy) =

(
x1n y1n
−y1n x1n

)
.

Then X± is identified with the set of G(R)-conjugacy classes of h. Viewing V = Vn as a
4n-dimensional Q space, h defines a real Hodge structure on VR. The restriction of h to
C× defines a complex structure on VR that differs from the canonical complex structure
(the canonical complex structure is defined by the action of K⊗R = C, the identification
with C being via the inclusion K ⊂ Q ⊆ C). There is a decomposition VR = V +

R ⊕ V
−
R

where V +
R (resp. V −R ) is the subspace on which the two complex structures coincide

(resp. are conjugate). In particular, the Hodge decomposition of VC defined by h is of
the form (1, 0), (0, 1) with:

V 1,0
C = V +

R ⊕ V
−
R and V 0,1

C = V
+
R ⊕ V −R ,

where we have set V
±
R = V ±R ⊗C,c C with c : C→ C being complex conjugation.
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Let K =
∏
v-∞Kv be an open compact subgroup of G(Af ) (so Kv = K0

v for almost all

v). We consider the Shimura variety over C defined as

ShG(K)(C) := G(Q)\X± ×G(Af )/K = G(Q)\G(A)/KK+
∞Z∞.

For any point [g] ∈ ShG(K)(C) where [g] designates the class of g = g∞gf ∈ G(A),
z 7→ h[g](z) := g∞h(z)g−1

∞ defines a Hodge structure on VR. The space ShG(K)(C) can
therefore be seen as a variation of Hodge structures on VR. Let A := VR/L where L
is the lattice L := O2n ⊂ V . The complex structure defined by h[g] and the real skew-

symmetric form traceC/R(xwn
tȳ) give A the structure of an abelian variety over C of

dimension 2n with complex multiplication by O. In this way ShG(K)(C) can be viewed
as a complex analytic family of abelian varieties.

5.3. Moduli of abelian schemes with CM. Let D := DK be the absolute discrimi-
nant of K.

5.3.1. Modules with complex multiplication. Let R be an O[1/2D]-algebra and M an R-
module endowed with an R-linear O-action (i.e., a homomorphism ι : O → EndR(M)).
Then M decomposes uniquely as

M = M+ ⊕M−

with ι(z) acting by multiplication by z on M+ and by multiplication by z̄ on M−. If
M is free over R, then M+ and M− are also free over R, and we will say that M is of
type (r, s) if M+ (resp. M−) is of rank r (resp. of rank s) over R. This definition can
be extended to a locally free coherent moduleM over a O[1/2D]-scheme S by requiring
that over an open affine sub-scheme SpecR of S, M×S SpecR is associated with a free
R-module of type (r, s).

5.3.2. Abelian schemes with complex multiplication. Let R be a O[1/2D]-algebra and
let S be an R-scheme. Let f : A → S be a semi-abelian scheme over S. We say that
A has complex multiplication (CM) by O of type (r, s) if there is a homomorphism
ι : O → EndS(A) such that with the induced O-action on the coherent sheaf LieSA is of
type (r, s). So r + s must equal the relative dimension of A over S. We denote by ωA/S
the OS-dual of LieSA. If A has CM by O, then there is a decomposition

ωA/S = ω+
A/S ⊕ ω

−
A/S

with ω+
A/S (resp. ω−A/S) locally free of rank r (resp. of rank s) over OS .

If S = Spec C and A = VR/L, then ωA/S ∼= V 1,0
C , ω+

A/S
∼= V +

R , ω−A/S
∼= V

−
R and

H1(A,OA) ∼= V 0,1, H1(A,OA)+ ∼= V
+
R, H1(A,OA)− ∼= V −R .
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5.3.3. K-level structures. Suppose now that S is locally noetherian and A is an abelian
scheme with CM by O of type (n, n). Let λ : A → A∨ be a polarization of A. Let s be
a geometric point of S. For any prime `, consider the Tate module(s)

T`As := lim←−
r

As[`
r] and V`As := T`As ⊗Q,

which are π1(S, s)-modules. Then T`As is equipped with a natural Z`(1)-valued symplec-
tic pairing (−,−)` induced by λ and the Weil-pairing. This extends to a Q`(1)-valued
pairing on V`As. These pairings are preserved by the action of the fundamental group
π1(S, s). We equip V`As with the K`-Hermitian form defined by

< x, y >`:= (ι(δK)x, y)` + δK · (x, y)`

for all x, y ∈ V`As. The choice of a K`-basis of V`As defines an isomorphism η`,s of Vn,` :=
K2n
` with V`As and endows Vn,` with a Hermitian form. We consider such isomorphisms

where this Hermitian form is a scalar multiple of that defined by the Hermitian matrix
δKwn (that is, δKψn) (then η`,s induces a homomorphism jη`,s : π1(S, s)→ Gn(Q`)).

Let K ⊆ G(Af ) be as in §5.2.2 and let ΣK be the finite set of primes ` such that K`

is not hyperspecial. We assume that all ` ∈ ΣK are invertible in R. Let ηs =
∏
`6=p η`,s

with each η`,s a K`-linear isomomorphism Vn,`
∼→ V`As as above. Then G(Ap

f ) acts on

the right on the set of such ηs, and π1(S, s) acts on the left. A K-level structure is a
Kp :=

∏
6̀=pK`-orbit η̄s that is stable under the action of π1(S, s). (These are just the

Kp-orbits of those ηs such that the image of jη`,s is contained in K` for all ` 6= p.) If s and
s′ are geometric points on the same connected component of S then there is a canonical
bijection between the set of K-level structures η̄s and the set of K-level structures η̄s′
(cf. [Lan08, 1.3.7.11]). We say that η̄ = (ηs), s running over the geometric points of
S, defines a K-level structure on A if each η̄s does and if for any two geometric points
s and s′ on the same connected component of S the K-level structures η̄s and η̄s′ are
canonically identified.

5.3.4. S-quadruples. For simplicity, let R = O(p) be the localization of O at (p). Suppose

K = K0
pK

p. For each locally noetherian R-scheme S, we consider quadruples (A, λ, ι, η)
over S where

• A is an abelian scheme over S of relative dimension n;
• λ is a prime-to-p polarization of A;
• ι : O → EndS(A) is a homomorphism giving A the structure of an abelian

scheme with CM by O of type (n, n) (in this special case this is equivalent to the
determinant condition ‘(det)’ in [Hi99, Ko92]) and satisfying ι(a)∨ ◦λ = λ ◦ ι(ā);
• η̄ is a K-level structure (relative to λ).

We define an equivalence relation on such quadruples by setting (A, λ, ι, η) ∼ (A′, λ′, ι′, η′)

if there exists a prime-to-p isogeny A
f→ A′ such that λ = rf∨◦λ′◦f for some r ∈ Z×(p),>0,

f ◦ ι(a) = ι′(a) ◦ f for all a ∈ O, and f ◦ η̄ = η̄′. Recall that a prime-to-p isogeny is
an invertible element of HomS(A,A′) ⊗ Z(p) and a prime-to-p polarization of A is a
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prime-to-p isogeny φ ∈ HomS(A,A∨) such that φ induces a polarization of As for each
geometric point s ∈ S.

For S an R[1/p]-scheme we can also consider quadruples as above but without requiring
Kp to be hyperspecial and allowing λ to be any polarization. The equivalence relation
is similarly adjusted to allow f to be any isogeny and merely requiring r ∈ Q>0. For
K = K0

pK
p there is an obvious map from the first collection of equivalence classes to the

second; this is a bijection.

5.3.5. Kottwitz models. We continue to let R = O(p). Assume K = K0
pK

p is neat.
For each locally noetherian R-scheme S, let FK(S) be the set of equivalence classes
of quadruples (A, λ, ι, η)/S for the relation ∼. The association S 7→ FK(S) defines a
contravariant functor from the category of locally noetherian R-schemes to the category
of sets. By a theorem of Kottwitz [Ko92] the functor FK is representable by a smooth,
quasi-projective scheme SG(K)/R whose C-points are isomorphic to ShG(K)(C) as a
C-analytic variety: in the notation of loc. cit. one takes B = K, OB = O, ∗ to be the
non-trivial automorphism of K, V = K2n, (−,−) the trace of the Hermitian pairing
associated to δKwn (so (x, y) = traceK/Q(xδKwn

tȳ)), and Λ0 = O2n
p ⊂ V ⊗Qp (this is

a self-dual Zp-lattice as p splits in K); then C = EndK(V ) = M2n(K), and the G of
loc. cit. is Gn; one takes for the ∗-homomorphism C→ C ⊗R the R-linear extension of
the map z 7→ h(z), h being as in 5.2.2. Note that K0

p is the stabilizer in G(Qp) of Λ0.

The scheme SG(K), being the solution to a PEL moduli problem, is equipped with a
universal abelian schemeAK , indeed a universal quadruple (AK , λuniv, ιuniv, ηuniv)/SG(K)
(up to equivalence). Furthermore, the scheme SG(K)/R is the canonical model of the

Shimura variety associated to (G, h−1).

We also consider the similar functor on R[1/p]-schemes for any neat K. This, too,
is representable by an R[1/p]-scheme SG(K)/R[1/p] (by the same argument of Kottwitz

as before). Of course, if K = K0
pK

p this scheme is just the base change to R[1/p] of
SG(K)/R.

One may, of course, replace (Vn, ψn) with another skew-Hermitian pairing (W,ψW )
of signature (n, n) such that GU(W )(Qp) has a hyperspecial maximal compact K0

p,W

(GU(W ) being the unitary similitude group of (W,ψW )). Then, as above, associated with
an open compact subgroup K = K0

p,WK
p ⊆ GU(W )(Af ) is a smooth, quasi-projective

scheme SGU(W )(K)/R (the lattice Λ0 depends on Kp,W ). Of course, an isomorphism
(W,ψW ) ∼= (Vn, ψn) induces an isomorphism GU(W ) ∼= Gn. Assume we are given an
such an isomorphism that identifies K0

p,W with K0
p . If K ′ ⊂ GU(W )(Af ) is identified

with K ⊂ Gn(Af ), then there is a canonical isomorphism SGU(W )(K
′) ∼= SGn(K).

5.3.6. Level structures at p. For an integer s ≥ 0, we let Is = I0,s ⊂ K0
p = G(Zp)

be the Iwahori subgroup of depth s: this is the set of matrices g ∈ G(Zp) such that g
(mod ps) belongs to B(Z/psZ)×(Z/psZ)×. Let Bu be the unipotent radical of B. We let
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I1,s ⊂ I0,s be the subgroup of g such that g (mod ps) belongs to Bu(Z/psZ)× (Z/psZ)×.
Then for any open compact subgroup K = K0

pK
p we let Kt(p

s) := It,sK
p (t = 0, 1).

Let O(p) denote the localization of O at the prime p (we write O(p) for the localization to
distinguish it from the completion at p, which we denote Op). We define SG(K0(ps))/O(p)

to be the scheme over SG(K)/O(p)
classifying equivalence classes of 5-tuples (A, λ, ι, η, F•)

where (A, λ, ι, η) is a S-quadruple as above and F• : 0 = F0 ⊂ · · · ⊂ Fn is a fil-
tration of subgroups of A[ps] such that each Fi is isotropic for the Weil pairing and
Fi/Fi−1

∼= µps . Equivalence is defined by requiring the isogeny defining the equivalence
of S-quadruples to identify the filtrations. We define SG(K1(ps))/O(p)

to be the finite

scheme over SG(K0(ps))/O(p)
classifying equivalence classes of 6-tuples (A, λ, ι, η, F•, αp)

where αp is an isomorphism of the graded module attached to F• with µsps ; the notion
of equivalence is extended in the obvious way. One can easily check that SG(Kt(p

s)) is
smooth over O(p) and that SG(Kt(p

s)) is quasi-finite (but not finite) over SG(K)/O(p)
.

Furthermore, over K = O(p)[1/p] there is a canonical isomorphism of SG(Kt(p
s)) with the

scheme so-denoted in 5.3.5 (so the notation should cause no confusion); the isomorphism
is induced by the obvious map on moduli problems.

5.4. Compactifications. Following the methods of Faltings and Chai [FC], Lan [Lan08]
has constructed arithmetic toroidal and minimal compactifications of Shimura varieties
of PEL-type, so in particular of the SG(K)’s from the preceding paragraphs (there is
work of Fujiwara [Fu] that predates [Lan08]). In what follows we sketch the main points
of these constructions3, recalling properties of these compactifications needed for our
exposition of Hida theory for G. As the arithmetic minimal compatification is deduced
from the toroidal compactification, we start by recalling the latter.

In what follows, K = K0
pK

p ⊂ G(Af ) is a neat open compact subgroup. We choose a

decomposition G(Af ) = tiG(Q)giK with the gi such that gi,p ∈ K0
p and µ(gi) ∈ Ẑ×.

5.4.1. Local charts. Let r, s ≥ 0 be integers such that n = r + s. Let L0 := O2n be the
standard O-lattice in V = Vn. Let ΨV := TrK/Qδ

−1
K ψn; this is a symplectic pairing on

V . Under ΨV , L0 is self-dual. Let v1, ..., v2n be the standard basis of L and let Ws be the
s-dimensional isotropic K-space spanned by vn+r+1, ..., v2n. Let Ws,1 be the K span of

v1, .., vr, vn+1, ..., vn+r and let W ′s be the span of vr+1, ..., vn. Then W⊥s := Ws,1 ⊕Ws is
the annihilator of Ws under ΨV . The restriction ψWs,1 of ψn to Ws,1 is a skew-Hermitian
pairing and there is a canonical isomorphism (Ws,1, ψWs,1) ∼= (Vr, ψr) and so a canonical
identification of the unitary similitude group GU(Ws,1) with Gr. The decomposition
V = W ′s⊕Ws,1⊕Ws induces an embedding GU(Ws,1)×GLK(Ws) ↪→ G = Gn: (g, h) 7→
(µ(g)h∗, g, h) with µ(g) the similitude factor of g (this defines h∗). Let Pr ⊂ G be the
stabilizer of Ws. Then GU(Ws,1)×GLK(Ws) = Gr ×GLK(Ws) is a Levi factor of Pr.

3This section was written before [Lan08] was available. We made no effort to reconcile our notation
with that in loc. cit.
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Let g ∈ G(Af ) with gp ∈ K0
p and write g = γgik with γ ∈ G(Q) and k ∈ K. Let

W := Wsγ, W1 := Ws,1γ, and W ′ := W ′sγ. Then W⊥ := W1 ⊕W is the annihilator
of W under ΨV . Let P := γ−1Prγ be the stabilizer of the isotropic space W . The
isomorphism W1

∼→ Ws,1, w 7→ wγ−1 determines an isomorphism of skew-Hermitian
spaces (W1, ψW1) ∼= (Ws,1, ψWs,1), where ψW1 is the restriction of ψn to W1, and so

an isomorphism GU(W1) ∼= Gr. The group GU(W1) × GLK(W ) = γ−1(GU(Ws,1) ×
GLK(Ws))γ ⊂ G is a Levi factor of P .

Let L := (L0 ⊗ Ẑ)g−1
i ∩ V . Then L is also a self-dual O-lattice under ΨV . Let

WL := W ∩ L, X := HomZ(WL,Z), and Y := L/L ∩ W⊥. Then ΨV determines

a c-semi-linear isomorphism φ : Y
∼→ X: y 7→ (w 7→ ΨV (x, y)) (c-semi-linear in the

sense that φ(ay) = āφ(y)). Let K1 := GU(W1; Af ) ∩ giKg−1
i . Via the isomorphism

GU(W1) ∼= Gr, K1 is identified with Kr,g := Gr(Af ) ∩ gKg−1 which is of the form
K0
p,rK

p
1 . Let S1/O(p)

:= SGU(W1)(K1) ∼= SGr(Kr,g).

Let (A1, λ1, ι1, η1) be the universal quadruple over S1. Let HomO(Y,A1), HomO(X,A∨1 ),
and HomO(Y,A∨1 ) be the obvious sheaves over the big étale site over S1 (viewing X and Y
as constant group schemes with O-actions). These are representable by abelian schemes.
Let c and c∨ be the universal morphisms over HomO(X,A∨1 ) and HomO(Y,A1), respec-
tively. Then

Z := HomO(X,A∨1 )×HomO(Y,A∨1 ) HomO(Y,A1)

is the sheaf such that for an S1-scheme S, Z(S) is the set of commutative squares

X/S
c // A∨1 /S

Y/S
c∨ //

φ

OO

A1/S

λ1

OO

with c and c∨ both O-linear. As φ is an isomorphism, it is easy to see that Z is
isomorphic to HomO(X,A1) ∼= HomO(Y,A1) and so representable by an abelian scheme.
The associated universal pair of morphisms over Z is just (c, c∨) = (λ1 ◦ c∨ ◦ φ−1, c∨).

Let NP be the unipotent radical of P . Let Z(NP (Q)) be the center of NP (Q) and
let H := Z(NP (Q)) ∩ giKg−1

i . This latter group can be identified with a lattice of
Hermitian s × s-matrices: for each h ∈ H we let bh : Y × Y → d−1 be the unique
Hermitian pairing such that TrK/Qbh(y, y′) = ψV (y(h − 1), y′) and we identify h with

a Hermitian element of EndK(W ′) ∼= EndK(Y ⊗ Q) such that bh(y, y′) = yhtȳ′. Let
S := HomZ(H,Z). This is identified with the lattice of Hermitian s × s-matrices h
such that Tr (hh′) ∈ Z for all h′ ∈ H. Let S+ ⊂ S be the subset of positive semi-
definite matrices. Let Γ := GLK(W ) ∩ giKg−1

i . The group Γ acts naturally on H (via
conjugation); this induces an action of Γ on S and S+. Under the identification of S
with a lattice of Hermitian matrices this action is just γ.h = tγ̄∗hγ∗. The group Γ also
acts on Z through its natural actions on X and Y .
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Let TH be the split torus over Z defined by TH := H ⊗Z Gm. Then S is canonically
identified with the character group of TH .

Let PA1 be the Poincaré sheaf over the fiber product A∨1 ×A1/Z and P×A1
its associated

Gm-torsor. For any y, y′ ∈ Y , let [y ⊗ y′] be the character of TH corresponding to the
element of S defined by h 7→ bh(y, y′). We denote by Ξ the TH -torsor over Z such that
for any y, y′ ∈ Y , the push-forward of Ξ by [y ⊗ y′] is equal to (λ1 ◦ c∨(y)× c∨(y′))∗P×A1

as a Gm-torsor over Z. For any h ∈ S, we let L(h) be the Gm-torsor over Z obtained by
pushing forward Ξ by the character h. The pull-back of L(h) under the natural action of
γ ∈ Γ is just L(γ.h). We note that by construction there is a tautological trivialization
of the Gm-torsor (c× c∨)∗P×A1/Ξ

:

(5.4.1.a) (c× c∨)∗P×A1/Ξ

∼= Gm/(X×Y )/Ξ
.

For h ∈ S let Γ(h) ⊂ Γ be the stabilizer of h. Then Γ(h) acts naturally on H0(Z,L(h)).

Lemma 5.4.2. The group Γ(h) acts trivially on H0(Z,L(h)).

Proof. Let d be the rank of h. We assume d > 0 since the case d = 0 is trivial. Let
Y = Yh ⊕ Y h be an O-decomposition with Yh the kernel of h. Then Y h has O-rank
d. We have Z ∼= HomO(Y,A1) = HomO(Yh,A1) × HomO(Y h,A1). Let π denote the
projection to Zh := HomO(Y h,A1). As Γ(h) fixes h and so stabilizes Yh, it follows from
the neatness of K that Γ(h) acts trivially on Y/Yh. Therefore there is a commutative
diagram

Z ∼= HomO(Y,A1)
π−−−−→ Zh = Hom(Y h,A1)

γ

y id

y
Z ∼= HomO(Y,A1)

π−−−−→ Zh = Hom(Y h,A1).

We will show that L(h) = π∗L̃ for some L̃ on Zh, from which the lemma follows by the
above diagram and the properness of π.

We have h =
∑m

i=1[yi ⊗ y′i] with yi, y
′
i ∈ Y h. For each i, the map c(φ(yi)) × c∨(y′i) :

Z → A∨1 ×A1 factors through π since yi, y
′
i ∈ Y h. Therefore L([yi⊗ y′i]) is the pull-back

by π of a sheaf on Zh. As L(h) = L([y1 ⊗ y′1])⊗ · · · ⊗ L([ym ⊗ y′m]) it follows that L(h)
is also a pull-back by π of a sheaf on Zh.

Torus embeddings. Let H+
R ⊂ (H ⊗R)+ denote the cone of positive semi-definite Her-

mitian forms on Y ⊗ R whose radical is the R-span of a Q-subspace of Y ⊗ Q. Let
Σ := {σ} be a rational polyhedral cone decomposition of H+

R. Associated with each
σ ∈ Σ is a torus embedding

TH ↪→ TH,σ := Spec Z[S ∩ σ∨],

where σ∨ ⊂ S ⊗R is the dual cone of σ. As σ varies in Σ, the TH,σ glue to form TH,Σ,
yielding the torus embedding associated with Σ: TH ↪→ TH,Σ. If Σ is Γ-admissible (that
is, the action of Γ on H extends to a permutation of the cones σ in Σ), then functoriality
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yields an action of Γ on TH,Σ with respect to which the torus embedding TH ↪→ TH,Σ is

equivariant. It is known that smooth Γ-admissible rational cone decompositions of H+
R

exists.

Local compactification data. We now describe the degeneration datum associated with g
and a smooth Γ-admissible rational polyhedral cone decomposition Σ of H+

R. Let

ΞΣ := Ξ×TH TH,Σ,

and let S be the formal completion of ΞΣ along the complement ∂TH,Σ := TH,Σ\TH . From
the dataA1, λ1, X, Y, c, c

∨ and the trivialization (5.4.1.a) we obtain over any formal affine
subscheme SpfR ⊂ S a degeneration datum (in the sense of [FC] but with CM by O).
From Mumford’s construction (cf. [FC] and also [Lan08]) we therefore obtain a formal
semi-abelian scheme G/SpfR together with polarization and CM by O. These glue into
a formal semi-abelian scheme G/S . The local compactification datum associated with g
and Σ is then defined as the algebraization of S/Γ (cf. [FC] and [Lan08] for the notion
of algebraization). The toroidal compactification of SG(K)/O(p)

is defined by glueing

together a suitable collection of such local compactification data.

The case r = 0. Suppose r = 0 (so s = n). Let σ ∈ Σ be a cone contained in the

interior of H+
R. Let Rσ := O(p)[[q

σ∨∩S ]] (the completion of O(p)[q
σ∨∩S ] at the ideal Iσ

generated by qσ
∨∩S/{0}). As ΞΣ = TH,Σ in this case, SpfRσ is canonically the formal

completion along the boundary of the σ-stratum Ξσ = TH,σ, so there is a canonical map
SpfRσ → S. The Mumford construction gives a semi-abelian scheme Gσ/Rσ (together
with polarization and CM by O) that is an abelian variety over the fraction field of
Rσ and completely toric over Rσ,0 := Rσ/IσRσ; tautologically, this is the semi-abelian
scheme over Rσ associated with the pull-back to SpfRσ of the formal semi-abelian scheme
G/S .

5.4.3. Genus 2r cusps. The set of ‘cusp labels’ of genus 2r for SG(K) is defined to be

Cr(K) := (Gr(Af )×GLK(Ws))Nr(Af )\G(Af )/K,

where Nr is the unipotent radical of Pr. Here we use the identification GU(Ws,1) = Gr.
The class of some g ∈ G(Af ) in Cr(K) is denoted [g]r, or even [g] if r is implied by the
context or not important.

5.4.4. The toroidal compactification. We denote by SG(K)/O(p)
the arithmetic toroidal

compactification over O(p) associated with a (fixed once and for all) well-chosen smooth

rational polyhedral cone decomposition of
∏
gH

+
g,R, where H+

g,R = H+
R is the set of

semi-definite Hermitian matrices associated with g as in 5.4.1. Here g is running over
representatives of the various cusp labels [g]r ∈ Cr(K) for 0 ≤ r ≤ n (which we always
take so that gp ∈ K0

p). The polyhedral cone decomposition Σg of H+
g,R is taken to

be Γg-stable (Γg being the group Γ associated with g and r above). Furthermore, if
[g]r = [g′]r′ , r

′ < r, then Σg is required to be identified (in the obvious way) with the cone
decomposition in Σg′ of the corresponding face of H+

g,R. The toroidal compactification
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is obtained by gluing the local compactification data attached to the various g. (For the
details of the gluing procedure see [FC] or [Lan08].)

For a well-chosen Σ, the toroidal compactification SG(K)/O(p)
is a proper smooth

scheme over O(p) containing SG(K) as an open subscheme. The complement of SG(K)

is a relative Cartier divisor with normal crossings. The scheme SG(K) is equipped with
a quadruple (G, λ, ι, η) with G a semi-abelian scheme, a homomorphism λ : G → G∨, and
an injective homomorphism ι : O → End(G) satisfying ι(a)∨ ◦ λ = λ ◦ ι(ā) such that
(G|SG(K), λ|SG(K), ι, η) is the universal quadruple over SG(K) (η is just the universal K-

level structure on G|SG(K)). The toroidal compactification SG(K) is stratified by locally
closed subschemes:

SG(K) = t0≤r≤n t[g]∈Cr(K) tσ∈Σ
H+
g,R

/ΓgZ([g], σ),

where for a given g and r, ΣH+
g,R

is the fixed polyhedral cone decomposition of H+
g,R and

Γg is the group associated with g and r in 5.4.1. If r = 0 and σ ∈ ΣH+
g,R

is a cone in

the interior of H+
g,R, then the formal completion of SG(K) along the stratum Z([g], σ) is

canonically Spf(RΓ
σ). Via the induced map SpecRσ → SG(K), the semi-abelian scheme

Gσ/Rσ (together with its polarization and CM-by-O structure) is just the pull-back of
the quadruple (G, λ, ι, η).

Level structure at p. Of course if O(p) is replaced with O(p)[1/p] = K, then the con-

struction of the toroidal compactification can be done even for K not of the form K0
pK

p.
These compactifications were known before [FC] and [Lan08]: see [Ha89]. In particular
toroidal compactifications of SG(K1(ps)) and SG(K0(ps)) exist over K.

5.4.5. The minimal compactification. Let ω be the pull back of ΩG/SG(K) by the zero

section of G/SG(K). The minimal compactification of SG(K) over O(p) is S∗G(K) :=

Proj(⊕mH0(SG(K), det(ω)m)). There is a canonical morphism π : SG(K) → S∗G(K),
and the minimal compactification is equipped with a line bundle, also denoted det(ω),
and defined to be the direct image of det(ω) under π. By the arguments in [FC, V] (see
also [Lan08, 7]) we have the following.

Theorem 5.4.6.

(i) det(ω) is ample on S∗G(K).
(ii) The scheme S∗G(K) is a normal projective scheme of finite type over O(p). It has

a natural stratification by locally closed subschemes indexed by tnr=0Cr(K). The
stratum S[g] indexed by [g] ∈ Cr(K) is naturally isomorphic to SGU(W1)(K1) ∼=
SGr(Kr,g), where W1, K1, Kr,g, and the isomorphism are associated with g as in
5.4.1. In particular, there is a natural decomposition

S∗G(K) =

n⊔
r=0

⊔
[g]r∈Cr(K)

SGr(Kr,g), Kr,g = Gr(Af ) ∩ gKg−1.
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For any [g]r ∈ Cr(K), the Zariski closure of the stratum S[g]r in S∗G(K) is⊔
r′≤r

⊔
[h]∈Cr′ (K)

[h]r=[g]r

S[h],

which is naturally isomorphic to the minimal compactification of S[g]r
∼= SGr(Kr,g).

We will write S[g] for the locally closed subscheme of S∗G(K) attached to some class
[g] ∈ Cr(K) by this theorem and will write S∗[g] for the Zariski closure of S[g] in S∗G(K).

Such a component will be called a rational component of genus 2r. The local structure of
the minimal compactification at the boundary component S[g] is given by the following
theorem whose proof is similar to [FC, V.2.7] (see also [Lan08, 7.2.3.11]); the r = 0 case
has already been noted.

Theorem 5.4.7. Let r ∈ {0, . . . , n− 1}. Let x̄ be a geometric point of S[g]r . The strict
henselization OS∗G(K),ˆ̄x of the structure sheaf at x̄ is canonically isomorphic to the ring

of formal power series ∑
h∈S+

a(h)qh : a(h) ∈ H0(Z,L(h))x̄


Γ

,

where Z, S+, Γ, and L(h) (h ∈ S+) are associated with g as in 5.4.1. The invariance
under Γ is equivalent to a(γ.h) = γ∗a(h) for all γ ∈ Γ.

Remark 5.4.8. We identify S[g] with SGr(Kr,g) via the natural isomorphism between the
two shemes (this depends on g). Then the isomophism in the preceding theorem can be
written as follows. Let s = n − r. Let Γ[g] := GLK(Ws) ∩ gKg−1 and let S+

[g] comprise

those Hermitian matrices h in Mn(K) such that Trhh′ ∈ Z for all Hermitian matrices
h′ such that

(
1 h′

1

)
∈ Z(Nr(Q)) ∩ gKg−1 (Nr begin the unipotent radical of Pr). If

g = γgik, then Γ[g] = γΓγ−1 and S+
[g] is identified with a similar conjugate of S+. Let

Z[g] be the abelian scheme over SGr(Kr,g) corresponding via the natural isomorphism

S[g]
∼= SGr(Kr,g) to the scheme Z over S[g] associated with g. For h ∈ S+

[g] we write L(h)

for the line bundle on Z[g] defined as in 5.4.1. It is then easy to see that the theorem
implies an isomorphism (canonical up to the chosen identifications) of OS∗G(K),ˆ̄x with

∑
h∈S+

[g]

a(h)qh : a(h) ∈ H0(Z[g],L(h))x̄


Γ[g]

,

where invariance by α ∈ Γ[g] means αa(h) = a(α.h) = a(tᾱ∗hα∗).

5.4.9. The stratification of the minimal compactification. Let S := SG(K) and S∗ :=
S∗G(K). For q ∈ {0, . . . , n−1} we denote by ∂qS∗ the union of the genus 2r components of
the boundary of S∗ for those r such that r < n−q. In particular, S∗\∂0S∗ = SG(K). By
Theorem 5.4.6, ∂qS∗ is a closed subscheme of S∗. We denote by IqS∗ the corresponding
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sheaf of ideals in OS∗ and we put IqS := π∗IqS∗ where π : S → S∗ is the canonical
projection. By definition, for any q, q′ ∈ {0, . . . , n − 1} with q′ > q there is an exact
sequence

(5.4.9.a) 0→ IqS∗ → I
q′

S∗ →
⊕

[g]∈Cn−q−1(K)

ι[g],∗I
q′−q−1
S∗

[g]
→ 0,

where ι[g] : S∗[g] ↪→ S
∗ is the inclusion map.

5.5. Automorphic forms. We denote by Q = Qn the Siegel parabolic of Un; this is the
stabilizer in Un of the rank n sublattice of L0 = O2n spanned by the last n elements of
the canonical basis. It has a standard Levi factor MQ that is isomorphic to ResO/ZGLn
via the diagonal embedding g 7→ diag(tḡ−1, g). We denote by H the base change of
MQ to R = O(p). Then H ∼= GLn/R × GLn/R, the isomorphism being induced by

R⊗Z R
∼→ R×R, x⊗ y 7→ (xy, x̄y).

5.5.1. Automorphic Sheaves. Let e be the zero section of the ‘universal’ semi-abelian
scheme G over SG(K)/R. As before, we let ω := e∗Ω1

G/SG(K)/R
= ωG/SG(K)/R

. This is a

locally free coherent sheaf on SG(K)/R of rank 2n. Recall that the complex multiplication
by O induces a decomposition

ω = ω+ ⊕ ω−

of type (n, n), where ω+ and ω− are locally free of rank n. Let

E± := IsomSG(K)(O
n
SG(K)

, ω±).

Then E := E+ ⊕ E− is an H-torsor over SG(K); the H-action can be described in the
following way. For U ⊆ SG(K), i = (i+, i−) ∈ E(U) with i± trivializations i± : O(U)n ∼=
ω±(U), h = (h+, h−) ∈ H(O(U)) = GLn(O(U))×GLn(O(U)), and v± ∈ O(U)n we set

(h.i)(v+, v−) := (i+(v+h+), i−(v−h−)).

For any algebraic representation of H/R on a free R-module V , we define an automorphic
sheaf

ωV := E ×H V.

This is a locally free OSG(K)-module.

Let BH := H∩Bn; this is identified with the lower-triangular Borel of H = GLn×GLn.
We fix a parametrization of the dominant weights of the diagonal torus T = Tn of Un/R
with respect to the pair (BH , T ) as follows. Let k1, . . . , k2n ∈ Z such that k1 ≥ k2 ≥
· · · ≥ k2n and k := (kn+1, . . . , k2n; kn, . . . , k1). This defines a dominant weight for the
above pair by the rule

(5.5.1.a) [k] : diag(t1, . . . , t2n) 7→ t
kn+1

1 · · · tk2n
n · tknn+1 · · · t

k1
2n.

We denote by ωk the automorphic sheaf associated as above to the algebraic represen-
tation ρk of H of highest weight [k] with respect to the pair (BH , T ). Using the identifi-
cation H = GLn ×GLn defined previously, we can describe the algebraic representation
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ρk of H as

ρk(g+, g−) := ρ(kn,...,k1)(g+)⊗ ρ(−kn+1,...,−k2n)(g−),

where for any increasing sequence of integers a1 ≤ . . . ,≤ an, we have denoted by
ρ(a1,...,an) the dual of the irreducible algebraic representation of GLn with highest weight
with respect to the lower-triangular Borel subgroup being the character of the diagonal
torus given by t := diag(t1, . . . , tn) 7→ ta := ta1

1 · · · tann . Recall that ρa can be realized as
the space of algebraic maps φ : GLn → A1 such that φ(n−tg) = taφ(g) for all g ∈ GLn,
t diagonal, and n− lower-triangular unipotent. Note that t = diag(t1, ...., t2n) ∈ Un/R =

GL2n/R is identified with diag(tn+1, ...., t2n)× diag(t−1
1 , ..., t−1

n ) ∈ H.

If we take R a K-algebra, then these constructions apply to the toroidal compactifica-
tions SG(Kt(p

s)), t = 0, 1.

5.5.2. Complex uniformization of ωk. We recall the classical definition of the above vec-

tor bundles ωk over SG(K)/C. For α =

(
A B
C D

)
∈ G(R) and Z ∈ Hn, put

µα(Z) := CZ +D, κα(Z) := CZ +D

and

J(α,Z) := (µα(Z), tκα(Z)−1)

Then k∞ 7→ J(k∞, i) defines a group homomorphism from C∞ := K+
∞Z∞ = K+

∞R× to
H(C) = GLn(C) × GLn(C). The automorphic vector bundle ωk on SG(K)/C can be
described as the sheaf of holomorphic sections of the projection

G+(Q)\X+ ×G(Af )× Vk(C)/KC∞ → G+(Q)\X+ ×G(Af )/KC∞ = ShG(K)(C),

where Vk(C) is the space of the representation

k∞ 7→ ρk ◦ J(k∞, i)(5.5.2.a)

of C∞. This follows from the complex uniformization of the universal abelian variety
over ShG(K)(C) (as explained for example in [Sh00, I]). At least if n > 1, the global
sections of this sheaf are the holomorphic Vk(C)-valued Hermitian modular forms. This
follows from the Koecher principle. When n = 1 the modular forms are those sections
that extend holomorphically over the toroidal compactification (that is, are sections of ωk
over SG(K)/C). The classical scalar-valued modular forms of weight k ≥ 0 correspond

to k = (0, . . . , 0; k, . . . , k). The action of the center R× ⊂ Z∞ via the representation

(5.5.2.a) is t 7→ t|k| with |k| := k1 + · · ·+ k2n.

Remark. In the notation of [Ha00], our vector bundle ωk is the one of weight τ :=
(kn+1, . . . , k2n; k1, . . . , kn; |k|).

Let f ∈ H0(SG(K)/C, ωk) be a modular form. Then f defines a function f : Hn ×
G(Af ) → Vk(C) that is holomorphic in the first variable. For any such function, for
γ ∈ G+(R) put

(f |kγ)(Z) := µ(γ)(
∑2n
i=1 ki)/2ρk(J(γ, Z))−1f(γ(Z)).
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The condition that f be a modular form is then

f(−, g)|kγ = f(−, g) ∀γ ∈ ΓK,g := gKg−1 ∩G+(Q)

together with the condition that f |kγ be bounded as a function of Z for all γ ∈ G+(Q)
(this is automatic if n ≥ 2 by the Koecher priniciple).

q-expansions of classical forms. Any modular form f of weight k has Fourier expansions

(5.5.2.b) f(Z, g) =
∑

h∈L∨K,g ,h≥0

a(h, g)e(TrhZ), a(h, g) ∈ Vk(C),

with h running over the positive semi-definite Hermitian matrices in the lattice L∨K,g of

Hermitian matrices h ∈ M2(K) such that tr hh′ ∈ Z for all Hermitian matrices h′ such
that

(
1 h′

1

)
∈ ΓK,g. Note that the positive semi-definite matrices in L∨K,g comprise the

set denoted S+
[g]0

in 5.4.8.

5.5.3. Spaces of automorphic forms. As before, let S := SG(K)/O(p)
and S∗ := S∗G(K)/O(p)

.

For a general weight k and any O(p)-algebra R put

Mn
k(K,R) := H0(S/R, ωk)

and for q ∈ {0, ..., n− 1} put

Mn,q
k (K,R) := H0(S/R, ωk ⊗OS I

q
S).

We also have

(5.5.3.a)
Mn

k(K,R) = H0(S∗/R, π∗ωk)
Mn,q

k (K,R) = H0(S∗/R, π∗ωk ⊗OS∗ I
q).

It is often more convenient to work with the minimal compactification. The drawback is
that the sheaf π∗ωk is generally not locally free and this causes some complications. But
on the other hand, this sheaf is independant of the choice of the toroidal compactification.
In fact, we have the following description of its stalks, analogous to Theorem 5.4.7.

Proposition 5.5.4. Let x̄ be a geometric point of a stratum S[g] of S∗G(K)/R at a cusp
label [g] ∈ Cr(K).

(i) The completion of the stalk (π∗ωk)x̄ is canonically isomorphic to the module of
formal power series∑

h∈S+

a(h)qh : a(h) ∈ H0(Z,L(h))x̄ ⊗R ρk(R)


Γ

,

where Z, S+, Γ ⊂ γH(K)γ−1, and L(h) (h ∈ S+) are associated with g = γgik
and r as in 5.4.1. The Γ-invariance is equivalent to a(α.h) = ρk(γ

−1αγ)−1a(h)
for all α ∈ Γ and h ∈ S+.
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(ii) Let q ∈ {0, ..., n− 1}. The completion of the stalk (π∗ωk ⊗OS Iq)x̄ is canonically
isomorphic to the module of formal power series

∑
h∈S+

rank(h)≥n−r−q

a(h)qh : a(h) ∈ H0(Z,L(h))x̄ ⊗R ρk(R)


Γ

.

Remark 5.5.5. Let Γ[g] and S+
[g] be as in 5.4.8, and for h ∈ S+

[g] let Γ[g](h) ⊆ Γ be

the stabilizer of h. It follows from the preceding proposition that there is a canonical
isomorphism

(π∗ωk ⊗OS∗ I
q)x̄ ∼=


∑
h∈S+

[g]
rank(h)≥n−r−q

a(h)qh : a(h) ∈ H0(Z[g],L(h))x̄ ⊗R ρk(R))


Γ[g]

.

When p is invertible in R (so R is a K-algebra) the above definitions and results also
hold for the automorphic sheaves on the compactifications SG(Kt(p

s))/R, t = 0, 1.

Functorial character of automorphic forms. From the definition of the spaces of auto-
morphic forms it follows that an automorphic form in Mn,q

k (K,R) functorially associates

an element of ρk(S) to a tuple (A/S , λ, ι, η, (ω
+,ω−)) with (A/S , λ, ι, η) an S-quadruple

for an R-algebra S and ω± an ordered S-basis of the global sections of ω±/S .

The Koecher principle. The (algebraic) Koecher principle is the observation that if R is
flat over some normal O(p)-algebra and if n > 1 then the canonical map

H0(S∗/R, π∗ωk)→ H0(SG(K)/R, π∗ωk)

is an isomorphism. In particular, the functorial character of automorphic forms alluded
to above actually characterizes them. The Koecher principle can be proved by the
arguments given for the symplectic case in [FC] (see also [Lan08, 7.2.3.9]).

5.5.6. Automorphic forms with nebentypus. For any character ψ : T (Z/pnZ) → Q
×

we
let O(p)(ψ) ⊂ Q be the extension of O(p) generated by the values of ψ. The canonical
projection φ : SG(K1(ps))→ SG(K0(ps)) is a Galois cover with Galois group T (Z/psZ).
We define automorphic sheaves

ωk,ψ/SG(K0(ps))×O(p)(ψ) = φ∗ωk/SG(K1(ps))×O(p)(ψ)[ψ]

to be the sheaves associate to the presheaves of sections that transform by ψ under
the action of T (Z/pnZ). For any O(p)(ψ)-algebra R in which p is not a zero divisor

in R, we define Mn,q
k (K1(ps), ψ,R) to be the inverse image of Mn,q

k (K1(ps), R[1/p]) in

H0(SG(K0(ps))/R, ωk,ψ). Clearly, the elements of Mn,q
k (K0(ps), ψ,R) have a functorial

character similar to those of Mn,q
k (K,R).
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5.5.7. Siegel operators. Let [g] ∈ Cr(K) and let i : S∗[g] ↪→ S∗G(K) be the corresponding

closed immersion. The Siegel operator for [g] is the restriction map

Φ[g] : H0(S∗G(K), π∗ωk)
res→ H0(S∗[g], i

∗π∗ωk).

By (5.5.3.a), Mn,q
k (K,R) is the submodule of forms f ∈Mn

k(K,R) such that Φ[g]f = 0

for all [g] ∈ Cn−q−1(K).

A better understanding of the Siegel operator requires a better description of its target.
We give such a description in the case [g] ∈ Cr(K) for r = n−1. This requires additional
notation. For [g] ∈ Cn−1(K) let W , P , and Γ be associated with g as in 5.4.1. From W
being one-dimensional, K imaginary quadratic, and K neat, it follows that Γ is trivial.
In what follows we make use of the identification S∗[g] = S∗Gr(Kr,g).

Let N[g] := Nr(Q)∩ gKg−1 ∩H(K), where Nr is the unipotent radical of the parabolic
Pr and, as before, H is the base change to K of the standard Levi factor of the Siegel
parabolic of U . Recall that there is a canonical isomorphism Pr/Nr

∼= Gr × GLK(Ws)
(s = n − r). Let H[g] be the image of Pr(Q) ∩ gKg−1 in Gr(Q) via the canonical
projection Pr(Q) → Pr(Q)/Nr(Q) → Gr(Q) intersected with Hr(K) (Hr denoting the
base change to O of the standard Levi factor of the Siegel parabolic of Gr). As K is neat

and r = n− 1, (Pr(Q)∩ gKg−1 ∩H(K))/N[g]
∼→ H[g]. Therefore, if ρ is a representation

of H(K) then the coinvariant module ρN[g]
is a representation of H[g].

Proposition 5.5.8. Let [g] ∈ Cn−1(K). For any Op-algebra R there is a canonical
isomorphism

i∗(π∗ωk ⊗S∗ I1) ∼= (π[g])∗(E[g] ×H[g] ρk(R)N[g]
)⊗OS∗

Gn−1
(Kn−1,g)

I0
S∗Gn−1

(Kn−1,g),

where E[g] is the Hn−1-torsor on a toroidal compactification SGn−1(Kn−1,g) defined just

as E in 5.5.1 and π[g] : SGn−1(Kn−1,g) → S∗Gn−1
(Kn−1,g) is the canonical morphism. In

particular, if L is a field extension of Kp then there is a canonical isomorphism

i∗(π∗ωk/L ⊗OS∗ I
1) ∼= (π[g])∗ωk′/L ⊗OS∗

Gn−1
(Kn−1,g)

I0
S∗Gn−1

(Kn−1,g)

with k′ the highest weight of the algebraic representation H0(Nn−1/Op
∩H, ρk) of Hn−1 =

GLn−1 ×GLn−1/Op
. Especially, there is a canonical identification

H0(S∗[g], i
∗(π∗ωk/L ⊗OS∗ I

1)) = Mn−1,0
k′

(Kn−1,g, L).

Proof. To prove the first isomorphism it suffices to show that there is a canonical isomor-
phism between the completions of the stalks of the two sheaves. Let x̄ be a geometric
point attached to a genus 2r ≤ 2n − 2 cusp label [g′] such that S[g′] ⊂ S∗[g]. Without

loss of generality we may assume g′ = g. We apply Proposition 5.5.4 as intepreted in
Remark 5.5.5. The completion of the stalk of π∗ωk⊗OS∗ I1 at x̄ is canonically identified

with the module of formal power series
∑

h∈S+
[g]r

a(h)qh such that

(i) a(h) ∈ H0(Z[g]r ,L(h))⊗R ρk(R) which are Γ[g]r -invariant;
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(ii) a(h) = 0 if rank(h) < n− r − 1.

The restriction to S∗[g] (with [g] = [g]n−1) corresponds to reducing modulo the ideal of

formal power series with coefficients supported on those h with W ′1∩kerh = 0 (W ′1 = W ′s
with s = 1) and projecting from ρk to the N[g]-coinvariant module (ρk)N[g]

. This means
that the stalk at x̄ of the restriction is identified with the module of formal power series

∑
h∈S+

[g]r
rank(h)>n−r−2,W ′1⊆kerh

a(h)qh : a(h) ∈ ρk(R)N[g]
⊗R H0(Z[g]r ,L(h))



Γ[g]r∩Pn−1(Q)

.

(Note that Γ[g]r(h) ⊆ N[g].) The rank condition together with the condition on the kernel
forces rank(h) = n− r − 1 in these series.

Let [g]′r be the genus 2r cusp label for SGn−1(Kn−1,g) attached to g, and let S+
[g]′r

be the

lattice of associated Hermitian matrices in Mn−1(K). This is naturally identified with the
sublattice of h ∈ S+

[g]r
with W ′1 ⊆ kerh. Let Γ[g]′r

⊆ Gn−1(Q) be the subgroup of Hn−1(K)

associated to [g]′r. Then the inclusion S+
[g]′r

↪→ S+
[g]r

described above induces a bijection of

S+
[g]′r
/Γ[g]′r

with the classes in S+
[g]r
/Γ[g]r represented by some h with kerh ⊇W ′1; that is,

with the set of classes of h ∈ S+
[g]r

with kerh = W ′1 modulo Γ[g]r ∩ Pn−1(Q) = Γ[g]′r
. Let

Z[g]′r
be the abelian scheme over SGr(Kr,g) associated to [g]′r, and for h ∈ S+

[g]′r
let L(h)′ be

the associated line bundle on Z[g]′r
. It is easily seen that there is a canonical identification

H0(Z[g]r ,L(h)) = H0(Z ′[g]r ,L(h)′) (this is immediate from W ′1 ⊆ W ′r). Therefore, the

completion of the stalk at x̄ of the restriction i∗(π∗ωk ⊗OS∗ I1) is canonically identified
with the module of power series

∑
h∈S+

[g]′r
rank(h)=n−r−1

a(h)qh : a(h) ∈ ρk(R)N[g]
⊗R H0(Z[g]′r

,L(h)′)


Γ[g]′r

.

But by Remark 5.5.5, this is just the completion of the stalk at x̄ of (π[g])∗(E[g] ×H[g]

ρk(R)N[g]
)⊗OSGn−1

(Kn−1,g)
I0
SGn−1

(Kn−1,r)
. The rest of the proposition is clear.

Corollary 5.5.9. For any weight k there is an exact sequence:

0→Mn,0
k (K,C)→Mn,1

k (K,C)→
⊕

[g]∈Cn−1(K)

Mn−1,0
k′

(Kn−1,g,C),

where the last arrow is the direct sum of the Siegel operators Φ[g].
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Proof. The exact sequence (5.4.9.a) gives rise to an exact sequence

0→ π∗I0
S∗ → π∗I1

S∗ →
⊕

[g]∈Cn−1(K)

π∗i[g],∗I0
S∗

[g]
→ 0

where i[g] : S∗[g] ↪→ S
∗ is the canonical inclusion. Since ωk is locally free over S, there is

then an exact sequence

0→ π∗I0
S∗ ⊗OS ωk → π∗I1

S∗ ⊗OS ωk →
⊕

[g]∈Cn−1(K)

π∗i[g],∗I0
S∗

[g]
⊗OS ωk → 0.

The desired exact sequence follows easily from taking global sections and from the pre-
ceding proposition.

5.5.10. q-expansions. Let [g] ∈ C0(K). The q-expansion at [g] of some f ∈Mn
k(K,R) is

its image in the completion of the stalk (π∗ωk)x̄ at the geometric point x̄ corresponding
to [g] (S[g] is a point) under the identification of this stalk with the module of formal
power series as in Proposition 5.5.4(i). Equivalently, let σ ⊂ ΣH+

g,R
be an interior cone

in the rational polyhedral cone decomposition used to define SG(K). Recall that there
is a canonical map SpecRσ → SG(K). The q-expansion of f at g can also be defined
as the evaluation of f on the tuple obtained by pulling back the quadruple (G, λ, ι, η) to
SpecRσ ⊗O(p)

R; the pull-back Gσ/Rσ of G has a canonical basis of ω±/Rσ and the choice

of a representative g determines an ordering. The q-expansion of f at [g] is independent

of the chosen cone σ and so actually takes values in O(p)[[q
S+

[g] ]] ⊗O(p)
ρk(R). Note that

S+
[g] = ∩σ∈Σ

H+
g,R

(σ∨ ∩ S[g]). The equivalence of these definitions is essentially formal

(the identification of the stalk with a subring of a ring of power series is via Mumford’s
construction). The reader can consult [FC] for details in the symplectic case, at least
for scalar weights. We will write fg(q) for this q-expansion of f at the cusp [g] ∈ C0(K)
(note that it depends on the choice of the representative g).

There are injective maps

Mn
k(K,R),Mn,q

k (K,R) ↪→
⊕

g∈G(Q)\G(Af )/K

O(p)[[q
S+

[g] ]]⊗O(p)
ρk(R), f 7→ (fg(q)),

and if A ⊆ R then the submodules Mn
k(K,A) and Mn,q

k (K,A) consist precisely of those

f with each fg(q) having coefficients in A (this is the q-expansion principle). These facts
can be established by the same arguments given in [FC] for the symplectic case and
scalar weights (see also [Lan08, 7.1.2.15]).

If R = C, then replacing qh with e(TrhZ), Z ∈ Hn, in the q-expansion of f ∈Mk(K,C)
at a cusp [g] yields the Fourier expansion of f(Z, g) defined in (5.5.2.b); a detailed
explanation of this for the analytic and algebraic expansions for the general PEL case
can be found in [Lan10]. In particular, if R is a subring of C, then f ∈Mk(K,C) belongs
to Mk(K,R) if and only if its Fourier expansion at each genus 0 cusp [g] (equivalently, one
such cusp on each connected component of S∗G(K)) has coefficients in R. Similarly, if p is
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not a zero-divisor in R, then Mn
k(K0(ps), ψ,R) consists of forms in Mn

k(K0(ps), ψ,R[1/p])

with q-expansion coefficients in R at all genus 0 cusps in C0(K0(ps)) (equivalently, one
such cusp on each connected component of S∗G(K)).

The image of the Siegel operators can be seen on the q-expansions of modular forms
as follows:

Φ[g](f)(W, g′) =
∑

h=
(
h′ 1
1 0

)
∈S+

[g′g]

a(h, g′g))e(Trh′W ).

This is immediate from the definitions.

5.5.11. Hecke algebras. Let S be a finite set of primes containing the primes that ramify
in K. For ` 6∈ S we let R` := C∞c (K0

` \G(Q`)/K
0
` ,Z). This is the local spherical Hecke

algebra at `. For any weight k, there is a natural action of R` on Mk(K,C), defined via

the usual action of correspondances. When n = 2, in 9.5.1 below R` is denoted H̃K0
`

and

we define a subalgebra H′
K0
`

with specified generators. For later use we let R′` = H′
K0
`

if n = 2, and otherwise we let R′` = R`. We define a global Hecke algebra RS := ⊗′R′`
to be the restricted tensor product taken with respect to the unit elements of each R′`.

This acts on Mn,q
k (K,C) through the action of the R′`s. We define hS,qk (K,Z) to be the

image of RS in EndC(Mn,q
k (K,C)).

Let π be a holomorphic cuspidal representation of G(A) of weight k and level K
such that kn − kn−1 ≥ 2n. This means that π = π∞ ⊗ πf is such that πKf 6= 0 and

π∞ = Πk is the holomorphic discrete series representation with lowest K+
∞Z∞-type given

by k∞ 7→ ρk◦J(k∞, i). We denote by λπ the algebra homomorphism hS,0k (K)→ C giving

the eigenvalues of the Hecke algebra acting on πKf . We will say that λπ is associated with
π. The link between λπ and the Langlands parameters of an unramified local constituent
of π can be described as follows. Let ` be unramified in K and v|`. Let χπ be the central
character of π (a character of A×K) and put ψ := χcπ. There exists a specific degree 2n
polynomial Qv(X) ∈ R`[X] such that

λπ(Qv)(q
−s
v ) = L(πv ⊗ ψv, s− (n+ 1)/2)−1,(5.5.11.a)

where L(πv ⊗ ψv, s) is the twist by ψv of the standard L-function associated with the
v-constituent of the (formal) base change to GL2n(AK) of some irreducible Un(A) con-
stituent of π. The connection with the Langlands parameters follows upon recalling
that the Langlands parameters of a spherical representation σ of GLm over a local
field with residue field of cardinality q are the complex numbers (a1, . . . , am) such that
L(σ, s) =

∏m
i=1(1− aiq−s)−1.

Remark 5.5.12. In 9.6 we make explicit the polynomials Qv(X) in the case n = 2.
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6. Hida theory for unitary groups

In this section, we review some aspects of Hida theory for the groups Gn. This theory
is nowadays well understood (see [Hi99],[Hi04],[Ur04]), but since there is no complete
reference for the case we need, we give an account, sketching proofs, of what is necessary
for our purposes.

6.1. The Igusa tower and p-adic automorphic forms. For each m > 0 we fix an
identification of group schemes µpm = Spec Z[x, x−1]/(xp

m − 1) that is compatible with

varying m. This fixes a compatible family of OS-bases x d
dx of Lie(µpm/S) for any scheme

S.

6.1.1. Some preliminaries.

Lemma 6.1.2. Let S be a Z(p)-scheme with non-empty special fiber Sp := S ×Z(p)
Fp.

Let G→ S be a semi-abelian scheme over S of relative dimension m such that G×S Sp
is ordinary. Then for any integer t > 0 such that ptOS = 0 there is an isomorphism

Homgrp−sch/S(G[pt]◦,µpt)⊗Z OS
∼→ ωG/S = HomOS (Lie(G/S),OS)

that is canonical up to the chosen identification Lie(µpt/S) ∼= OS.

Proof. Let φ : G[pt]◦ → µpt be a homomorphism of group schemes over S. Then φ

induces a homomorphism Lie(φ) : Lie(G[pt]◦/S) → Lie(µpt/S) ∼= OS , the last isomor-
phism being the fixed one. Since ptOS = 0 we have canonical identifications Lie(G/S) =
Lie(G[pt]/S) = Lie(G[pt]◦/S), and so the map φ 7→ Lie(φ) defines a homomorphism from
Homgrp−sch/S(G[pt]◦,µpt) to ωG/S . We extend it OS-linearly to get a homomorphism

(6.1.2.a) Homgrp−sch/S(G[pt]◦,µpt)⊗Z OS → ωG/S .

If G[pt]◦/S
∼= µmpt/S

, then this map is an isomorphism. Since G×S Sp is ordinary, such an

isomorphism holds étale locally over S. By faithfully flat descent, (6.1.2.a) is therefore
an isomorphism.

Proposition 6.1.3. Let S and G → S be as in the preceding lemma with m = 2n and
assume that G has CM by O. Assume also that OS is a sheaf of Op-algebras and that
ωG/S has a decomposition of the form

ωG/S = ω+
G/S ⊕ ω

−
G/S

as an OS ⊗Z O = OS ⊗O O × OS ⊗O,c O-module with ω±G/S locally free of rank n. If

ptOS = 0, then there is an étale cover S′ of S such that

Homgrp−sch(G[pt]◦,µpt)/S′
∼= (O/pt)n/S′ × (O/pt)n/S′

as schemes with O-actions.
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Proof. We may assume that S is connected. Since Homgrp−sch(G[pt]◦,µpt) is étale over

S, there exists an étale cover S′/S such that Homgrp−sch(G[pt]◦,µpt)/S′
∼= (O/pt)r/S′ ×

(O/pt)s/S′ as group schemes with an O ⊗ Z/ptZ = O/pt × O/pt-action. Since r + s =

dimG/S = 2n, it suffices to check that r = n. As OS′ is a sheaf of Op-algebras,
ω−G/S′ [p

t] = 0 and ω+
G/S′ [p

t] is locally isomorphic to (OS′ ⊗O O/pt)n. From Lemma 6.1.2,

applied with S′ in place of S, we deduce that r = n.

6.1.4. The Igusa tower. Let Kp be an open compact subgroup of G(Ap
f ) such that K =

K0
pK

p is neat. We denote by S = SK a fixed toroidal compactification of SG(K) over
Op as in §5. We let G/S be the corresponding semi-abelian scheme. We write S∗ for the
minimal compactification of SG(K) over Op. The latter is flat over Op.

We recall the definition of the Hasse invariant H. Let T be a scheme of characteristic
p and let F be the absolute Frobenius map. Let (A, λ, ι, η)/T be a T -quadruple as in
5.3.4 such that ωA/T is free over OT . Let (ωi)i := (ω1, . . . , ω2n) be an OT -basis of ω and
(η1, . . . , ηn) its dual basis. Then F ∗(η1 ∧ · · · ∧ ηn) = H(A, λ, ι, η, (ωi)i).(η1 ∧ · · · ∧ ηn)
for some H(A, λ, ι, η, (ωi)i)) ∈ Γ(T,OT ). One checks easily that the rule defining

H(A, λ, ι, η, (ωi)i) defines a global section of det(ω)p−1
SG(K)/Fp

= det(ωG/SG(K)/Fp)
p−1. The

definition of the Hasse invariant extends to semi-abelian schemes, so the Hasse invariant
H extends to a section over S/Fp (and hence to a section over the minimal compactifi-
cation over Fp). As is well-known, the complement of the zero locus of H is the ordinary
locus of S/Fp .

Since det(ω) is ample on the minimal compactification S∗, some power of H can be
lifted4 over Op. We denote by E a fixed lifting of a power Hm such that det(ω)⊗m is very
ample. Then S∗[1/E] is affine. For any positive integer m, let Sm := S[1/E]×Op Op/p

m

and S∗m := S∗[1/E] ×Op Op/p
m. Note that S∗m is affine and contains all the genus 0

cusps. For any positive integer s, we set

Ps/S := Homfppf−ab−sheaves/S(G[ps]0,µps),

and similary define P+
s /S and P−s /S by replacing G[ps]0 with G[ps]0 and G[p̄s]0, respec-

tively (so Ps = P+
s ⊕ P−s ).

For s ≥ m, we write Ts,m/Sm for the étale scheme over Sm that represents the étale
sheaf over Sm

T s,m := IsomSm(Ps, (O/ps)n × (O/ps)n).(6.1.4.a)

Note that T ,sm = T+
s,m ⊕ T−s,m, where T+

s,m := IsomSm(P+
s , (O/ps)) and T−s,m :=

IsomSm(P−s , (O/p̄s)). Here all isomorphisms are required to be O-linear. It follows
from Proposition 6.1.3 that Ts,m/Sm is an étale Galois cover (but not an irreducible
cover) with Galois group GLn(O/ps) × GLn(O/p̄s) = H(O/ps). The action of g =
(g+, g−) ∈ H(O/ps) on φ = (φ+, φ−) ∈ Ts,m is gφ = (g+φ+, g−φ−).

4This follows from Theorem 5.4.7, which shows that the minimal compactification over Fp (over which
H is defined) is the same as the base change to Fp of the minimal compactification over Op.
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The étale sheaves
∧n T+

s,m and
∧n T−s,m are constant and even isomorphic to

∧n(O/ps)n
and

∧n(O/p̄s)n, respectively. Therefore,

IsomSm(
n∧
T+
s,m ⊗Zp

n∧
T−s,m,

n∧
(O/ps)n ⊗Zp

n∧
(O/p̄s)n) ∼= (Z/ps)×.

We choose isomorphisms compatible with varying s and m. There is an induced map

det : Tn,s → (Z/ps)×

which sends φ = (φ+, φ−) to det(φ) := detφ+ ⊗ detφ−. In particular, det(gφ) =
det(g+) det(g−) det(φ).

For an irreducible component S of Sm and a v ∈ (Z/ps)×, let

T (v)
s,m/S := det−1(v)/S.

The action of g = (g+, g−) ∈ H(O/ps) on Ts,m/S maps T
(v)
s,m isomorphically onto

T
(det(g+) det(g−)v)
s,m , and each T

(v)
s,m is stable under the action of

H1(O/ps) := {g = (g+, g−) ∈ H(O/ps) : det(g+) det(g−) = 1}.

Theorem 6.1.5. Each T
(v)
s,m/S is an irreducible component of Ts,m/S.

Proof. This result is due independently to several people. The first version of this the-
orem is due to Igusa and Ribet (for GL2). It was generalized by Faltings-Chai [FC,
§V.7] in the Siegel modular case; by Hida in [Hi04, §8.4] for general PEL-type Shimura
varieties by establishing an arithmetic version of Shimura’s reciprocity law, with another
proof for the unitary case (the case here) given in [Hi08]; and also by Chai [Ch08] for
the general PEL case by an argument using Igusa’s result for GL2.

Let πm : Ts,m → Sm be the canonical projection. For positive integers s, m, and q with
0 ≤ q ≤ n we put

V q
s,m := Γ(Ts,m,OTs,m ⊗OS I

q
S).(6.1.5.a)

Lemma 6.1.6. Let k be a dominant weight. Then for all integers s ≥ m > 0 and any
subgroup J ⊆ Gal(Ts,m/Sm) we have a canonical isomorphism:

H0(J, V q
s,m ⊗Op ρk/Op/ps)

∼→ Γ(Ts,m/J, π
∗
m(ωk ⊗OS I

q
S)),

the action of J on V q
S,m being via the isomorphism

Gal(Ts,m/Sm)
∼→ GLn(O/ps)×GLn(O/ps) = H(Op/p

s).

The canonicalness in this lemma is subject to the same caveat as in Lemma 6.1.2.

Proof. Over Ts,m there is a universal isomorphism Ps/Ts,m
∼= (O/ps)n/Ts,t × (O/ps)n/Ts,t .

From Lemma 6.1.2 we deduce a canonical Gal(Ts,m/Sm)-equivariant isomorphism

((O/ps)n/Ts,m × (O/ps)n/Ts,m)⊗Z OTs,m ∼= ωG/Ts,m .
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The lemma is now an easy consequence of the definition of ωk.

6.1.7. p-adic automorphic forms. Let IHj,s := Ij,s ∩ H(Op) ⊂ GLn(Op) × GLn(Op) for

j = 0, 1, where Ij,s is as in 5.3.6. We also write IHs for IH0,s. For q between 0 and n we
put

W q
s,m := H0(IH1,s, V

q
s,m) and Wq := lim

−→
m

(lim
−→
s

W q
s,m).

There is a natural action of IH0,s/I
H
1,s
∼= TH(Op/p

s) ∼= (Op/p
s)×,n × (Op/p

s)×,n on W q
s,m

and hence on Wq, where TH is the diagonal torus of H.

The module of p-adic automorphic forms on G of weight k and level K = K0
pK

p with
p-divisible coefficients is defined to be the direct limit

V q
k (K,Kp/Op) := lim

−→
m

Γ(Sm, ωk ⊗OS I
q
S).

Similarly, if A is an Op-algebra, then the modules of p-adic forms with coefficients in A
are defined as the inverse limits:

V q
k (K,A) := lim

←−
m

Γ(Sm, (ωk ⊗OS I
q
S)⊗Op A).

More generally, let ψ be a finite order character of T (Zp) ∼= TH(Op) (this is the canonical
isomorphism). We say that ψ is of level s if it is trivial on the kernel of T (Zp) →
T (Z/psZ). For any weight k and any finite order character ψ, we denote by ψk the

character of T (Zp) defined by t 7→ tkψ(t). Let Op(ψ) be the extension of Op generated
by the values of ψ. Let πm : Tm,m → Sm be the canonical projection. For any p-adically
complete Op(ψ)-algebra R we define

V q
k (KpIs, ψ,Kp/Op ⊗Op R) := lim

−→
m

Γ(Tm,m/I
H
s , π

∗
m(ωk ⊗OS I

q
S)⊗Op R)[ψ]

and

V q
k (KpIs, ψ,R) := lim

←−
m

Γ(Tm,m/I
H
s , π

∗
m(ωk ⊗OS I

q
S)⊗Op R)[ψ]

to be the indicated limits over m of the submodules of global sections that transform by
ψ under the natural action of T (Zp/p

sZ).

Automorphic forms as p-adic automorphic forms. There is a canonical injection

(6.1.7.a) Mn,q
k (K,R) ↪→ V q

k (K,R).

This follows from Corollary 6.1.6. Similarly, there is also an injection

(6.1.7.b) Mn,q
k (KpIs, ψ,R) ↪→ V q

k (KpIs, ψ,R).

This last injection can seen by considering (p-adic) modular forms as functions of suitable
test objects.
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q-expansions of p-adic automorphic forms. For g ∈ G(Af ) with gp ∈ Q(Zp) we define a
q-expansion map

Γ(Ts,m,OTs,m)→ Z/pmZ[[q
S+

[g] ]], f 7→ fg(q).

The semi-abelian scheme Gσ/Rσ for an interior cone σ ∈ ΣH+
g,R

(for r = 0) comes

equipped with a trivialization ωG ∼= ((O/ps)n × (O/p̄s)n)⊗Rσ,m over Rσ,m := Rσ ⊗O(p)

Op/p
m that depends on g and so gives rise to an Sm-map SpecRσ,m → Ts,m (that

depends also on the chosen isomorphism Lie(µps/Rσ,m) ∼= Rσ,m). The q-expansion at g
of f ∈ Γ(Ts,m,OTs,m) is just its pull-back under this map. The q-expansion maps are
compatible with varying m and s and so by taking limits we obtain maps

V q
k (K,R), V q

k (KpIs, ψ,R)→ R[[q
S+

[g] ]].

When k is a parallel weight these are just the usual q-expansion maps at the genus 0
cusp [g] on the spaces of modular forms Mn,q

k (K,R) and Mn,q
k (KpIs, ψ,R). When k is

not parallel, these are the compositions of the usual q-expansions with a projection to a
highest weight vector (this will not be needed).

Let T ∗s,m be the normalization of S∗m in Ts,m. Then T ∗s,m/S
∗
m is again an étale Galois

cover with Galois group H(O/ps), and there are well-defined cusps on T ∗s,m. The group
H(O/ps) acts transitively on the set of cusps over a given cusp on S∗m. The q-expansions
fg(q) are naturally identified with the images of f in the completions of the stalks of
π∗m(ωk ⊗OS I

q
S)⊗Op R at the geometric points corresponding to these cusps.

The q-expansion principle. The geometrically irreducible components of S∗/K (which
are identified with the connected components of ShG(K)(C)) are the generic fibres of
the irreducible components of S∗, which are in bijection with the irreducible components
of the special fiber S∗/Fp (this follows from the same result for S in place of S∗, and for
this see [Lan08, 6.4.1.2,6.4.1.4]). In particular each irreducible component of S∗m contains
a genus 0 cusp (the Hasse invariant does not vanish at the cusps of S∗/Fp), and hence
so does each irreducible component of T ∗s,m.

Let S be an irreducible component of S∗m. It follows from Theorem 6.1.5 that the

irreducible components of T ∗s,m/S are just the normalizations of S in the T
(v)
s,m/S for

v ∈ (Z/ps)×. It then follows that a p-adic modular in V q
k (K,R) or Vk(K

pIt, ψ,R) is

zero if and only if its q-expansions fg(q) vanish for all g in a set X ⊂ G(Ap
f )Q(Zp) that

contains at least one g corresponding to a cusp on each irreducible component of S∗m.
Here we use that the orbit of the action of TH(O/ps) on a cusp of T ∗s,m over one on S
contains a cusp on each irreducible component of T ∗s,m/S. In particular, if X(K) is a
(finite) set of representatives of G(Q)\G(Af )/K with xp ∈ Q(Zp) for each x ∈ X(K),
then

V q
k (KpIs, ψ,R) ↪→ ⊕x∈RR[[q

S+
[x] ]], f 7→ (fx(q))x∈X(K),

is injective.

6.2. Ordinary automorphic forms.
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6.2.1. Hida’s ordinary idempotent. Let Up be the subalgebra of C∞c (I1\G(Qp)/I1) gener-
ated by the characteristic functions of the double classes ut := I1tI1 with t = diag(t1, . . . , t2n) ∈
T (Zp) satisfying the contraction property

(6.2.1.a) t−1B(Zp)t ⊂ B(Zp),

or, equivalently,

(6.2.1.b) t2/t1, ..., tn/tn−1, tn+1/tn, tn+1/tn+2, ..., t2n−1/t2n ∈ Zp.

Recall that T is the diagonal torus of Un/O = GLn and we identify Zp with Op.

If M is a compact Zp-module equipped with a continuous action of Up, we will denote
by Mord the maximal submodule of M on which the operators ut ∈ Up are invertible.

This is a Zp-direct summand of M and the projector eord of M onto Mord, called Hida’s
ordinary idempotent, satisfies

eord = lim
n→∞

un!
t+

for any t+ in the set of T+ of elements in T (Qp)∩M2n(Op) satisfying (6.2.1.b) but with
the ratios all belonging to pZp.

6.2.2. Ordinary p-adic modular forms. There is a natural action of Up on the spaces of
mod pm modular forms W q

s,m and on V q
k (KpIs, ψ,Kp/Op ⊗Op A) for any weight k and

any Op(ψ)-algebra A. We do not recall the definition of this action, refering to [SU06]
or [Hi04] for a definition using correspondences on the Igusa tower. For f in M q

k (K,A)

or M q
k (KpIs, ψ,A) with A ⊂ C we have

(6.2.2.a) ut.f = |[k∗](t)|−1
p · f |kut

where [k∗] = [k + (n, . . . , n;−n, . . . ,−n)] is the algebraic character of T defined in
5.5.1 and f |kut denotes the usual Hecke action (for ut = tItui with ui ∈ G+(Q),

(f |kut)(Z, g) =
∑

i f(Z, gu−1
i )). Note that if f ∈M q

k (K,A) then ut · f ∈M q
k (KpI1, A).

We use the subscript ‘ord’ to denote the ordinary parts of the various modules we
consider. As V q

k (K,Kp/Op ⊗Op A) ⊆ Wq we can also define V q
k,ord(K,Kp/Op ⊗Op A) :=

eord.V
q
k (K,Kp/Op ⊗Op A) ⊆ Wq

ord.

Lemma 6.2.3. For any weight k, we have canonical isomorphisms

V q
k,ord(K,Kp/Op) ∼=Wq

ord[k] := {w ∈ Wq
ord : t.w = tkw ∀t ∈ TH(Op)}

and

V q
k,ord(KpIs, ψ,Kp/Op ⊗Op A) ∼= (Wq

ord ⊗Op A)[ψk]

:= {w ∈ Wq
ord ⊗Op A : t.w = ψk(t)w ∀t ∈ TH(Op)}

for any Op(ψ)-algebra A.
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Proof. This follows from an argument due to Hida. We sketch a proof of the first iso-
morphism. The second is obtained in an identical way. Notice that it is sufficient to
show that

(6.2.3.a) eord.H
0(Sm, ωk ⊗ Iq) ∼= W q

s,m,ord[k]

for s ≥ m. By Corollary 6.1.6, the left-hand side of (6.2.3.a) is canonically isomorphic to
eord.H

0(H(O/ps), V q
s,m ⊗ ρk/Op/pm). On the other hand, ρk can be realized as the space

of algebraic functions f from H to the affine line A1 such that f(tug) = t−kf(g) for any
t ∈ TH , g ∈ H, and u a lower unipotent matrix, the action of g ∈ H on f being defined
by (h.f)(g) = f(gh). There is therefore an evaluation map ev : f 7→ f(id) from ρk to

A1 satisfying ev(t.f) = tkev(f). This evaluation map induces a map

(6.2.3.b) H0(H(O/ps), V q
s,m ⊗ ρk)→W q

s,m[k]

which is easily seen to be an isomorphism of ordinary parts. Indeed, V q
s,m⊗ρk/Op/pm can

be identified with the algebraic functions f from H to V q
s,m satisfying f(tng) = t−kf(g)

with the action of H(O/ps) given by (h.f)(g) = h.f(gh). The inverse of (6.2.3.b) is then
defined by w 7→ fw with fw(h) = h−1.w. If f is ordinary (i.e., eord.f = f), it follows
from the contraction properties of the ut-operators that h 7→ fw(h) is algebraic. This
implies that this map is an isomorphism of the ordinary parts.

6.2.4. A base change proposition.

Proposition 6.2.5. Let q = 0 or 1. For any sufficiently regular weight k ≥ 0, the
base-change morphism
(6.2.5.a)
eord.Γ(S∗[1/E], π∗(ωk⊗OS π

∗Iq)⊗Z/pmZ)→ eord.Γ(S∗[1/E], π∗(ωk⊗OS π
∗Iq⊗Z/pmZ))

is an isomorphism.

The right hand side is the image under eord of

Γ(S∗[1/E], π∗(ωk ⊗OS π
∗Iq ⊗ Zp/p

mZp)) = Γ(Sm, ωk ⊗OS π
∗Iq) ⊆ Wq

m.

Similarly, the left hand side is the image under eord of

Γ(S∗[1/E], π∗(ωk ⊗OS π
∗Iq)⊗ Zp/p

mZp) = Γ(S∗[1/E], π∗(ωk ⊗OS π
∗Iq))⊗ Zp/p

mZp

= Γ(S[1/E], ωk ⊗OS π
∗Iq)⊗ Zp/p

mZp,

(the second of these equalities follows from S∗[1/E] being affine) which is canonically
identified with a submodule of Γ(Sm, ωk ⊗OS π∗Iq) ⊆ W

q
m. Note that the left hand side

of (6.2.5.a)is canonically a submodule of the right hand side and the map is the canonical
injection.

The following is an immediate corollary of the above proposition.

Corollary 6.2.6. Assume q = 0 or 1. For any sufficiently regular weight k the module
V q
k,ord(K,Kp/Op) is divisible.
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The case q = 0 of Proposition 6.2.5 is proved in [Hi04]. In this case an analysis of
stalks yields an isomorphism π∗(ωk ⊗OS I0) ⊗ Zp/p

mZp ∼= π∗(ωk ⊗OS I0 ⊗ Zp/p
mZp)

and there is no need of recourse to the ordinary projector. However, it turns out that
the corresponding statement is not true in general for q > 0 if one does not take the
ordinary part.

Turning to the proof of the general situation we note that it is readily seen that it
suffices to prove the case m = 1. In this case, provided k is sufficiently regular, the
action of each ut agrees with an action of a Hecke operator (the usual action of KtK
twisted by a power of p depending on t; this is explained in [Hi04]) and so we have a
natural action of ut and hence of eord on the global section of the sheaves, and this action
can be described for the images of global sections in stalks as follows.

To simplify matters - and because it is sufficient for our needs - we assume n = 2. We
fix x̄ a geometric point of S∗1 and assume that x̄ is a cusp of genus 0. That is, x̄ is the
geometric point of some S[g] attached to a class [g] ∈ C0(K). As recorded in Proposition
5.5.4, the Mumford construction over the cusp x̄ yields a canonical isomorphism of the
completion of the stalk (π∗ωk)x̄ with

H0(Γ[g], ρk(Op/p)⊗Op Rg),

where
Rg := {f =

∑
h∈S+

[g]

a(f, h)qh, a(f, h) ∈ Ōp},

and Γ[g] = Γ and S+
[g] = S+ are as in 5.4.8.

Let t satisfy (6.2.1.a) and consider a decomposition:

IH1 tI
H
1 = tiIH1 γi

with γi = diag(tā−1
i , ai) ∈MQ(Q) ∩K. Then there is a decomposition

ut = I1tI1 = ti tn∈Ni I1γin

with Ni ⊂ NQ(Q) ∩K a full set of representatives of NQ(Zp)/γ
−1
i NQ(Zp)γi. It is easy

to check that the sets Ni all have the same cardinality [NQ(Zp) : t−1NQ(Zp)t] (and this
is the denominator used to define the action of ut on the space of p-adic modular forms).

For any Op-algebra A, we define an action of ut on R̃g,k/A := H0(Γ[g], ρk(A)⊗Op Rg) as

follows. For f ∈ R̃g,k/A we put

ut.f :=
∑

a(h, ut.f)qh, a(h, ut.f) =
∑
i

ρk(γi)
−1.a(ai.h, f).

This coincides with the action of ut on global sections when A = Op.

If h ∈ S+
[g] is positive definite then Γ[g](h) is trivial and we set Nh = 1. Suppose then

that h is rank 1 and let Nh be the unipotent radical of the Borel subgroup of H that
stabilizes the kernel of h (that is, of the Hermitian form defined by h). As K is imaginary

quadratic and K is neat, Γ[g](h) ⊂ Nh(K). In both cases we write ρNhk for the polynomial

functions that are invariant under the action of the algebraic group Nh. Then for an
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Op-algebra A, H0(Γ[g](h), ρk(A)) contains ρNhk (A). In general this containment is not an

equality in the rank one case, though it is if A has characteristic zero. (This is why the
proposition is false in general without taking ordinary parts.) There is an identification

R̃g,k/A =
∏
h

H0(Γ[g](h), ρk(A)),

where the product runs over a complete set of representatives of the equivalence classes
of non-zero matrices in Γ[g]\S+

[g]. Let R̄g,k/A ⊂ R̃g,k/A consist of those f identified with

an element in
∏
h ρ

Nh
k (A). What is useful about R̄g,k/A is that its formation commutes

with base change: for any A-algebra B we have

R̄g,k/A ⊗B = R̄g,k/B.

Lemma 6.2.7. For any Op-algebra A in which p is topologically nilpotent,

eord.R̃g,k/A = eord.R̄g,k/A.

In particular, the formation of eord.R̃g,k/A commutes with base change to any Op-algebra
in which p is topologically nilpotent.

Proof. We assume p is nilpotent in A. We need to prove that for any f ∈ R̃g,k/A there

exists t satisfying (6.2.1.a) such that ut.f ∈ R̄g,k/A. Let m be such that pmA = 0 and

choose t such that t−1NH(Zp)t ⊂ NH(pmZp) with NH denoting the unipotent radical of

BH . We need to show that a(h, ut.f) ∈ ρNhk (A). If h is positive definite this is trivial.

Let h be of rank one. Since Nh is a conjugate of the unipotent radical NH of BH , we
can choose the system of representatives of h modulo the action of Γ[g] such that either

(a) Nh = NH or (b) Nh = N−H is the opposite unipotent subgroup.

Recall that

a(h, ut.f) =
∑
i

ρk(γ
−1
i ).a(ai.h)

where the γi are a full set of representatives of IH1 tI
H
1 /I

H
1 that can be chosen of the

form γi = nit with ni ∈ NH(Zp). Then an easy computation shows that a(ai.h) is
independent of i in case (a), which implies that a(h, f |eord) = 0 in that case. In case
(b) a similar computation shows that a(ai.h, f) = 0 unless γi = t. This implies that
a(h, ut.f) = ρk(t)

−1.a(t.h, f). By the contraction property satisfied by t, this easily
implies the desired result.

Proof of Proposition 6.2.5

We treat the case q = 1 and n = 2 since the case q = 0 is proved by Hida in [Hi04].
The general case n ≥ 3 is also true by similar arguments, but we omit the proof here as
it is not needed for the main results of this paper. Recall that it suffices to prove the
case m = 1.
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Let f ∈ eord.Γ(S∗[1/E], π∗(ωk ⊗OS π∗I1 ⊗ Z/pZ)). It suffices to show that f is in the
image of the base change map

Γ(S∗[1/E], π∗(ωk ⊗OS π
∗Iq)⊗ Z/pZ)→ Γ(S∗[1/E], π∗(ωk ⊗OS π

∗Iq ⊗ Z/pZ)).

As S∗[1/E] is affine, to prove that f is in this image, it suffices to show that the image
of f in the completion of the stalk π∗(ωk ⊗OS π∗Iq ⊗ Z/pZ)x̄ at each geometric point x̄
of S∗[1/E] is in the image of the map coming from the base change map on stalks. If x̄
is of genus 4 then f is clearly in this image as π is an isomorphism on the Zariski open
genus 4 locus SG(K). The same holds if x̄ is of genus 2. For by Proposition 5.5.4 and
Remark 5.5.5, the completion of the stalk π∗(ωk ⊗ I1)x̄ is identified with∏

h

H0(Γ[g](h), H0(Z[g],L(h))x̄ ⊗Op ρk(Op)),

where h runs over the set of equivalence classes modulo Γ[g] of non-zero elements of S+
[g].

But because K is neat and the rank of the units of K is zero5, the groups Γ[g](h) are all
trivial. This implies that the reduction modulo p map is an isomorphism on the stalks at
x̄ since for each h the formation of H0(Z[g],L(h))x̄ commutes with base change. Finally,
we note that if x̄ is of genus 0 then, as noted above, the ordinary part of the completion
of the stalk π∗(ωk⊗I1)x̄ is identified with eord.R̃g,k/Zp , which commutes with the mod p
base change map by Lemma 6.2.7. As f is assumed ordinary, it is therefore in the image
of the base change map on stalks at x̄. This completes the proof of the proposition.

6.2.8. Ordinary and classical forms. For t ∈ T (Qp) satisfying (6.2.1.a) we define an
action of the Hecke operator Tt := K0

p tK
0
p on M q

k (K,A), A a subring of C, by Tt.f :=

|[k∗](t)|−1
p ·f |kTt with f |kTt the usual Hecke action. For t ∈ T+ we can define a projector

e0
ord = lim

−→
m

Tm!
t on any compact Zp-module on which Tt acts (this is independent of t).

In particular, as M q
k (K,C) = M q

k (K,Zp)⊗Zp C there is an action of e0
ord on M q

k (K,C).

Lemma 6.2.9. Assume q = 0 or 1. The dimension of e0
ord.M

n,q
k (K,C) is bounded

independent of k as the weight k varies.

Proof. For q = 0 this is due to Hida. For q = 1 this follows from the q = 0 case and the
exact sequence

0→ e0
ord.M

n,0
k (K,C)→ e0

ord.M
n,1
k (K,C)→

⊕
[g]∈Cn−1(K)

e0
ord.M

n−1,0
k′ (Kn−1,g,C)

obtained from Corollary 5.5.9.

5Proposition 6.2.5 is no longer true if K is of degree > 2 over Q since the rank of the group of units
is positive.
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Theorem 6.2.10. Assume q = 0 or 1. For any sufficiently regular weight k there is a
constant C(k) > 0 depending on k such that for any integer l > C(k), the canonical map

eord.M
q
k+l(p−1)t(K,Kp/Op) ↪→ V q

k+l(p−1)t,ord(K,Kp/Op)(6.2.10.a)

with t = (0, ..., 0; 1, . . . , 1) is an isomorphism.

Proof. This is proved in [Hi04] for q = 0. The same proof works for q = 1 using Lemma
6.2.9 and Corollary 6.2.6 and the fact that eorde

0
ord = eord.

6.3. Λ-adic ordinary automorphic forms.

6.3.1. Weight algebras and arithmetic characters. Let T = Tn be the diagonal torus
of Un. The identification of Un(Zp) with GL2n(Zp) identifies T (Zp) with (Z×p )2n. In
particular, the pro-p-Sylow subgroup Γn ⊂ T (Zp) has rank 2n over Zp. We let Λn :=
Zp[[Γn]] and Λn := Zp[[T (Zp)]]. Letting ∆n be the torsion subgroup of T (Zp), we have
canonical isomorphisms T (Zp) = ∆n×Γn and Λn = Λn[∆n]. For any dominant algebraic
weight k, the algebraic character [k] of T defined in (5.5.1.a) defines a continuous Zp-
valued character of Γn and extends by continuity to a homomorphism of Λn that we
continue to denote by [k]. A Qp-valued character ψ of Γn (or Λn) will be called arithmetic
if it has a decomposition ψ = ψ0[k] with ψ0 of finite order and some dominant weight
k. We say that such a character ψ is of level pr if ψ0 factors through the canonical
map Γn → T (Z/prZ). For any arithmetic character ψ we denote also by ψ the induced
homomorphism from Λn to Qp and write Pψ for the kernel of this homomorphism. Note
that the image of ψ is Op(ψ0). We will write Pk for P[k]. For ψ of finite order we write
ψk for the character ψ[k].

For any a = (a1, . . . , an; an+1, . . . , a2n) ∈ (Z/(p−1)Z)2n we denote by ωa the character
of ∆n defined by diag(t1, . . . , t2n) 7→ ta1

1 · · · t
a2n
2n .

For i = 1, . . . , 2n, let δi : Z×p → T (Zp) be the co-character defined by
∏2n
i=1(δi(xi)) =

diag(xn+1, . . . , x2n, x1, . . . , xn). We write δi for the projection of δi to Γn.

6.3.2. Freeness over Λn. Let Vqord := eord.Wq and let Vq
ord be its Pontrjagin dual. These

carry an action of T (Zp) and therefore of Λn. For any a ∈ Z2n we let Vq
a,ord be the

subspace of Vq
ord on which ∆n acts via ωa. This is a Λn-direct summand as ∆n has

order prime to p.

Theorem 6.3.3. For q = 0 or 1, Vq
a,ord is free of finite rank over Λn. In particular, if ψ :

Γn → Q
×
p has finite order and is of level s, then V q

k,ord(KpIs, ψω
a−k,Kp/Op⊗Op Op(ψ))∗

is free of finite rank over Op(ψ) for all k, and this rank is independent of ψ and k.

Recall that the superscript ‘∗’ denotes the Pontrjagin dual.
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Proof. For any weight k, by Lemma 6.2.3 there is an isomorphism

(6.3.3.a) Vq
a,ord ⊗Λn Λn/Pψ[k]

∼= V q
k,ord(K,ψωa−k,Kp/Op ⊗Op Op(ψ))∗.

In particular, if k is sufficiently regular and congruent to a modulo p − 1, this im-
plies by Theorem 6.2.10 that V q

k,ord(KpI1, ω
a−k,Kp/Op)

∗ is finite over Op. Therefore by

compactness Vr
a,ord is finite over Λn. This together with Corollary 6.2.6 implies that

Vr
ord⊗Λn Λn/Pk is free of the same finite rank for all suficiently regular weights k. Since

the ideals Pk form a Zariski dense set of Spec (Λn) as k runs over the sufficiently regular
weights, we deduce easily that Vr

ord is free of finite rank over Λn. The rest of the theorem
then follows from (6.3.3.a).

6.3.4. Λn-adic forms. Let Mq
a,ord(Kp,Λn) := HomΛn(Vq

a,ord,Λn); this is a free Λn-

module. For a ψ of level s we have a canonical isomorphism

Mq
a,ord(Kp,Λn)⊗Λn Λn/Pψk

∼= V q
k,ord(KpIs, ψω

a−k,Op(ψ)).(6.3.4.a)

For any Λn-algebra A, we put Mq
a,ord(Kp, A) :=Mq

a,ord(Kp,Λn)⊗Λn A and

Mq
ord(Kp, A) :=

⊕
a∈(Z/(p−1)Z)2n

Mq
a,ord(Kp, A)

6.3.5. The Λn-adic q-expansion principle. Recall that for each x ∈ G(Af ) with x ∈ K0
p ,

we have a q-expansion map

H0(Ts,m,OTs,m) −→ Z/psZ[[qS
+
x ]]

where S+
x := S+

[x] is as in 5.4.8 for [x] = [x]0 ∈ C0(K). We deduce by passing to the

limits over s and m that there is an injective morphism

Vqord ↪→
⊕

x∈X(K)

Qp/Zp[[q
S+
n,x ]],

whereX(K) is a (finite) set of representatives x ofG(Q)\G(Af )/K with xp ∈ Q(Zp). For
each x and each h ∈ S+

x , the map f 7→ a(h, fx) is an element of Vq
ord and we let a(h, Fx) ∈

Λn be the image of this element under F ∈ Mq
a,ord(Kp,Λn) := HomΛn(Vr

a,ord,Λn). We

obtain therefore a Λn-adic q-expansion by forming the formal sum

Fx(q) :=
∑
h∈S+

x

a(h, Fx)qh ∈ Λn[[qS
+
n,x ]].

For each pair (k, ψ) with k dominant and ψ finite of level s, the reduction modulo Pψk
of the Λn-adic q-expansion is the q-expansion map

V q
k,ord(KpIs, ψω

a−k,Op(ψ))→
⊕

x∈X(K)

Op(ψ)[[qS
+
x ]].
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Lemma 6.3.6. (Λn-adic q-expansion principle). The map

Mq
a,ord(Kp,Λn) ↪→

⊕
x∈X(K)

Λn[[qS
+
x ]]

defined by F 7→ (Fx(q))x is injective.

Proof. To show the injectivity it is sufficient to prove that the map is injective after re-
ducing modulo Pψk for all pairs (k, ψ) since the ideals Pψk are Zariski dense in Spec (Λn).
For each such pair the injectivity modulo Pψk follows from the q-expansion principle for

p-adic modular forms (see 6.1.7). This proves the lemma.

Let A be a finite torsion-free Λn-algebra and let Z ⊂ Spec (A) be a Zariski dense subset
of primes Q such that Q ∩ Λn = Pψk for some pair (k, ψ). Let N r

a,Z,ord(A) be the set of

elements (Fx)x ∈
⊕

xA[[qS
+
x ]] such that for each Q ∈ Z above Pψk the reduction of (Fx)x

is the q-expansion of some element f ∈ V r
k,ord(KpIs, ψ,A/Q). The Λn-adic q-expansion

principle gives a natural inclusion

(6.3.6.a) Mr
a,ord(Kp, A) ↪→ N r

a,Z,ord(A)

Lemma 6.3.7. The inclusion (6.3.6.a) is an equality.

Proof. This can proved similarly to [Ur04, Prop 2.4.23]. The proof rests on the finiteness
over Λn of N r

a,Z,ord(A) and the q-expansion principle in characteristic p.

6.3.8. The fundamental exact sequence II. It follows from Theorem 5.4.6 and the exact
sequence (5.4.9.a) that there is an exact sequence

0→ π∗I0
S∗ → π∗I1

S∗ →
⊕

[g]∈Cn−1(K)

π∗ι[g],∗I0
S∗

[g]
→ 0.

We need to generalize this exact sequence for the Igusa tower. For any pair (s, t) of
positive integers let Ys,t := Ts,t/I

H
s and consider the Stein factorization of the composite

map fs,t : Ys,t → St → S∗t . This yields a commutative square:

Ys,t
πs,t //

φs,t

��

Y ∗s,t

ψs,t
��

St
π // S∗t

where Y ∗s,t := SpecS∗t (fs,t)∗OYs,t
ψs,t→ S∗t is finite and étale of the same degree as φs,t

and Ys,t
πs,t→ Y ∗s,t has geometrically connected fibers. In particular, Y ∗s,t is affine and

(πs,t)∗OYs,t = OY ∗s,t . Let IqY ∗s,t := ψ∗s,tIq. Since ψs,t is flat, this is a sheaf of ideals of OY ∗s,t .
We consider the exact sequence

0→ I0
Y ∗s,t
→ I1

Y ∗s,t
→

⊕
[g]∈Cn−1(K)

ψ∗ι[g],∗I0
S∗

[g]
→ 0
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obtained from (5.4.9.a). Since Y ∗s,t is affine we deduce that the following sequence is
exact:

(6.3.8.a)

0→ H0(Y ∗s,t, I0
Y ∗s,t

)→ H0(Y ∗s,t, I1
Y ∗s,t

)→
⊕

[g]∈Cn−1(K)

H0(ψ−1
s,t (S∗[g]), ψ

∗
s,tι[g],∗I0

S∗
[g]

)→ 0.

We also have

H0(Y ∗s,t, I
q
Y ∗s,t

) = H0(Ys,t, (πs,t)
∗IqY ∗s,t) = H0(Ys,t, (φs,t)

∗π∗IqS∗t ) = W q
s,t,(6.3.8.b)

the first equality following easily from the definition of Y ∗s,t (which immediately gives the
analogous equality for the fibers of πs,t).

We write T[g],s,t for the Igusa tower over the compactification S̄[g] = S̄Gn−1(Kn−1,g) of
the rational boundary component S[g] (recall that there is a natural identification of S[g]

with SGn−1(Kn−1,g)). This is the étale Galois cover of SGn−1(Kn−1,g)[1/E] ×Op Op/p
t

with Galois group GLn−1(O/ps) × GLn−1(O/p̄s) constructed in the same way as Ts,t.

Let Y[g],s,t := T[g],s,t/I
Hn−1
s where we have written I

Hn−1
s for the Iwahori subgroup of

Hn−1(Op) = GLn−1(Op) × GLn−1(Op̄) (exactly analogous to IHs ). Similarly, we can
define Y ∗[g],s,t and IqY ∗

[g],s,t
in the same way we have defined Y ∗s,t and IqY ∗s,t . Then we have

the following lemma.

Lemma 6.3.9. For any [g] ∈ Cn−1(K), there is a canonical isomorphism

H0(ψ−1
s,t (S∗[g]), ψ

∗
s,tι[g],∗I0

S∗
[g]

) ∼= Ind
Tn(Z/psZ)
Tn−1(Z/psZ)H

0(Y ∗[g],s,t, I
0
Y ∗

[g],s,t
)

which commutes with the action of Tn(Z/psZ). Here Tn−1 ↪→ Tn is defined by

diag(t1, . . . , tn−1, tn+1, . . . , t2n−2) 7→ diag(t1, . . . , tn−1, 1, tn+1, . . . , t2n−2, 1).

Proof. The lemma follows easily from the isomorphism

Ts,t ×St π−1(S[g]) ∼=
⊔

x∈Hn(Z/psZ)/Hn−1(Z/psZ)

x.T[g],s,t

where we have embedded Hn−1 in Hn via the embedding of GLn−1 in GLn given by
x 7→ diag(x, 1). This isomorphism can be obtained by the same argument used to prove
the top isomorphism of [Hi99, p.33].

After passing to the inductive limit over s and t and taking the ordinary part, it follows
from (6.3.8.a), (6.3.8.b), and Lemma 6.3.9 that there is an exact sequence

0→ V0
ord(Kp)→ V1

ord(Kp)
Φ→

⊕
[g]∈Cn−1(K)

Ind
Tn(Zp)
Tn−1(Zp)V

0
ord(Kp

n−1,g)→ 0.

This map is clearly equivariant for the action of Tn(Zp).
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For a ∈ Z2n, we write a′ = (a1, . . . , an−1, an+1, . . . , a2n−2). Taking Pontrjagin duals
and Λn-duals, we deduce from the previous exact sequence another exact sequence:

0→M0
a,ord(Kp)→M1

a,ord(Kp)
Φ→

⊕
[g]∈Cn−1(K)

M0
a′,ord(Kp

n−1,g)⊗Λn−1 Λn → 0,

where the tensor product on the right hand side is defined for the map Λn−1 → Λn
deduced from the inclusion Tn−1(Zp) ↪→ Tn−1(Zp) as in Lemma 6.3.9. The map Φ is just
the sum over the [g] ∈ Cn−1(K) of the Λn-adic versions of the Siegel maps Φ[g]; modulo
primes of the form Pψk these are the Siegel maps from 5.5.7. In particular, Φ[g] sends an

element of M1
a,ord(Kp, A) to its constant term along the cusp of genus 2n − 2 attached

to [g] ∈ Cn−1(K). At the level of q-expansions attached to the genus 0 cusps [g]0 and
[g]′0 this is

Φ[g](Fx(q)) =
∑

h=
(
h′ 1
1 0

)
∈S+

[g]0

a(h, Fx)qh
′ ∈ A[[q

S+

n−1,[g]′0 ]].

We summarize this observation in the following theorem.

Theorem 6.3.10. Let a ∈ Z2n. For any Λn-algebra A there is a short exact sequence

0→M0
a,ord(Kp, A)→M1

a,ord(Kp, A)
Φ→

⊕
[g]∈Cn−1(K)

M0
a′,ord(Kp

n−1,g,Λn−1)⊗Λn−1 A→ 0

with Φ = ⊕[g]Φ[g],

Proof. We have proved the theorem for A = Λn. It then follows easily for any Λn-algebra
A since the modules of Λn-adic forms are free over Λn.

6.4. Universal ordinary Hecke algebras. Let S be a finite set of primes such that
Kp =

∏
6̀=pK` is maximal outside of S and let RS∪{p} be as in 5.5.11. Let RS,p :=

RS∪{p} ⊗ Up. For any finite torsion-free Λn-algebra A we denote by hS,q(Kp;A) the
A-algebra generated by the image of RS,p in EndA(Mn,q

ord(Kp, A)). Similarly, for a dom-

inant weight k we write hS,qk,ord(K) for the Zp-algebra generated by the image of RS,p in

EndC(Mn,q
k,ord(K,C)). The following is a consequence of Theorem 6.2.10 and the isomor-

phism (6.3.4.a).

Theorem 6.4.1. Let q = 0 or 1. For any sufficiently regular algebraic dominant char-
acter k, the canonical surjective homomorphism

hS,q(Kp; Λn)⊗Λn Λn/Pk � hS,qk,ord(K)

has nilpotent kernel. In particular, any Qp-valued character of the left-hand side is the

compostion of this surjection with a Qp-valued character of the right-hand side.
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6.4.2. p-stabilizations. Let λ : Up → Qp be a character. Assume that λ(ut) 6= 0 for any
t ∈ T (Qp) satisfying (6.2.1.a). Then there exists an n-tuple (α1, . . . , α2n) ∈ Cn such
that

λ(ut) =
∏

α
ordp(ti)
i .(6.4.2.a)

Let π = πk ⊗ πf be a cuspidal representation of Gn(A) which is unramified at p.

If λ is associated (via the natural action) to some eigenvector of Up in πK
pI1

f , then

(α1.p
n−1/2, . . . , αi.p

1/2+n−i, . . . , α2n.p
1/2−n) is an ordering of the Langlands parameters

of the spherical representation πp. The choice (up to multiplication by a scalar) of an
eigenvector imposing this ordering6 in πI1p is called a p-stabilization of π. One says that
this p-stabilization is ordinary (with respect to the chosen embedding ιp) if the eigenval-
ues for the action (6.2.2.a) of the operators ut are p-adic units. This means that the p-adic
valuations (slopes) of the corresponding ordered roots (α1.p

2n−1, . . . , αi.p
2n−i, . . . , α2n.p)

of λπ(Qp(X)) are given by k∗+(2n−1, 2n−2, . . . , 1, 0) = (k1 +n−1, . . . , kn, kn+1 +2n−
1, . . . , k2n +n). As we will see later, these slopes are equal to the Hodge-Tate weights of
the p-adic Galois representation attached to π.

When an ordinary p-stabilization exists it is unique, and we say that π is p-ordinary.
We then write λord

π for the character of RS,p giving the eigenvalues of the Hecke operators

on the ordinary p-stabilized vector in πK
pI1

f .

6.5. The Eisenstein ideal for GU(2, 2). In this section we define the Eisenstein ideal
for the group GU(2, 2); this is the image in the cuspidal Hecke algebra of the ideal
generated by the operators that annihilate a certain Eisenstein series studied later in
this paper. This ideal plays a central role in the proofs of the main theorems of this
paper.

In what follows n is 2.

6.5.1. p-adic Eisenstein data. We freely use the notation from 3.3.8-3.3.10 and 3.4.5.

A p-adic Eisenstein datum is a 6-tuple D = (A, I, f , ψ, ξ,Σ) consisting of

• the ring of integers A of a finite extension of Qp;
• a domain I that is a finite integral extension of ΛW,A;
• an ordinary I-adic newform f of some tame level M with associated A-valued

Dirichlet character χf ;
• a finite order A-valued idele class character ψ of A×K/K× such that ψ|A× = χf ;

• a finite order A-valued idele class character ξ of A×K/K×;
• a finite set Σ of primes containing those that divide MpDK as well as those `

such that ψ` or ξ` is ramified.

6Not every ordering may occur as a p-stabilization.
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We let ΛD := I[[Γ−K × ΓK]] = IK[[Γ−K]]. We give ΛD the structure of a Λ2-algebra as
follows. Let

α : A[[ΓK]]→ I[[Γ−K]], α(γ+) = (1 + p)(1 +W )1/2, α(γ−) = (1 + p)(1 +W )1/2γ−,

and

β : A[[ΓK]]→ I[[ΓK]], β(γ+) = (1 +W )−1γ+, β(γ−) = γ−.

These define a homomorphism α⊗ β : A[[ΓK × ΓK]]→ I[[Γ−K]]⊗̂II[[ΓK]] = ΛD. We define a
homomorphism from Γ2 = (1 + pZp)

4 ⊂ T2(Zp) to A[]ΓK × ΓK]] by

(t1, t2, t3, t4) 7→ ψΨ−1
K (t3t4, t

−1
1 t−1

2 )× ξΨK(t−1
4 , t2),

using the fixed identification O×p = Z×p × Z×p . This defines a Λ2 = Zp[[Γ2]]-algebra
structure on A[[ΓK × ΓK]] and so on ΛD via composition with α⊗ β. Note that ΛD is a
finite integral local reduced Λ2-algebra.

Remark. In 12.1 below we define a set of arithmetic homomorphisms X aD ⊂ XΛD,A and
explain how to associate an Eisenstein series to D and φ ∈ X aD. The Eisenstein series
are naturally associated to fφ|I, φ ◦α ◦ recK, and φ ◦ β ◦ recK. This partially explains our
terminology and notation.

Let χf ,0 be the unique A-valued Dirichlet character such that χf ,0|Ẑ× =
∏
` 6=p χf ,`.

6.5.2. The Galois representation associated with D. Define two Λ×D-valued characters
σψ and σξ of GK:

σψ := α ◦ σω−1ψε
−1
K σξ := β ◦ σχf ξεK = σχf ξε

−1
W εK.

Put σξ′ := σξσ
c
ξ. Let FD be the field of fractions of ΛD. We define a semisimple

representation ρD : GK → GL4(FD) by

(6.5.2.a) ρD := σχ̄f ,0
σcψε

−3 ⊕ (ρf ⊗ σχ̄f ,0
σ−cξ σ

c
ψε
−2)⊕ σχ̄f ,0

ε−1 det ρfσ
−1
ξ′ σ

c
ψ.

This is unramified away from Σ. Note that for each g ∈ GK, det(1−ρD(g)X) ∈ ΛD[X].
For a finite place v of K not dividing a prime in Σ let Qv,D(X) := det(1−ρD(frobv)X).

Remark. For φ ∈ X aD such that there is an associated Eisenstein series (see the re-
mark in 6.5.1), the specialization of ρD under such a φ is the usual p-adic Galois rep-
resentation associated with the Eisenstein series. In particular, the specialization of
det(1− ρD(frobv)X), v a finite place of K not dividing a prime in Σ, is the Hecke poly-
nomial later denoted Qv (which gives the v-Euler factor of the standard L-function of
the Eisenstein series).

6.5.3. The Eisenstein ideal. Recall that we have given ΛD the structure of a Λ2-algebra.

Let K ′ = K ′ΣK
Σ ⊂ G(Ap

f ) be an open compact subgroup with KΣ = G(ẐΣ) and such

that K ′K0
p is neat. Let hD = hD(K ′) be the universal ordinary cuspidal Hecke algebra

hΣ,0(K ′; ΛD) over ΛD. This is a finite reduced ΛD-algebra. For v a finite place of K not
dividing any primes in Σ we let Qv(X) ∈ hD(K ′)[X] be the Hecke polynomial defined
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in (9.6.0.a). (To be precise Qv(X) ∈ RΣ; here we take its image in hD(K ′).) We define
ID = ID,K′ ⊆ hD(K ′) to be the ideal generated by

• the coefficients of Qv(X) − Qv,D(X) for all finite places v of K not dividing a
prime in Σ;
• ut −

∏4
i=1 β

ai
i for t = diag(pa1 , pa2 , pa4 , pa3) with a1 ≤ a2 ≤ a3 ≤ a4 and

(β1,β2,β3,β4) = (a(p, f)−1ψ($c), χ−1
f ,0ψξ($c), χf ,0ψξ

−1($), a(p, f)ψ($)−1);

• Z`,0 − σχf ,0
σψσ

−1
ξ (frobv) for all inert ` 6∈ Σ and v|` the place of K;

• Z(i)
`,0 − σχf ,0

σψσ
−1
ξ (frobwi) for all split ` 6∈ Σ, ` = w1w2 being the factorization

corresponding to the identification K` = Q` ×Q`.

Here ψ and ξ are the characters defined in 12.1, and Z`,0 and Z
(i)
`,0 are the Hecke operators

in R` defined and denoted Z0 and Z
(i)
0 in 9.5.2.

The structure map ΛD → hD/ID is surjective by the definition of ID (the elements

in Up together with the coefficients of the Qv(X)’s and the Z`,0s and Z
(i)
`,0s generate hD

over ΛD), and we define the Eisenstein ideal ED = ED,K′ ⊆ ΛD to be the quotient of this
map. So we have

(6.5.3.a) ΛD/ED
∼→ hD/ID.

Assuming ED is a proper ideal, we define TD = TD(K ′) to be the local component of
hD associated with the maximal ideal containing ID.

Let MD be an integer that is divisible only by primes in Σ\{p} and by the least common
multiple of the prime-to-p parts of M , DK, Nm(fξ), and Nm(fψ). Suppose A contains

Z[µMDp, i,D
1/2
K ]. Suppose also that f satisfies (irred)f and (dist)f . Assuming K ′ is

sufficiently small (in a sense measured by MD), in 12.4 we prove the existence of an
element ED ∈ M1

ord(K ′; ΛD) and a homomorphism λD = λD,K′ : hD(K ′) → ΛD such
that h.ED = λD,K′(h)ED for all h ∈ hD and h.ED = 0 if h ∈ ID,K′ (so λD(ID) = 0).
Furthermore, if β ∈ S2(Q) with β ≥ 0 and detβ = 0 and if x ∈ G(Af ) is such that
xp ∈ Q(Zp), then the β-Fourier coefficient c(h, x; ED) of ED is divisible by

LD := LΣ
f ,K,ξLΣ

χ̄f χ̄′
,

where LΣ
χ̄f χ̄′
∈ I[[ΓQ]] = A[[Γ+

K]] is the image of the p-adic L-function GΣ
χ̄f ξ̄′
∈ A[[ΓQ]] of the

Dirichlet character χ̄f ξ̄
′ as in 3.4.3 under the map A[[ΓQ]] → I[ΓK]], γ 7→ (1 + W )−1γ2

+,

and LΣ
f ,K,ξ ∈ I[[ΓK]] is the three-variable p-adic L-function constructed in 12.3 below.

In particular, if ξ′ = χf then LΣ
f ,K := LΣ

f ,K,χf
is the p-adic L-function from 3.4.5. The

following theorem, which relate LD to the Eisenstein ideal ED via ED, is one of the key
ingredients in the proof of the main result of this paper.

Theorem 6.5.4. Assume I is an integrally closed domain. With the preceding notation
and assumptions, if P ⊂ ΛD is a height one prime such that ED is non-zero modulo P
then

ordP (ED) ≥ ordP (LD).
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Proof. For each [g] ∈ C1(K ′K0
p), there exists Fg ∈M0

ord(K ′1,g; ΛD) such that

Φ[g]ED = LDFg.
By the surjectivity of the map Φ =

∑
[g] Φ[g] in Theorem 6.3.10, there exists F ∈

M1
ord(K ′; ΛD) such that Φ[g]F = Fg for all [g] ∈ C1(K ′K0

p). Appealing to Theorem
6.3.10 again, we find that

(6.5.4.a) H := ED − LDF ∈M0
ord(K ′; ΛD).

Assume P |LD (otherwise the theorem is trivial). Then H is non-zero modulo P since
ED is by assumption. Let β ∈ S2(Q), detβ > 0, and x ∈ G(Af ), x unramified at
p, be such that the β-Fourier coefficient c(β, x;H) := a(β;Hx) is non-zero modulo P .
Let r := ordP (LD). The surjective map µ : hD 7→ ΛD,P /P

rΛD,P defined by µ(h) =

c(β, x;h.H)/c(β, x;H) is ΛD-linear. If T ∈ RΣ,p then

c(β, x;T.H) ≡ c(β, x;T.ED) ≡ λD(T )c(β, x; ED) ≡ λD(T )a(β, x;H) (mod P r),

from which it follows that ID ⊆ kerµ. In particular, µ defines a surjective ΛD,P -
homomorphism

ΛD,P /EDΛD,P
∼→ hD,P /IDhD,P � ΛD,P /P

rΛD,P .

As ordP (ED) equals the length over ΛD,P of ΛD,P /EDΛD,P , the theorem follows.

7. Galois representations

7.1. Galois representations for Gn. Let π = π∞ ⊗ πf be a cuspidal automorphic
representation of the unitary similitude group Gn(A) such that π∞ is a discrete series
representation associated with a 2n-tuple of integers k = (kn+1, ..., k2n; kn, ..., k1) with
k1 ≥ k2 ≥ · · · ≥ k2n such that [k∗] is a dominant weight of Tn (recall that k∗ := k +
(n, ..., n;−n, ...,−n)); such 2n-tuples define representations ρk of the maximal compact
K+
n,∞ of Un(R) as explained in 5.5.2. Then π∞ = Πk is a discrete series representation

with lowest K+
∞Z∞-type given by k∞ 7→ ρk ◦ J(k∞, i). Let (κ1, ...., κ2n) be the strictly

increasing sequence of integers defined by κi := k∗i + 2n − i. Let Sπ be the set of finite
places of K either ramified over Q or lying above primes of ramification for π. Let π′

be an irreducible admissible automorphic Un(A) constituent of π. For w 6∈ Sπ we define
BC(π)w to be the w-component of the (formal) base change of π′ to GL2n(AK).

In [Sk10] it is explained how the following theorem is a consequence of the works of
Morel and Shin on the cohomology of Shimura varieties associated to unitary groups.

Theorem 7.1.1. Suppose k∗ is regular (i.e., ki∗ > k∗i+1). Let χπ be the central character

of π (a character of A×K) and put ψ := χcπ. There exists a finite extension7 L ⊂ Qp of
Qp and a continuous representation

Rp(π) : GK −→ GL2n(L)

such that

7In the statement of this theorem we use our fixed identification ι′p of Qp with C.
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(i) Rp(π)∨(1− 2n)⊗ σψ1+c
∼= Rp(π)c;

(ii) Rp(π) is unramified at all w 6∈ Sπ ∪ {v0, v̄0}, and for such a w

det(1−Rp(π)(frobw)q−sw ) = L(BC(π)w ⊗ ψw, s+ 1/2− n)−1,

where qw is the order of the residue field at the place w;
(iii) Rp(π)|GK,v0 is Hodge-Tate with Hodge-Tate weights κ1, ...., κ2n.

(iv) If πp is unramified, then Rp(π)|GK,v0 is crystalline and the eigenvalues of the

Frobenius endomorphism of Dcris(Rp(π)) are pn−1/2a1, ..., p
n−1/2a2n with a1, ..., a2n

the Langlands parameters of BC(π)v0 ⊗ ψv0.

Note that χπ has infinity type z−|k| so ρψ|GK,v0 has Hodge-Tate weight 0. Also χπ|A× =

χ1| · |−|k|Q for some finite-order character χ1.

We record a consequence for ordinary π.

Lemma 7.1.2. Let π be a weight k representation of Gn(A) as above. Assume that πp
is ordinary (in the sense of 6.4.2) and unramified. Let (pκ1+1/2−na1, . . . , p

κ2n+1/2−na2n)

with a1, ..., a2n ∈ Z
×
p be the Langlands parameters of BC(π)v0 ⊗ψv0 (written in the order

of decreasing valuation). Let Rp(π) be as in Theorem 7.1.1. Then

Rp(π)|GK,p ∼=


ξ2n,pε

−κ2n ∗ . . . . . . ∗
ξ2n−1,pε

−κ2n−1 ∗ . . . ∗
. . .

. . .
...

0
. . . ∗

ξ1,pε
−κ1


and

Rp(π)|GK,p̄ ∼=


ξ1,p̄ε

κ1+1−2n−|k| ∗ . . . . . . ∗
ξ2,p̄ε

κ2+1−2n−|k| ∗ . . . ∗
. . .

. . .
...

0
. . . ∗

ξ2n,p̄ε
κ2n+1−2n−|k|

 ,

where ξi,p and ξi,p̄ are, respectively, the unramified characters of GK,p and GK,p̄ such that

ξi,p(frobp) = ai and ξi,p̄(frobp̄) = χ1(p)a−1
i .

Proof. Let L be the field of coefficients of Rp(π). Let D := Dcris(Rp(π)|GK,p). By
Conjecture 7.1.1(4), D is a filtered Φ-module of rank 2n over L, Φ being the crystalline
Frobenius operator, and the eigenvalues of Φ are pκ1a1, . . . , p

κ2na2n.

Let Di ⊂ D be the filtered Φ-submodule generated by the Φ-eigenvectors for the
eigenvalues pκiai, . . . , p

κ2na2n. The Newton number of D2n is κ2n, therefore its Hodge
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number is κ2n since it must be less than or equal to κ2n by weak admissibility8 of D.
Therefore Vcris(D2n) = L(ξ2n,pε

−κ2n) is a GK,p-subrepresentation of Rp(π)|GK,p . An
easy induction argument shows that the Vcris(Di)’s form a GK,p-filtration of Rp(π)|GK,v0
such that Vi/Vi+1

∼= L(ξi,pε
−κi) which proves the claim for Rp(π)|GK,p . The claim for

Rp(π)|GK,p̄ then follows from part (i) of Theorem 7.1.1 and the relation χπ|A× = χ1|·|−|k|Q .

7.2. Families of Galois representations. In the following we make use of pseudo-
representations. For a precise definition of a pseudo-representation we refer the reader
to [Ta91], contenting ourselves with recalling that an A-valued pseudo-representation of
dimension d of a group G is a map T : G → A such that T (g1g2) = T (g2g1) for any
g1, g2 ∈ G and T (1) = d and such that T satisfies some other linear identities (essentially
those satisfied by the trace of a genuine representation of dimension d of G). As a
consequence of the theory of pseudo-representations we have the following (standard)
proposition.

Proposition 7.2.1. Let K = K0
pK

p, Kp =
∏
` 6=pK`, be a neat open compact subset of

G(Af ) and let S be a finite set of primes containing p and those ` such that K` is not

hyperspecial. There exists a pseudo-representation TSKp : GK → hS,0(Kp) such that for
each p-ordinary representation π of weight k with πK

p

f 6= 0

tr (Rp(π)) = λord
π ◦ TSKp .

For the notion of a p-ordinary representation of weight k see 6.4.2. Here hS,0(Kp) is the
universal p-ordinary Hecke algebra from 6.4.

Proof. The proof is standard, but for the convenience of the reader we indicate the main
points. To ease notation we write h for hS,0(Kp). For each finite place v of K not dividing
a prime in S∪{p} we let Tv ∈ h be the Hecke operator such that the coefficient of X2n−1

in the Hecke polynomial for v is −Tv (the Hecke polynomial is the degree 2n polynomial
in h[X] which specializes under each λord

π to a polynomial whose whose value at q−sv is
L(BC(π)v ⊗ ψv, s+ 1/2− n)−1; the existence of the Hecke polynomial is a consequence
of the Satake isomorphism (which we make explicit in 9.6 for the case n = 2). Let
G′K,S ∈ GK,S be the subset of Frobenius elements frobv for these v’s (for a given v the set

of frobv’s make up a conjugacy class in GK,S). By the Chebotarev density theorem, G′K,S
is dense in GK,S . For any g ∈ GK,S let {frobvn} ⊂ G′K,S be a sequence converging to g in

GK,S . As h is compact, after possibly replacing vn by a subsequence, {Tvn} converges in h
to a value we denote T (g). We claim that T (g) does not depend on the sequence {frobvn},
as we now show. Let Σ ⊂ spec(h)(Qp) be a Zariski dense subset of arithmetic points
with each x ∈ Σ associated with a p-ordinary automorphic representations πx (cf. 6.4.2).
Then for each x ∈ Σ, λord

πx (Tv) = tr (Rp(π)(frobv)) for all v as above. By the continuity
of Rp(π), this implies that for all x ∈ Σ, λπx(T (g)) = tr (Rp(πx)(g)) is independent of

8Recall that we use a geometric convention for Hodge -Tate weights.
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the chosen sequence. Because the λord
π,x are Zariski dense in spec(h)(Qp), we conclude

that T (g) is also independent of the chosen sequence. Furthemore, since Σ is Zariski
dense and since for each x ∈ Σ, λord

πx ◦ T = tr (Rp(πx)) is a pseudo-representation, the
map g 7→ T (g) is also a pseudo-representation (see Lemma 1 of [Ta91]); it is immediate
that TSKp := T has the required properties.

7.2.2. The character ωKp. For a prime ` 6= p let U` := O×` ∩ K`. The action of AS,×
K

on Mord(Kp; Λn) is unramified and factors through its image in A×K/K×C×
∏
`6=p U`.

This last fact can be seen by specializing at a Zariski dense set of arithmetic points
in spechS(Kp)(Qp) associated with p-ordinary automorphic representations. There is

therefore a continuous character ωKp : GK → hS(Kp)× unramified outside S such that
away from S, ωKp ◦ recK gives the above action. In particular, for a λπ ∈ spechS(Kp)
associated with a p-ordinary automorphic representation π, λπ ◦ωKp is the Galois char-
acter associated with the central character of π. The polarization property - part (i) of
Theorem 7.1.1 - then implies

TSKp(cgc) = ε1−2nω1+c
Kp (g)TSKp(g−1) ∀g ∈ GK.(7.2.2.a)

7.2.3. The restriction of TSKp to GK,p. Let a = (a1, ..., a2n) ∈ (Z/(p − 1)Z)2n. We let

hSa (Kp) be the component of hS(Kp) such that ∆n = (F×p )2n ⊂ (Z×p )2n = Tn(Op) acts by

the character ωa. Let B be the total ring of fractions of hSa (Kp) and let Ra,Kp : GK →
GL2n(B) be the semisimple Galois representation with trace equal to TSKp composed
with the projection onto hSa (Kp). The existence of the representation RSKp follows from

[Ta91, Theorem 1].

For i = 1, ..., 2n let ξi,p : GK,p → hSa (Kp)× be the unramified characters such that

ut ∈ hSa (Kp) satisfies

ut =
2n∏
i=1

ξi,p(frobp)
ordp(ti)ω−cKp(recK(ti)).

Let δ∗i := δi ◦ εK with δi : Z×p → Λ×n , i = 1, ..., 2n, as in 6.3.

Lemma 7.2.4. The local representation RSa,Kp |GK,p is equivalent over B to one of the
form 

ξ2n,pω
a2nδ∗2n ∗ . . . . . . ∗

ξ2n−1,pε
−1ωa2n−1δ∗2n−1 ∗ . . . ∗

. . .
. . .

...

0
. . . ∗

ξ1,pε
1−2nωa1δ∗1


There is a similar description of RSa,Kp |GK,p̄ (following from the polarization relation

7.2.2.a).
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Proof. This follows easily from a successive application of Lemma 7.2 of [TU99]. That
the hypotheses of this lemma are satisfied is a consequence of Lemma 7.1.2 together with
the Zariski density of the p-ordinary classical points λπ in spec(hSa (Kp)(Qp) and the fact
that the characters on the diagonal in the corollary specialize under λπ to the characters
on the diagonal in Lemma 7.1.2.

7.3. Selmer groups and Eisenstein ideals. Throughout the rest of this section we
assume that n = 2. Let D = (A, I, f, ψ, ξ,Σ) be a p-adic Eisenstein datum as in 6.5.1;

we freely use the notation of that section. Let K ′ = K ′ΣK
Σ ⊂ G(Ap

f ), KΣ = G(ẐΣ), be

an open compact such that K ′K0
p is neat. Let hD = hD(K ′). Let BD = hD ⊗ΛD

FΛD

with FΛD
the field of fractions of ΛD; BD is the total ring of fractions of hD. We

denote by TD the hD-valued pseudo-representation obtained from TΣ
K′ and by RD the

semisimple representation over BD (or any finite extension thereof) obtained from RK′ ;
then RD has trace equal to TD. More generally, for any component J of hD, we let TJ
denote the pseudo-representation obtained by composing the pseudo-representation TD
with the projection hD � J, and we write RJ for the corresponding semisimple Galois
representation defined over the total ring of fractions of J.

Theorem 7.3.1. Assume that (irred)f and (dist)f hold. If J is an irreducible compo-
nent of TD, then either (a) RJ is absolutely irreducible or (b) over some finite extension
of the fraction field of J, RJ

∼= R1 ⊕ R2 with each Ri a two-dimensional representation
satisfying the polarization condition Rci

∼= R∨i ⊗ ε−3ω1+c
K′ .

Proof. Assume that RJ is not irreducible. Since J is a component of TD, the reduction
T̄J of TJ modulo the maximal ideal of J is equal to T̄D, which is the reduction modulo
the maximal ideal of ΛD of

tr ρD = σχ̄f ,0
σcψε

−3 + σχ̄f ,0
σ−cξ σ

c
ψε
−2tr ρf + σχ̄f ,0

det ρfσ
−1
ξ′ σ

c
ψε
−1.

Since ρ̄f is irreducible and the second term in the sum satisfies the polarization condition,
we are reduced to the following cases:

(1) RJ is a sum of two characters and an irreducible odd two dimensional Galois
representation satisfying the polarization condition;

(2) RJ is a sum of two absolutely irreducible representations R1 ⊕R2.

Assume that RJ is as in case (1). Let x ∈ Spec J(Qp) be an arithmetic point of regular
weight k for which there exist a p-ordinary cuspidal representation πx unramified at p

such that λπx is the composite RS,p → hD → J
x→ Qp. Then Rp(πx) ∼= θ1⊕ θ2⊕R3 with

θ1 and θ2 characters and R3 a two-dimensional representation satisfying

θ1θ
c
2 = σ1+c

χπx
ε−3(7.3.1.a)

R∨3 (−3)σ1+c
χπx
∼= Rc3(7.3.1.b)

tr R3 ≡ σχ̄f χ̄f ,0
σ−cξ σcψω

−1ε−2tr ρf (mod PZ̄p),(7.3.1.c)
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where PZ̄p is the maximal ideal of Z̄p and f is any specialization of f . Using these

relations, we will show that πx is a CAP representation (that is, it has the same system
of Hecke eigenvalues as a Klingen-type Eisenstein series). However, if x is chosen to have
sufficiently regular weight (i.e., ki − ki+1 sufficiently large for all i), then πx is not CAP
by a result of Harris [Ha84, Theorem 2.5.6]. This shows that RJ is never as in case (1).

To prove that πx is CAP, it suffices to show

(i) each θi is the p-adic Galois character associated with an idele class character of
A×K/K× of arithmetic type;

(ii) R3
∼= Rp(σ) for some cuspidal automorphic representation σ of GU(1, 1)(A).

As Rp(πx) is Hodge-Tate, so are the characters θ1 and θ2, and point (i) then follows
from a well-known result of Serre [Se68]. It remains to prove (ii). We first show that a
twist of R3 descends to a representation of GQ that is congruent to a twist of ρf modulo
PZ̄p . Let χ := detR3ε

3σ−1−c
χπx

. Then from the polarization relation (7.3.1.b) it follows

that χc = χ−1. From (7.3.1.c) it follows that

χ ≡ σ−2
χfχf ,0

σ−2c
ξ σ2c

ψ ω
−2ε−1 det ρfω

−1−c
K′ (mod PZ̄p).

As
ω−2σψσ

c
ψ ≡ ε−1 det ρf and ωK′ ≡ σ−1

χfχf ,0
σ2
ψσ
−1
ξ ω−2,

we have
χ ≡ σ1−c

ξ σc−1
ψ (mod PZ̄p).

Therefore, χ = θc−1 with θ a character of GK congruent to σψσ
−1
ξ . Let R := R3 ⊗ θ. As

Rc3
∼= R3⊗χ−1, R ∼= Rc. Also R is congruent to ρf⊗ω−3σ−1−c

ξ modulo PZ̄p . The obstruc-

tion for R to descend to a representation of GQ belongs to H2(Gal(K/Q),GL2(Z̄p)). The
image of this obstruction in H2(Gal(K/Q),GL2(F̄p)) is trivial because the reduction of R
descends. We deduce that the obstruction is trivial as H2(Gal(K/Q), 1 +M2(PZ̄p)) = 1
since p is odd. In particular, R descends to a two-dimensional p-adic representation of
GQ unramified outside finitely many places that is odd (because its reduction is odd),
congruent to a twist of ρf , and nearly ordinary at p and Hodge-Tate (since the same is
true of R by Lemma 7.1.2). As (dist)f is assumed to hold, it follows from the modu-
larity results in [Wi95, TW95, Di96, SW99] that R is a Tate-twist of a representation
associated with a modular form9. This implies (ii).

Suppose now that RJ is as in case (2). Suppose first that R1 is one-dimensional and R2

is three-dimensional. Let Φ2 be the pairing on the representation space of R2 such that
Φ2(R2(g)v, w) = ω1+c

K′ (g)ε−3Φ2(v,R2(cg−1c)w) for all v, w ∈ V and g ∈ GK. Since R2 is
absolutely irreducible and odd dimensional, Φ2 has to be a symmetric bilinear form. But
R2 is residually isomorphic to the sum of a character and a twist of ρ̄f which is residually
symplectic. It is easy to see that the latter is incompatible with Φ2 being symmetric (for
example, by an argument similar to that used in the proof of Lemma 4.3.3).

9More recent modularity results may not require (dist)f at this point, but the hypothesis still figures
into later arguments.
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We may therefore suppose that R1 and R2 are two-dimensional and irreducible. If
they did not satisfy the polarization property in the theorem, then necessarily Rc1

∼=
R∨2 ⊗ω

1+c
K′ ε

−3. But this would imply that T̄D is the sum of two irreducible characters of
degree two or four characters of degree one, neither of which is true: T̄D is the sum of
two characters of degree one and one irreducible character of degree two.

Remark. Conjecturally, the components J such that RJ is reducible are associated with
families of endoscopic representations of U(2)×U(2)-type. Such families do occur when
there are Eisenstein congruences for U(1, 1). However, if we are in a situation where
such congruences do not exist, then all J are associated with families of stable cuspidal
representations of GU(2, 2).

7.3.2. Relating ED to characteristic ideals. Let ED = ED,K′ ⊆ ΛD be the Eisenstein ideal

associated with D in 6.5.3. Assuming that (irred)f and (dist)f hold, we let T+
f ⊆ Tf be

the rank one I-summand of Tf that is GQp-stable and unramified. Given a height one
prime P of ΛD containing ED we consider the following specific instance of the set up of
4.4.3:

• H := GQ,Σ, G := GK,Σ, c =the usual complex conjugation;

• A0 := ΛD, A := Λ̂D,P (not to be confused with the ring A in the datum D);
• J0 := ED, J := EDA;
• R0 := TD, I0 := ID;
• Q ⊂ R0 is the inverse image of P mod ED under TD → TD/ID = ΛD/ED;

• R := T̂D,Q, I := IDR;

• V0 := Tf ⊗I ΛD, ρ0 := ρf ⊗ σχ̄f ,0
σ−cξ σ

c
ψε
−2;

• V +
0 := T+

f ⊗I A0, V −0 := (Tf/T
+
f )⊗I A0;

• V = V0 ⊗A0 A, ρ = ρ0 ⊗A0 A, V ± := V ±0 ⊗A0 A;
• χ := σχ̄f ,0

σcψε
−3 (so χ′ = νχ−c);

• χ′ := σχ̄f ,0
ε−1 det ρfσ

−1
ξ′ σ

c
ψ;

• ν : χcχ′ = σ2
χ̄f ,0

ε−7ε−2
Q ;

• M := (R⊗A FA)4, FA the field of fractions of A;
• σ the representation on M obtained from RD.

Let T := (Tf ⊗I I[[ΓK]])(det ρ−1
f σ−cξ ε

−c
K ) and T + := (T+

f ⊗I I[[ΓK]])(det ρ−1
f σ−cξ ε

−c
K ),

and let ChΣ
K(ρf ⊗ σξεK) ⊂ I[[ΓK]] be the characteristic ideal of the dual Selmer group

XΣ
K(T , T +).

Theorem 7.3.3. Assume that (irred)f and (dist)f hold and that I is an integrally closed
domain. Let P0 ⊂ I[[ΓK]] be a height one prime and let P = P0ΛD be the height one prime
of ΛD it generates. Suppose also that

(7.3.3.a) V + ⊕A(χ) and V − ⊕A(χ′) are residually disjoint modulo P .
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(i) If ordP (ED) ≥ ordP0(LΣ
χ̄f χ̄′

) + 1, then

ordP0(ChΣ
K(ρf ⊗ σξεK)) ≥ 1.

(ii) If LΣ
χ̄f χ̄′
6∈ P0, then

ordP0(ChΣ
K(ρf ⊗ σξεK)) ≥ ordP (ED).

Proof. We deduce this theorem from the general framework of §4. The set-up of 4.2.3 and
4.4.3 holds with the above choices of H, G, etc. That ρ = ρ0⊗A0 A is residually disjoint
from χ and χ′ is a straightforward consequence of the fact that ρ is residually irreducible
(since (irred)f holds) and is two-dimensional. The hypothesis (7.3.3.a) ensures that χ
and χ′ are distinct modulo P . That ν is compatible with ρ is an immediate consequence
of ρ0 being an odd, two-dimensional representation of GQ (and so symplectic) and ν also
being odd.

Note that the (unique) extension of νχ−1−c to an odd character of GQ,Σ is, in the
notation of 4.4.3,

νψ := det ρ−1
f σξ̄′ε

−2
Q .

Note also that

ρ0 ⊗ χ−1 = ρf ⊗ det ρ−1
f σ−cξ ε

−c
K .

Next we check that the hypotheses of 4.5.5, especially of Proposition 4.5.4, are satisfied.
Recall that T+

f is the rank one I-summand of Tf which is GQ,p-stable and unramified; it
exists by virtue of the hypotheses (irred)f and (dist)f . That hypotheses (4.5.1), (4.5.2),
and (4.5.3) hold for D = GK,p is then an easy consequence of Lemma 7.2.4 and the
definition of ID; we leave the details of this simple verification to the reader. That the
GK,p-representations V +

0 ⊕ A0(χ) and V −0 ⊕ A0(χ′) are residually disjoint modulo the
maximal ideal of A0 (= the maximal ideal of ΛD) follows from (7.3.3.a). Finally, we
note that (4.5.5.a) holds by Theorem 7.3.1 and Lemma 4.3.3. This establishes that the
hypotheses of Propositions 4.5.6 and 4.5.8 hold.

Let L be the quotient field of A. Let T := ΛD(ψν) and T+ := 0. Then

XΣ
Q(T, T+) = XΣ

Q(ΛQ,A(σχ̄f ξ̄′
εε−1

Q ), 0)⊗ΛQ,A,ι ΛD,

where ι : ΛQ,A → ΛD is given by ι(γ) = (1 + W )−1γ2
+. The characteristic ideal of

XΣ
Q(T, T+) is the image under ι of the characteristic ideal of XΣ

Q(ΛQ,A(σχ̄f ξ̄′
εε−1

Q ), 0).

The latter equals the characteristic ideal of XΣ
Q∞,L

(χ̄f ξ̄
′ε) by Proposition 3.2.3, which, by

the Main Conjecture for Q (Theorem 3.5.1), is generated by GΣ
χ̄f ξ̄′

, so the characteristic

ideal of XΣ
Q(T, T+) is generated by LΣ

χ̄f χ̄′
.

Let ChΣ
K(V0(χ−1)) be the characteristic ideal of XΣ

K(V0(χ−1), V +
0 (χ−1)). If ordP (ED) ≥

ordP0(LΣ
χ̄f χ̄′

) + 1, then, as the characteristic ideal of XΣ
Q(T, T+) is generated by LΣ

χ̄f χ̄′
, it

follows from Proposition 4.5.8 that ordP (ChΣ
K(V0(χ−1)) ≥ 1. AsXΣ

K(V0(χ−1), V +
0 (χ−1)) =

XΣ
K(T , T +)⊗I[[ΓK]] ΛD, it follows that ordP0(ChΣ

K(ρf ⊗ σξεK)) ≥ 1. This proves part (i)
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of the theorem. Similarly, if ordP0(LΣ
χ̄f χ̄′

) = 0 then it follows from Proposition 4.5.6 that

ordP (ChΣ
K(V0(χ−1)) ≥ ordP (ED), and so ordP0(ChΣ

K(ρf ⊗ σξεK)) ≥ ordP (ED).

7.3.4. Connecting characteristic ideals and p-adic L-functions. Associated to D and MD

there is also a p-adic Eisenstein series ED as in Theorem 6.5.4.

Theorem 7.3.5. Let P ⊂ ΛD be a height one prime such that ED is non-zero modulo
P and ordP (LΣ

f ,K,ξ) ≥ 1. Then

ordP (ChΣ
K(ρf ⊗ σξεK)) ≥ 1.

Furthermore, if ordP (LΣ
χ̄f χ̄′

) = 0 then

ordP (ChΣ
K(ρf ⊗ σξεK)) ≥ ordP (LΣ

f ,K,ξ).

Proof. By Theorem 6.5.4, ordP (ED) ≥ ordP (LΣ
f ,K,ξLΣ

χ̄f χ̄′
). So the theorem follows from

Theorem 7.3.3 provided we can verify that (7.3.3.a) holds.

To prove that (7.3.3.a) holds we first note that as GK,p-representations

V + ⊕A(χ) ∼= δfσχ̄f ,0
σ−cξ σ

−c
ψ ε−2 ⊕ σχ̄f ,0

σcψε
−3

and

V − ⊕A(χ′) ∼= δ−1
f σχ̄f ,0

σχf
ε−1
W σ

−c
ξ σ

c
ψε
−3 ⊕ σχ̄f ,0

σχf
ε−1
W σ

−1
ξ′ σ

c
ψε
−2,

where δf is the unramified character such that δf (frobp) = a(p, f). So it suffices to show
that none of the four GK,p-characters

δ2
f σ
−1
χf
εW ε, δfσ

−1
χf
σξεW , δfσ

−1
χf
σcξεW , σχf

ε−1
W σ

−1
ξ′ ε

are congruent to 1 modulo P . That this holds for the first character (which is the
quotient of the characters acting on V +

0 and V −0 ) is immediate from (dist)f .

Let P0 := P ∩ IK. Suppose that θ := δfσ
−1
χf
σξεW − 1 = δfσξεK− 1 is congruent to zero

modulo P . Then θ ≡ 0 modulo P0. Let V (P0) ⊂ Spec IK(Qp) be the closed subspace

cut out by P0. Then V (P0) ⊂ V (θ) with V (θ) the subspace of Spec IK(Qp) defined
by θ = 0. We will show that V (θ) has codimension two, which is a contradiction as
V (P0) has codimension one. To see that V (θ) has codimension two it suffices to prove
this in (Spec I×SpecA Spec ΛK,A)(Qp). By considering the restriction of θ to the inertia

subgroup of GK,p it is easy to see that the projection to Spec ΛK,A(Qp) is codimension
one. On the other hand, a(p, f) is transcendental over Qp so the projection of V (θ) to

Spec I(Qp) has codimension one. It follows that V (θ) has codimension two. The same

argument applies to δfσ
−1
χf
σcξεW − 1.

Finally, suppose λ := σχf
ε−1
W σ

−1
ξ′ ε ≡ 1 modulo P . Then λ ≡ 1 modulo P0. As

σ′ξ = σ2
χf
σξ′ε

2
Qε
−2
W , λ = σ−1

χf ξ′
ε−2
Q εW ε. Therefore, if λ ≡ 1 modulo P0 then P0 is contained

in kerφ for some arithmetic homomorphism φ ∈ X aIK of weight kφ = 3. From the
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specialization property of LΣ
f ,K,ξ it follows that φ(LΣ

f ,K,ξ) 6= 0. But LΣ
f ,K,ξ ∈ P0 by

hypothesis, so LΣ
f ,K,ξ ∈ kerφ. This contradiction proves that λ 6≡ 1 modulo P .

7.4. Putting the pieces together: the proof of Theorem 3.6.1. We now give the
proof of the main theorem of this paper. Let D = (A, f , 1, 1,Σ) be a p-adic Eisenstein
datum with f ∈Mord(N, 1; I). Assume that

• (irred)f and (dist)f hold;

• A contains Z[i,D
1/2
K ];

• I is an integrally closed domain;
• N = N−N+ with N− divisible only by primes that are inert in K and N+

divisible only by primes that split in K; N− is square-free and has an odd number
of prime factors and the reduction ρ̄f of ρf modulo the maximal ideal of I is
ramified at all `|N−.

By Proposition 13.4.1, after possibly replacing Σ with a larger finite set, there is an
integer MD as in 6.5.3 for which the p-adic Eisenstein series ED associated with D
and MD is such that if P is a height one prime of ΛD dividing LΣ

f ,K := LΣ
f ,K,1 then

ED is non-zero modulo P . As LΣ
1 ∈ I[[Γ+

K]], by Proposition 12.3.6 ordP (LΣ
1 ) = 0 if

ordP (LΣ
f ,K) > 0. Let (T , T +) be as in 7.3.2 and let (T c, T +,c) be the same pair with the

GK-action composed with conjugation by c. The dual Selmer groups XΣ
K(T, T+) and

XΣ
K(T c, T+,c) are isomorphic as IK-modules, and the characteristic ideal of XΣ

K(T c, T+,c)
is just ChΣ

K∞(f). It then follow from Theorem 7.3.5 that

ChΣ
K∞(f) = ChΣ

K(ρf ⊗ εK) ⊆ (LΣ
f ,K),

for this (possibly enlarged) Σ. That the inclusion holds for the original Σ follows from
Corollary 3.2.16 and the relation (3.4.5.b). This proves Theorem 3.6.1.

8. More notation and conventions

We introduce additional notation and conventions. These are in effect for the remainder
of this paper. In a (very) few instances these may involve changing the meaning of a
previously defined symbol.

8.1. Characters.

8.1.1. Local conductors. Let ψ be a character of K×` . If ` does not split in K then we
write cond(ψ) for the usual conductor of ψ. If ` splits in K, then our conventions identify
ψ with a pair of characters (ψ1, ψ2) of Q×` . By the conductor of ψ we mean the ideal in
O` = Z` × Z` that is cond(ψ1)× cond(ψ2). We will write cond(ψ) = (`s) as short hand
with s taken to mean a pair s = (s1, s2) such that cond(ψi) = (`si).

Our conventions regarding pairs of such exponents are that given two pairs of integers
s = (s1, s2) and t = (t1, t2), by max{s, t} we mean the pair (max{s1, t1},max{s2, t2}).
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Similary, when t is an integer, by max{s, t} we mean max{s, (t, t)}, and by s ≥ t we
mean s1, s2 ≥ t.

8.1.2. Additive characters. For a place v of Q we let ev : Qv → C be the standard
additive character. Thus e∞(x) = e(x) = e2πix and e`(1/`) = e(−1/`). For x ∈ A we let
eA(x) :=

∏
ev(xv), the standard additive character of A.

8.1.3. Gauss sums. If ψ is a primitive Dirichlet character of conductor N then we let
G(ψ) be the usual Gauss sum:

G(ψ) :=
∑

a∈(Z/N)×

ψ(a)e(a/N).

If ψ is a character of Q×` and (cψ) ⊂ Z` is the conductor of ψ, then we let

g(ψ, cψ) :=
∑

a∈(Z`/cψ)×

ψ(a)e`(a/cψ).

We write g`(ψ) for g`(ψ, `
r), r = ord`(cψ). If ⊗ψv is an idele class character of A× then

we set

g(⊗ψv) :=
∏
`

ψ−1
` (cψ`)g(ψ`, cψ`),

which is independent of the choices of the cψ` ’s. If ⊗ψv is the idele class character
associated with the Dirichlet character ψ then

g(⊗ψv) = ψ(−1)G(ψ̄) = G(ψ).

If ψ is a character of K` and cψ ∈ O` generates the conductor cond(ψ) and dO` = (d`),
then we similarly define

g(ψ, cψd`) :=
∑

a∈(O`/cψ)×

ψ(a)e`(TrK/Q(a/cψd`)),

and if ⊗ψv is an idele class character of A×K then we set

g(⊗ψv) :=
∏
`

ψ−1
` (cψ`d`)g(ψ`, cψ`d`).

If ψ is a Hecke character with associated with an idele class character ⊗ψv then we set
g(ψ) := g(⊗ψv).

8.2. Groups and measures.
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8.2.1. Haar measures. For each place v of Q we fix an additive Haar measure on Qv so
that it is the usual Lebesque measure if v =∞ and so that Z` has measure one if v = `.
These give a measure on AQ. Similarly, we define an additive Haar measure on each
Kv such that on K∞ = C the measure is 2dxdy (z = x+ iy ∈ C) and such that O` has

volume D
−1/2
` , obtaining a measure on AK. Note that the volume of AK/K with respect

to the induced measure is then equal to 1. Unless indicated otherwise, all integration
over AQ or AK will be with respect to these measures. Multiplicative measures on A×Q
and A×K are taken as the ratios of these additive measures with |·|Q and |·|K, respectively.

The Haar measures on local and adelic points of algebaic groups will generally be clear
from context. For example, the measures on unipotent subgroups will be taken so that
the induced measures on the set of points of the obvious Ga-subquotients are just the
above measures; our conventions for tori are similar.

8.2.2. Weyl groups. For each prime ` we write WGn,` for the Weyl group of the diagonal
torus in Gn/Q`

. For R a standard Q-parabolic of Gn we write WR,` for the Weyl group
of the diagonal torus in R/Q`

(really of its standard Levi). In practice we will usually
identify WGn,`, WR,`\WGn,`, etc., with sets of representatives in Gn(Q`), which we always
assume to contain 1 and, whenever possible, wn.

8.2.3. Lie algebras. The Lie algebra of Gn(R) will be denoted gn; that of GL2(R) will
be denoted gl2.

8.2.4. Parabolics and compact open subgroups of Gn. Let Pn ⊂ Gn be the subgroup of
elements g with last row (0, ..., 0, ∗); it is the stabilizer of the isotropic line 02n−1 ⊕O ⊂
O2n. This is a maximal parabolic. Let NPn be the unipotent radical of Pn. The inclusion

Gn−1 ×ResO/ZGm → Gn, (g, x) 7→

(
Ag Bg

µn−1(g)x̄−1

Cg Dg
x

)
,

identifies Gn−1 × ResO/ZGm with a Levi subgroup MPn of Pn. Given a pair (g, x) as
above, we write m(g, x) for their image in MPn under the above map.

Let Qn ⊂ Gn be the Siegel parabolic of Gn. This is the subgroup consisting of those

elements g =
(
Ag Bg
Cg Dg

)
∈ Gn with Cg = 0; it is the stabilizer of the isotropic submodule

0n ⊕ On ⊂ O2n. Let Sn be the group scheme defined by Sn(R) = {M ∈ Mn(O ⊗ R) :
M = tM̄}. Then Sn is identified with the unipotent radical NQn of Qn via

S 7→ r(S) :=
(

1 S
1

)
, S ∈ Sn(R).

Let Bn ⊆ Qn be the Borel defined by requiring Ag to be lower-triangular and let NBn

be its unipotent radical (so B2 = P2∩Q2 and B1 = Q1 = P1). Let Tn ⊂ Bn be the torus
of diagonal matrices.
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For R = Pn, Qn, or Bn we let δR be the usual modulus character for R. However,
we let δn be such that δ2n−1

n = δPn . (The use of the latter is more convenient for many
formulas.)

For a parabolic R with unipotent radical NR, Ropp is the opposite parabolic and Nopp
R

is its unipotent radical.

We let Kn,` = Gn(Z`). Given an element or ideal I of O or O` we let KQn,`(I) be the

stabilizer in Kn,` of IOn` ⊕O` ⊆ O2n
` , KPn,`(I) the stabilizer of ĪO2n−1

` ⊕O` (where Ī is
the conjugate element or ideal - the image of I under the action x 7→ x̄), and KBn,`(I)
is the subgroup of g ∈ KQn,`(I) such that Ag is lower-triangular modulo IO`. We put

K`(I, J) := KQ2,`(I) ∩ w′2KP2,`(J)w′2, w′2 := diag(w1, w1).

When ` is understood, we frequently drop it from our notation. For non-negative integers
r and s we will often write Kr,s for K`(λ

r, λs) (` will be clear from context).

8.2.5. The group GL2. We denote the standard (upper-triangular) Borel of GL2 by B′

and the standard (diagonal) torus by T ′. We let Z ′ be the center of GL+
2 (R), K ′∞ :=

O2(R) ⊂ GL2(R) (the usual maximal compact), and K ′∞,+ := SO2(R). We let

KB′(N) := K ′(N) := {
(
a b
c d

)
∈ GL2(Ẑ) : c ∈ N Ẑ}

and

KB′,`(N) := K ′`(N) := {
(
a b
c d

)
∈ GL2(Z`) : c ∈ NZ`}.

Additionally we let U ′(N) and U ′`(N) be their respective subgroups such that N |(d− 1).
Then Γ1(N) = U ′(N) ∩ SL2(Z). We also put

η := w1 =
(

0 1
−1 0

)
.

8.3. Automorphic forms and modular forms.

8.3.1. Automorphic forms on reductive groups. For G = GL2, Gn, or Un we will write
A(G) for the space of automorphic forms on G(A) and A0(G) for the subspace of cusp-
forms.

8.3.2. Constant terms. For a Q-parabolic R of Gn, by the constant term along R of an
automorphic form φ on Gn(A) we mean the function

φR(g) :=

∫
NR(Q)\NR(A)

φ(ng)dn,

where NR is the unipotent radical of R.
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8.3.3. Hermitian modular forms. For Z ∈ Hn and g ∈ G+
n (R) we let

Jn(g, Z) := det(CgZ +Dg).

Let K ⊂ Gn(Af ) be an open compact subgroup and χ : K → C a finite character.
Let κ > 0 be a positive integer. By a Hermitian modular form of degree n, weight
κ, level K, and character χ we will mean a function f : Hn × Gn(Af ) → C such that
f(Z, x) is holomorphic as a function of Z, locally constant as a function of x, and satisfies
f(Z, xk) = χ(k)f(Z, x) for all k ∈ K and

f(γ(Z), x) = χ(x−1γ−1x)Jn(γ, Z)κf(Z, x) for all γ ∈ G+
n (Q) ∩ xKx−1

(plus the usual holomorphy condition at the cusps if n = 1). We denote the space of
such functions by Mn

κ (K,χ). If χ is trivial then omit it from our notation. Note that if
K =

∏
K` then Mn

κ (K) = Mn
k(K,C) with k = (0, ..., 0;κ, ..., κ), where the right-hand

side is as in 5.5.3.

8.3.4. Modular forms for GL2. We generally follow standard conventions for modular
forms for GL2, and in particular follow those given in 3.3.1 and 3.3.2.

Given a modular form f ∈Mκ(N,χ) we write fA for the form in A(GL2) defined by

fA(g) := j(g∞, i)
−κ det(g∞)κ/2f(g∞(i)), g = γg∞k ∈ GL2(Q)GL2(R)+U ′(N).

Here j(g, z) is the usual automorphy factor and g(z) denotes the usual action of g ∈
GL+

2 (R) on the upper half-plane h = H1. The (unitary) central character of fA is the
idele class character associated with the Dirichlet character χ.

If f ∈ Sκ(N,χ) is an eigenform for the Hecke operators T (m), (m,N) = 1, then we
write π(f) for the irreducible (gl2,K

′
∞) × GL2(Af )-module in A0(GL2) generated by

fA. With these conventions LS(f, s) = LS(π(f), s − (κ − 1)/2) for any set of primes S
containing the prime divisors of N .

Conductors and eigenvectors. Let (π, V ) be an irreducible, admissible representation
of GL2(Q`) for some prime `, and let χπ be its central character. We will say that a
vector φ ∈ V has a conductor with respect π if there is an integer r ≥ 0 such that
π(k)φ = χπ(dk)φ for all k ∈ KB′,`(`

r). The conductor, denoted condπ(φ), is the minimal
such `r.

For all integers n, the Hecke operator U ′`(`
m)diag(n, 1)U ′`(`

m) acts on V U ′`(`
m): φ 7→∑

π(gi)φ for U ′`(`
m)diag(n, 1)U ′`(`

m) = tgiU ′`(`m).

By an eigenvector in V we mean a vector φ that has a conductor, say condπ(φ) = `r,
and is such that φ is an eigenvector for the Hecke operators U ′`(`

m)diag(n, 1)U ′`(`
m) for

all integers n and for some (hence all) m ≥ r; given an eigenvector φ, we write an(φ) for
its eigenvalue with respect to the Hecke operator U ′`(`

m)diag(n, 1)U ′`(`
m).

Note that if f ∈ Mκ(N,χ) is an elliptic modular eigenform, then fA is a pure tensor
in the automorphic representation (π, V ) = (⊗πv,⊗Vv) it generates, say fA = ⊗fv, and
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each fv is an eigenvector for πv; if a(1, f) = 1 (i.e., f is a normalized eigenform) then

a`(f`) = `1−κ/2a(`, f).

8.3.5. A convention on sub- and superscripts. In the case n = 2 we will frequently omit
the sub- or superscript 2.

9. Some cuspidal Eisenstein series

In this section we define the Eisenstein series on G that we will use to study the L-
values of cuspforms on GL2. These Eisenstein series are induced from cuspforms on the
Levi MP = G1 ×ResK/QGm of P .

In 9.1 we recall basic facts about representations of G induced from representations of
MP , setting the stage for some explicit choices and calculations, which are detailed in
9.2. We generally work in an adelic framework. This reduces many global calculations
to their local counterparts. However, for our eventual applications, the adelic results
are also recast in a more classical setup. In defining the local sections, there are four
situations to consider: sections at the archimedean place, at the places ` 6= p where the
inducing data is unramified and no ramification is allowed, at the places ` 6= p where
either there is ramification or ramification is to be allowed, and at the prime p. Each
case has distinct features and is generally handled separately. For those ` 6= p where
ramification is to be allowed, we take a very ramified section (supported on the ‘big cell’),
while at p we take the p-ordinary section which has non-zero support in the smallest cell.
We identify a ‘generic case’ at p which - while not covering all possible inducing data -
covers enough cases for the eventual application to p-adic families of Eisenstein series.

In 9.3 we explain how the local choices are combined to associate certain (good) Eisen-
stein series with certain global data, and then in 9.4 this is all intrepeted in a classical
setup, with the Eisenstein series being seen to be holomorphic Hermitian modular forms.
Of particular importance is the description of the singular terms of the Fourier expansions
of these Eisenstein series as given in Lemma 9.4.1.

In 9.5 we recall the (local) Hecke algebras for the group G and calculate their actions on
the sections defined in 9.2, and then in 9.6 we interpret the results in the classical setup.
The key results are Propositions 9.6.1 and 9.6.2, which give the connection between the
Hecke eigenvalues of the good Eisenstein series and the L-functions of the inducing data
and show that when the inducing data is ordinary then so is the Eisenstein series.

Throughout this section we take n = 2.

9.1. Induced representations and Eisenstein series: generalities. In the follow-
ing we establish notation for certain induced representations on G(Qv) and G(A) and
recall basic facts about these representations and their connections to Eisenstein series.
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9.1.1. Induced representations: archimedean picture. Let (π, V ) be an irreducible (gl2,K
′
∞)-

module and suppose that π is unitary and tempered. There is an irreducible, unitary,
Hilbert representation (π1, H) of GL2(R), unique up to isomorphism, such that (π, V )
can be identified with the (gl2,K

′
∞)-module comprising the K ′∞-finite, smooth vectors

in H. Let χ be the central character of π1. Let ψ and τ be unitary characters of C×

such that ψ|R× = χ. The representation π1 extends to a representation ρ of P (R) as
follows. For g = mn, n ∈ NP (R), m = m(bx, a) ∈MP (R) with a, b ∈ C×, x ∈ GL2(R),
put

ρ(g)v := τ(a)ψ(b)π(x)v, v ∈ H.

Let H∞ ⊆ H be the smooth vectors with the usual topology (cf.[Wa92, §10.1.1]) and
let I(H∞) be the space of functions f ∈ C∞(K∞, H∞) such that f(k′k) = ρ(k′)f(k) for
k′ ∈ P (R) ∩K∞. For each z ∈ C and f ∈ I(H∞) we define a function fz on G(R) by

fz(g) := δ(m)3/2+zρ(m)f(k), g = mnk ∈ P (R)K∞,

(recall that δP = δ3) and we define an action σ(ρ, z) of G(R) on I(H∞) by

(σ(ρ, z)(g)f)(k) := fz(kg).

The representation (σ(ρ, z), I(H∞)) is a smooth Fréchet representation (cf. [Wa92,
§10.1.1]). Let I(ρ) be the subspace of K∞-finite vectors of I(H∞). We obtain a
(g,K∞)-module structure on I(ρ) as the underlying (g,K∞)-module of the representation
(σ(ρ, z), I(H∞)), and we denote this by (σ(ρ, z), I(ρ)). The representation σ(ρ, z)|K∞
(which is independent of z) is unitary with respect to the pairing defined by

(f, g) :=

∫
K∞

< f(k), g(k) >π1 dk,

where < , >π1 is the Hilbert space pairing on H, and the representation (σ(ρ, z), I(ρ)) is
admissible.

Let (π∨, V ) be the irreducible (gl2,K
′
∞)-module given by π∨(x) = π(Ad(η) ·x) for x in

gl2 or K ′∞. This is also tempered and unitary, as is π∨⊗(τ ◦det) (the usual tensor product
of π∨ with the (gl2,K2)-module associated with the character τ ◦ det). We denote by
ρ∨, I(ρ∨), I∨(H∞), and (σ(ρ∨, z), I(ρ∨)) the representations and spaces defined as above
but with π, ψ and τ replaced by π∨ ⊗ (τ ◦ det), ψττ c, and τ̄ c, respectively (so (π1, H)
gets replaced by (π∨1 ⊗ (τ ◦ det), H)). Let π̃ := π∨ ⊗ χ−1.

For each complex number z, f ∈ I(H∞), and k ∈ K∞ consider the (Böchner) integral

(9.1.1.a) A(ρ, z, f)(k) :=

∫
NP (R)

fz(wnk)dn.

This integral converges absolutely and uniformly for z in compact subsets of {z : Re(z) >
3/2} (cf. [Wa92, §10.1.2]). Moreover, for such z, A(ρ, z, f) is in I∨(H∞) and A(ρ, z,−) ∈
HomC(I(H∞), I∨(H∞)) intertwines the actions of σ(ρ, z) and σ(ρ∨,−z). Note that if f
is K∞-finite then so is A(ρ, z, f).

Let F be a finite collection of irreducible representations of K∞. For any µ ∈ F
let I(ρ)µ be the µ-isotypical subspace. Define I(ρ)F to be the subspace ⊕µ∈FI(ρ)µ.
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As I(ρ) is admissible the subspace I(ρ)F is finite-dimensional. It is easily seen that
if f ∈ I(ρ)µ then A(ρ, z, f) ∈ I(ρ∨)µ (at least for Re(z) > 3/2). Therefore the map
from {z : Re(z) > 3/2} to HomC(I(ρ)F , I(π∨, τχπ)F ) given by z 7→ A(ρ, z,−) is
holomorphic.

It is sometimes possible to express A(ρ, z, f) in terms of well-understood functions. We
do this in Section 9.2.1 for a particular choice of f in the case where π is in a (limit of)
holomorphic discrete series.

9.1.2. Induced representations: `-adic picture. Let (π, V ) be an irreducible, admissible
representation of GL2(Q`) and suppose that π is unitary and tempered. Denote by χ
the central character of π. Let ψ and τ be unitary characters of K×` such that ψ|Q×` = χ.

We extend π to a representation ρ of P (Q`) on V as follows. For g = mn, n ∈ NP (Q`),
m = m(bx, a) ∈MP (Q`), a, b ∈ K×` , x ∈ GL2(Q`), put

ρ(g)v := τ(a)ψ(b)π(x)v, v ∈ V.

Let I(ρ) be the space of functions f : K` → V such that (i) there exists an open
subgroup U ⊆ K` such that f(gu) = f(g) for all u ∈ U and (ii) f(k′k) = ρ(k′)f(k) for
k′ ∈ P (Z`). For each f ∈ I(ρ) and each z ∈ C we define a function fz on G(Q`) by

fz(g) := δ(m)3/2+zρ(m)f(k), g = mnk ∈ P (Q`)K`

We define a representation σ(ρ, z) of G(Q`) on I(ρ) by

(σ(ρ, z)(g)f)(k) := fz(kg).

The representation σ(ρ, z)|K` (which is independent of z) is unitary with respect to the
pairing

(f, g) :=

∫
K`

< f(k), g(k) >π dk,

where < , >π is the pairing implicit in our hypotheses on π, and (σ(ρ, z), I(ρ)) is admis-
sible. Moreover, if π, ψ, and τ are unramified then

(9.1.2.a) dimC I(ρ)K` = 1.

In particular if φ ∈ V is a newvector for π and Fρ is defined by Fρ(mk) = ρ(m)φ,
mk ∈ P (Z`)K`, then I(ρ)K` is spanned by Fρ.

Let (π∨, V ) be given by π∨(g) = π(η−1gη). This representation is also tempered and
unitary. We denote by ρ∨, I(ρ∨), and (σ(ρ∨, z), I(ρ∨)) the representations and spaces
defined as above but with π, ψ, and τ replaced by π∨⊗(τ◦det), ψττ c, and τ c, respectively.
Let π̃ := π∨ ⊗ χ−1.

For f ∈ I(ρ), k ∈ K`, and z ∈ C consider the integral

(9.1.2.b) A(ρ, z, f)(k) :=

∫
NP (Q`)

fz(wnk)dn.

As a consequence of our hypotheses on π this integral converges absolutely and uniformly
for z and k in compact subsets of {z : Re(z) > 3/2} × K`; the proof is the same as
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in the real case. Moreover, for such z, A(ρ, z, f) ∈ I(ρ∨) and the operator A(ρ, z,−) ∈
HomC(I(ρ), I(ρ∨)) intertwines the actions of σ(ρ, z) and σ(ρ∨,−z).

For any open subgroup U ⊆ K` let I(ρ)U ⊆ I(ρ) be the finite-dimensional subspace
consisting of functions satisfying f(ku) = f(k) for all u ∈ U . Then the function {z ∈ C :
Re(z) > 3/2} → HomC(I(ρ)U , I(ρ∨)U ), z 7→ A(ρ, z,−), is holomorphic. It is well-known
that this map has a meromorphic continuation to all of C. For example, if τ, ψ and π
are unramified then letting Fρ∨ := Fρ, which is in I(ρ∨) as well, we have by [La71, (4)]

(9.1.2.c) A(ρ, z, Fρ) = D−1
`

L(π̃ ⊗ ξ, z)L(τ̄ ′, 2z)

L(π̃ ⊗ ξ, z + 1)L(τ̄ ′, 2z + 1)
Fρ∨ ,

where

(9.1.2.d) ξ := ψ/τ, τ ′ := τ |Q×` .

More generally, let q be the order of the residue field of a prime of K over `, and for
L(π̃ ⊗ ξ, z)L(τ̄ ′, 2z) =

∏t
i=1(1− αiq−z)−1, t ≤ 3, put

a(ρ, z) :=
t∏
i=1

(1− α2
i q
−2z).

Lemma 9.1.3. For any open subgroup U ⊆ K` the map {z ∈ C : Re(z) > 3/2} →
HomC(I(ρ)U , I(ρ∨)U ) given by z 7→ a(ρ, z)A(ρ, z,−) has a holomorphic continuation to
all of C. In particular, A(ρ, z,−) has an analytic continuation to {z ∈ C : Re(z) 6=
0,±1/2}.

This is a special case of [Sha81, Thm. 2.2.2].

9.1.4. Induced representations: global picture. The space of cuspforms A0(GL2) is an
admissible (gl2,K

′
∞)×GL2(Af )-module. Let V be an irreducible submodule and write π

for the action of (gl2,K
′)×GL2(Af ) on V . Then (π, V ) can be identified with a restricted

tensor product of local irreducible admissible representations. More precisely, there is an
irreducible admissible (gl2,K

′
∞)-module (π∞, V∞), an irreducible admissible GL2(Q`)-

representation (π`, V`) for each prime `, and an isomorphism V'⊗Vw (restricted tensor
product with w running over all the places of Q) intertwining the actions of π and ⊗πw.
The representations π` are almost always unramified, and implicit in the definition of
⊗Vw is a choice of a newvector φ` in V` for the primes ` for which π` is unramified. We
fix once-and-for-all such identifications V = ⊗Vw and π = ⊗πw. We will assume that
for each place w, (πw, Vw) satisfies the hypotheses of sections 9.1.1 and 9.1.2. Let χπ be
the central character of π.

Let τ, ψ : A×K → C× be Hecke characters such that ψ|A×Q = χπ and let τ = ⊗τw and

ψ = ⊗ψw be their local decompositions, w running over places10 of Q. We associate

10Here and throughout we will often view ψ as a function on the A-points of ResK/QGm, so for a

place w of Q, ψw = ⊗v|wψv.
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with the triple (τ, ψ, π) a representation of (P (R) ∩K∞)× P (Af ) on V as follows. For
m ∈ (P (R) ∩K∞)× P (Af ) and v = ⊗vw ∈ V put

ρ(m)v := ⊗(ρw(mw)vw),

where ρw is the representation associated with the triple (τw, ψw, πw) as in 9.1.1 or 9.1.2.

Let Kf :=
∏
w-∞Kw and KA := K∞ × Kf . Let I(ρ) be the space of functions f :

KA → V such that (i) f(k′k) = ρ(k′)f(k) for k′ ∈ P (A) ∩ KA, k ∈ KA, and (ii) f
factors through K∞ ×Kf/K

′ for some open subgroup K ′ ⊆ Kf and f is K∞-finite and
smooth as a function on K∞×Kf/K

′. Let ⊗I(ρw) be the restricted tensor product with
respect to the Fρw ’s at those w at which τw, ψw, and πw are unramified. We assume that
the Fρw ’s are defined using the fixed newvectors φw. The C-linear map

⊗I(ρw)→ I(ρ), ⊗fw 7→ (k 7→ ⊗fw(kw))

is easily seen to be an isomorphism of KA-representations. Henceforth we identify the
spaces I(ρ) and ⊗I(ρw) in this way.

For each z ∈ C and f ∈ I(ρ) we define a function fz on G(A) as follows. For f = ⊗fw
we put

fz(g) := ⊗fw,z(gw)

where fw,z is defined as in §9.1.1, 9.1.2. We define an action σ(ρ, z) of (g,K∞)×G(Af )
on I(ρ) by

σ(ρ, z) := ⊗σ(ρw, z).

It follows from the admissibility of each (σ(ρw, z), I(ρw)) that (σ(ρ, z), I(ρ)) is an admis-
sible (g,K∞)×G(Af )-module.

We define ρ∨, I(ρ∨), and σ(ρ∨, z) in the same way but with each ρw replaced by ρ∨w,
and we make a similar identification of I(ρ∨) with ⊗I(ρ∨w) (where the restricted tensor
product is defined with respect to the Fρ∨w ’s; if τw, ψw, and πw are all unramified then
Fρ∨w = Fρw is in I(ρ∨w)).

For each z ∈ C there are maps

I(ρ), I(ρ∨) ↪→ A0(MP (Q)NP (A)\P (A)),

both given by

f 7→ (g 7→ fz(g)(1)).

So for f in I(ρ) or I(ρ∨), in the context of automorphic forms we will often write fz to
mean the cuspform in A0(MP (Q)NP (A)\P (A)) given by this recipe (the space denotes
the space of cuspforms on P (A) as in [MoWa95]).

9.1.5. Klingen-type Eisenstein series on G. Let π, ψ, and τ be as in 9.1.4. For f ∈ I(ρ),
z ∈ C, and g ∈ G(A) the series

(9.1.5.a) E(f, z, g) :=
∑

γ∈P (Q)\G(Q)

fz(γg)
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is known to converge absolutely and uniformly for (z, g) in compact subsets of {z ∈
C : Re(z) > 3/2} × G(A) and to define an automorphic form on G. (cf. [MoWa95,
II.1.5],[La76, Lemma 4.1]). The map f 7→ E(f, z,−) intertwines the action of σ(ρ, z)
and the usual action of (g,K∞)×G(Af ) on A(G).

To describe the constant terms of E(f, z, g) we consider the the global analog of the
integrals (9.1.1.a) and (9.1.2.b). For f ∈ I(ρ), z ∈ C, and k ∈ KA put

(9.1.5.b) A(ρ, z, f)(k) :=

∫
NP (A)

fz(wnk)dn.

It is known that this integral converges absolutely and uniformly for z in compact subsets
of {z ∈ C : Re(z) > 3/2}. For such z, A(ρ, z, f) ∈ I(ρ∨), and the operator A(ρ, z,−) ∈
HomC(I(ρ), I(ρ∨)) intertwines the actions of σ(ρ, z) and σ(ρ∨,−z). Moreover, for any
pair F = (F∞, U) consisting of a finite set F∞ of irreducible representations of K∞
and a compact open subgroup U ⊆ G(Af ), the function {z ∈ C : Re(z) > 3/2} →
HomC(I(ρ)F , I(ρ∨)F ), z 7→ A(ρ, z,−), is holomorphic (the superscript ‘F ’ denotes the
sum of the µ-isotypical pieces, µ ∈ F∞, of the space of vectors fixed by U). If f = ⊗fw,
then, for Re(z) > 3/2 at least,

(9.1.5.c) A(ρ, z, f)(k) = ⊗A(ρw, z, fw)(kw),

where A(ρw, z, fw)(kw) is the integral (9.1.1.a) or (9.1.2.b).

The convergence properties of the series (9.1.5.a) and the integral (9.1.5.b) imply the
following lemma about the constant terms of the E(f, z, g)’s (cf. [MoWa95, II.1.7]).

Lemma 9.1.6. Let R be a standard Q-parabolic of G (i.e., R ⊇ B). Suppose Re(z) >
3/2.

(i) If R 6= P then E(f, z, g)R = 0;
(ii) E(f, z,−)P = fz +A(ρ, f, z)−z.

Let U := {z ∈ C : Re(z) > 3/2}. Let F = (Fκ, U) be as above and and let
ϕ : C→ I(ρ)F be a meromorphic function. Let Uϕ ⊆ U be the subregion on which ϕ is
holomorphic. The functions

E(ϕ,−) : U → A(G)F , E(ϕ, z)(g) = E(ϕ(z), z, g),

A(ϕ,−) : U → I(ρ∨)F , A(ϕ, z) = A(ϕ(z), z, f),

are meromorphic on U and holomorphic on Uϕ. The general theory of Eisenstein series
provides a meromorphic continuation of these functions to all of C, but this is not needed
for our purposes and so not recalled here.

9.2. Induced representations again: good sections.
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9.2.1. Archimedean sections. Returning to the set-up of 9.1.1 we further assume that

π ∼= π(µ1, µ2), µ1 = sgna1 | · |κ−1/2, µ2 = sgna2 | · |1−κ/2,
a1 + a2 ≡κ (mod 2), κ ≥ 1,

(9.2.1.a)

and that

(9.2.1.b) ψ(x) = τ(x) = (x/|x|)−κ.

Let Vκ := Cv+ ⊕Cv−. We define an action ξκ of K∞ on Vκ by diag(12,−12)v± = v∓

and

k · v+ = J(k, i)−κv+ k · v− = det(k)−κJ(k, i)κv−

for all k ∈ K+
∞. A straightforward application of Frobenius reciprocity yields

(9.2.1.c) dimC HomK∞(Vκ, I(ρ)) = 1 = dimC HomK∞(Vκ, I(ρ∨)).

If Ψ ∈ HomK∞(Vκ, I(ρ)) then for any k ∈ K+
∞,

Ψ(v+)(k) = Ψ(k · v+)(1) = J(k, i)−κΨ(v+)(1).

Thus Ψ(v+)(1) is a multiple of the unique (up to scalar) vector x+ ∈ V such that
k · x+ = j(k, i)−κx+ for all k ∈ K ′∞,+. The same holds for any Ψ ∈ HomK∞(Vκ, I(ρ∨)).

Fix 0 6= Ψ ∈ HomK∞(Vκ, I(ρ)) and 0 6= Ψ∨ ∈ HomK∞(Vκ, I(ρ∨)) so that

(9.2.1.d) Ψ(v+)(1) = Ψ∨(v+)(w).

(This is possible by the preceding observation that these values are a priori scalar mul-
tiples of each other.) Note that Ψ and Ψ∨ are uniquely determined up to the same
non-zero scalar multiple by (9.2.1.d). It is then clear from (9.2.1.c) that there exists a
constant c(ρ, z) independent of the choice of the pair Ψ,Ψ∨ satisfying (9.2.1.d) such that

(9.2.1.e) A(ρ, z,Ψ(v)) = c(ρ, z)Ψ∨(v) for all v ∈ Vκ.

Lemma 9.2.2. Under the hypotheses (9.2.1.a), (9.2.1.b) and with the above notation,

c(ρ, z) = i−κπ323−2z Γ(2z)Γ(z + (κ− 1)/2)

Γ(z + (κ+ 1)/2)2Γ(z + (3− κ)/2)
.

Proof. The proof of this lemma is a straightforward calculation. Let V (µ1, µ2) be the
usual realization of π(µ1, µ2) as a space of smooth, K ′∞-finite functions f on GL2(R)
such that

f(( a ∗d ) g) = µ1(a)µ2(d)|a/d|1/2f(g).

Let W (z) be the space of smooth, K∞-finite functions f : G(R) → C such that for
x, y ∈ R×, a, b ∈ C×,

f(

( ax ∗ ∗
∗ ∗ ∗ ∗

ay ∗
b

)
g) = ψ(ab)µ1(x)µ2(y)|x/y|

1
2 |a2/b2xy|

3
2

+zf(g).

Then W (z) is an admissible (g,K∞)-module in the standard way (K∞ acts by right
translation).
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Fix an identification of (π, V ) with (π(µ1, µ2), V (µ1, µ2)) and let ι : V
∼→ V (µ1, µ2) be

the corresponding identification. This also identifies (π∨, V ) with (π(µ1, µ2), V (µ1, µ2)),

the corresponding identification ι∨ : V
∼→ V (µ1, µ2) being given by ι∨(v) := (g 7→

ι(v)(w1
tg)). Then the maps Φ : I(ρ)→W (z) and Φ∨ : I(ρ∨)→W (z) given by

f 7→ (g 7→ ι(fz(g))(1)) and f 7→ (g 7→ ι∨(fz(g))(1)),

respectively, identify (σ(ρ, z), I(ρ)) and (σ(ρ∨, z), I(ρ∨)) with (g,K∞)-submodules of
W (z).

We define an intertwining operator A(z,−) : W (z)→W (−z) by

A(z, f)(g) :=

∫
NP (R)

f(wng)dn.

(The convergence of this operator can be proven just as is done for (9.1.1.a), so we omit
doing so here.) From our identifications we obtain

A(z,Φ(f)) = Φ∨(A(ρ, z, f)), f ∈ I(ρ).

Putting f+ = Ψ(v+), it then follows from (9.2.1.d) and (9.2.1.e) that

A(z,Φ(f+))(w) = Φ∨(A(ρ, z, f+))(w)

= Φ∨(c(ρ, z)Ψ∨(v+))(w)

= c(ρ, z)ι∨(Ψ∨(v+)(w))(1)

= c(ρ, z)ι∨(f+(1))(1)

= c(ρ, z)ι(f+(1))(w1)

= c(ρ, z)iκι(f+(1))(1)

= c(ρ, z)iκΦ(f+)(1).

(9.2.2.a)

Therefore, to prove the lemma it suffices to compute the left-hand side of (9.2.2.a). To
do this, note that for Re(z) sufficiently large we have

A(z,Φ(f+))(w) =

∫
C

∫
R

∫
C

Φ(f+)(

( 1 n3
1
n1 1

n̄1 n2−n̄1n̄3 −n̄3 1

)
)dn1dn2dn3.

This integral can be evaluated by standard techniques: integrating the variables in order,
treating each as coming from a unipotent subgroup of a rank one group (essentially as is
done in the computation of the Gindikin-Karpelevich formula; c.f. [GK62] and [La71]).
The computation yields

A(z,Φ(f+))(w) = π323−2z Γ(2z)Γ(z + (κ− 1)/2)

Γ(z + (κ+ 1)/2)2Γ(z + (3− κ)/2)
Φ(f+)(1).

The lemma follows upon comparing this with (9.2.2.a).
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9.2.3. `-adic sections. There are three possibilities for K`: (1) K` is an unramified field
extension of Q`, (2) K` is a totally ramified field extension of Q`, and (3) K` is a split
extension of Q`, in which case we have fixed an identification K` = Q` ×Q`. In cases
(1) and (2) we let λ be a uniformizer of O` with the additional restriction that λ = ` in
case (1). In both cases we let q be the order of the residue field of O`. In the third case
we let λ := q := `.

Returning to the set-up of 9.1.2, we let (λrψ) and (λs) be the conductors of ψ and ξ,
respectively. For Kr,s with r ≥ max{rψ, s} we define a character ν of Kr,s by

ν(

(
a b
c d ∗
∗ ∗

)
) := ψ(ad− bc)ξ̄(d).

For K ⊆ Kr,s let

I(ρ,K) := {f ∈ I(ρ) : ρ(k)f = ν(k)f, k ∈ K}.

Let φ ∈ V be any vector having a conductor with respect to π̃ (see 8.3.4) and let
(λrφ) := condπ̃(φ). For any Kr,t with r ≥ max(rψ, rφ, s) and t ≥ s we define Fφ,r,t ∈
I(ρ,Kr,t) by

Fφ,r,t(g) :=

{
ν(k)ρ(p)φ g = pwk ∈ P (Zp)wKr,t

0 otherwise.

Note that since P (Z`)wKQ(λ) = P (Z`)wQ(Z`), if r, r′ ≥ 1 then Fφ,r,t = Fφ,r′,t.

Lemma 9.2.4. Let K = Kr,t as above. Suppose r > 0.

(i) Suppose t = s. If F ∈ I(ρ,K) is supported on P (Zp)wKQ(λ) then F is supported
on P (Zp)wK and so is determined by its value on w.

(ii) If t > 0 then for Re(z) > 3/2, A(ρ, z, Fφ,r,t)(1) = D`|λt|Kφ.

Proof. For part (i) we note that it is enough to show that the function

f(A) := ψ̄(detA)F (wdiag(A, tĀ−1)), A ∈ GL2(O`),

is supported on B′(O`)KB′,`(λ
s). To see that f satisfies this we observe that for k ∈

KB′,`(λ
s),

f(
(
a b
d

)
Ak) = ξ(ddk)π(

(
(aā)−1

1

)
)f(A)

= ξ(ddk)F (
(

(aā)−112

12

)
w
(
A
tĀ−1

)
)

= ξ(ddk)f(A).

Then a well-known argument (such as that used to characterize newvectors for principal
series representations - cf. the proof on [Ca73, Thm. 1]) shows f has the desired support.

For part (ii) we note that P (Q`)wKr,t = P (Q`)w(NP (Zp) ∩Kr,t), and so

wNP (Q`)∩P (Q`)wKr,t = w(NP (Q`)∩w−1P (Q`)w)(NP (Z`)∩Kr,t) = w(NP (Z`)∩Kr,t).
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It then follows that for F = Fφ,r,t

A(ρ, z, F )(1) =

∫
NP (Z`)∩Kr,t

Fz(wn)dn = D`|λt|KF (w) = D`|λt|Kφ.

9.2.5. p-adic sections. We consider the situation of the previous section for the prime p,
recalling that p is split in K (i.e., possibility (3) holds).

Let ρ1 be the representation of P (Qp) associated with (π1, ψ1, τ1) := (π̃, ψ̄, ψcψ̄τ̄ c).
Note that ξ1 = ψ1/τ1 satisfies ξ̄c1 = ξ. Let (prψ) be the conductor of ψ (so also the
conductor of ψ1) and let (ps) and (ps1) be the respective conductors of ξ and ξ1 (if
s = (s′, s′′) then s1 = (s′′, s′)). Let ν1 : Kr1,s1 → C, r1 := max{rψ, s1}, be the character
associated with ρ1 (denoted ν in the preceding section). Let ν0 be the character of Kr1,s1

defined by

ν0(

(
∗ ∗
∗ a b

c d

)
) := ψ(ad− bc)ξ̄(d).

Note that ν0(k) = ν1(k)ψ(det k)ξ1(µ(k)). For any subgroup K ⊆ Kr1,s1 we let

I(ρ,K)0 := {f ∈ I(ρ) : f(gk) = ν0(k)f(g), k ∈ K}.

Let φ ∈ V be an eigenvector for π such that p|condπ(φ) and let (prφ) be its conductor. Let
r := max{rφ, r1} and let t := max{s1, 1}. Put Kφ := Kr,t. Let F 1

φ = Fφ,r,t ∈ I(ρ1,Kφ)

be as in the preceding section. For Re(z) < −3/2 we define F 0
φ,z ∈ I(ρ,Kφ)0 by

F 0
φ,z(g) := ψ(det g)ξ̄(µ(g))A(ρ1,−z, F 1

φ)(g).

For general z ∈ C we define F 0
φ,z to be the value at z of the meromorphic continuation

to C of the function z 7→ ψ(det g)ξ̄(µ(g))A(ρ∨,−z, F 1
φ)(g) ∈ I(ρ)U , where U ⊂ K is

any open subgroup fixing F 1
φ . The existence of this meromorphic continuation is a

consequence of Lemma 9.1.3 as is the fact that F 0
φ,z is defined if Re(z) 6= 0,−1/2. We

explicitly determine F 0
φ,z in one useful case.

The Generic Case. We say that π, φ, ψ, and τ are in the Generic Case if

• π1
∼= π(µ1, µ2) with µ1 unramified and µ2 ramified,

• φ is a newvector for π,
• cond(ψ1) =: (pn1) and cond(τ1) =: (pm1), n1 = (n′1, n

′′
1) and m1 = (m′1,m

′′
1),

satisfy n′1 > m′1 > m′′1 > n′′1 > 0.

In this case the characters ν1 and ν0 can be extended to a larger group. Recall that we
have identified G(Qp) = GL4(Qp)×Q×p . We let K ′φ ⊂ G(Zp) be the subgroup identified
with

{(g, x) ∈ GL4(Zp)× Z×p : g =

 ∗ ∗ ∗ ∗
pn1∗ ∗ ∗ ∗
pn
′
1∗ pm

′
1∗ ∗ pm

′′
1 ∗

pn
′
1∗ pm

′
1∗ ∗ ∗

}.



THE IWASAWA MAIN CONJECTURES FOR GL2 123

Note that Kφ ⊆ K ′φ and that the formulas defining ν1 and ν0 extend to K ′φ. We define

I(ρ1,K
′
φ) and I(ρ,K ′φ)0 as we did I(ρ1,Kφ) and I(ρ,Kφ)0. Then F 1

φ ∈ I(ρ1,K
′
φ) and

F 0
φ ∈ I(ρ,K ′φ).

Proposition 9.2.6. dimC I(ρ1,K
′
φ) = 1.

Proof. We can view I(ρ1) as a space of V -valued functions on GL4(Zp) × Z×p . Since

1 × Z×p ⊂ K ′φ, any f ∈ I(ρ,K ′φ) is determined by its restriction to GL4(Zp). Let I ′(ρ1)

be the restrictions of the functions in I(ρ1) to GL4(Zp) and let K1 := K ′φ ∩ GL4(Zp).

To prove the proposition it therefore suffices to show that I ′(ρ1,K1) := {f ∈ I ′(ρ1) :
f(gk) = ν1(k)f(g), k ∈ K1} is one-dimensional. To do this we first identify I ′(ρ1) with a
principal series representation of GL4 induced from its standard upper-triangular Borel
R.

Let τ1 = (τ ′, τ ′′) and ψ1 = (ψ′, ψ′′) be the identifications of τ1 and ψ1 with pairs
of characters of Q×p . By hypothesis, (π1, V ) can be identified with a principal series
representation: ι : π1'π(µ1, µ2). So if D denotes the diagonal torus of GL4 and λ :
D(Qp)→ C is the character

λ(diag(a, b, c, d)) = τ̄ ′′(a)ψ̄′′(b)ψ′(c)τ ′(d),

which we extend to R(Qp) in the usual way, then

f 7→ (g 7→ ι(f(w′gw′′)(1))),

where w′ := diag(η, 1) and w′′ := diag(1, η−1), identifies I ′(ρ1) with the space W :=
{f : GL4(Zp)→ C : f smooth, f(rg) = λ(r)f(g), r ∈ R(Zp)}. Let δR be the modulus

character of R. We extend each function f ∈ W to GL4(Qp) by f(g) = δR(r)1/2f(k),
g = rk ∈ R(Qp)GL4(Zp); this identifies W with the principal series representation U(λ)
of GL4(Qp) induced from the character λ of R(Qp).

Let K ′ := w′′K1(w′′)−1. Then

K ′ = {

 ∗ ∗ ∗ ∗
pn1∗ ∗ ∗ ∗
pn
′
1∗ pm

′
1∗ ∗ ∗

pn
′
1∗ pm

′
1∗ pm

′′
1 ∗ ∗

 ∈ GL4(Zp)}.

Let ν ′ : D(Qp)→ C be the character

ν ′(diag(a, b, c, d)) = ψ′(a)τ ′(b)τ̄ ′′(c)ψ̄′′(d).

Then ν ′ also defines a character of K ′ via

ν ′(

(
a ∗ ∗ ∗
∗ b ∗ ∗
∗ ∗ c ∗
∗ ∗ ∗ d

)
:= ν ′(diag(a, b, c, d)).

Let W (K ′) := {f ∈ W : f(gk) = ν ′(k)f(g), k ∈ K ′}. Then I ′(ρ1,K1) is identified
with W (K ′), so we want to prove that W (K ′) is one-dimensional. Equivalently, we
want to prove that dimC HomK′(U(λ), ν ′) = 1. As λ is in the Weyl orbit of ν ′ and
since ν ′ is unitary and regular, the principal series U(λ) and U(ν ′) are irreducible and
equivalent as GL4(Qp)-representations [Ca, Thms. 6.3.11, 6.6.1], and so it suffices to show
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that dimC HomK′(U(ν ′), ν ′) = 1. But HomK′(U(ν ′), ν ′) = HomGL4(Zp)(U(ν ′), V (ν ′)),

where V (ν ′) is the representation of GL4(Zp) induced from the character ν ′ of K ′. That
dimC HomGL4(Zp)(U(ν ′), V (ν ′)) = 1 then follows from [Ho73, Thm. 1].

Lemma 9.2.7. In the Generic Case, F 0
φ,z is defined for all z, supported on P (Zp)K

′
φ,

and satisfies F 0
φ,z(1) = |ps|Kφ. Moreover, I(ρ,K ′φ)0 is one-dimensional and spanned by

F 0
φ,z.

Proof. Our hypotheses on the conductors of the various characters ensures that if Re(z) =
0 then both ρ1 ⊗ δz and ρ∨1 ⊗ δ−z are irreducible, regular, unitary representations of
MP (Qp). It then follows that (σ(ρ1, z), I(ρ1)) and (σ(ρ∨1 ,−z), I(ρ∨1 )) are irreducible (see
[Ca, Thm. 6.6.1]), hence so is (σ(ρ,−z), I(ρ)). Our hypotheses also imply that a(ρ1, z) =
1, where a(ρ1, z) is as in Lemma 9.1.3. Then by this same lemma, A(ρ1, z,−) is defined
for all z. Since it follows from part (ii) of Lemma 9.2.4 that A(ρ1, z, F

1
φ) is non-zero for

all z, if Re(z) = 0 then A(ρ1, z, F
1
φ) exists and is non-zero. Therefore, for Re(z) = 0, f 7→

A(ρ1, z, f) determines a G(Zp)-equivariant isomorphism I(ρ1)
∼→ I(ρ∨1 ). It then follows

from Proposition 9.2.6 that I(ρ∨1 ,K
′
φ) := {f ∈ I(ρ∨1 ) : f(gk) = ν1(k)f(g), k ∈ K ′φ} is

one-dimensional. Hence I(ρ,K ′φ)0 is also one-dimensional. As the function

F ′(g) :=

{
ν0(k)ρ(m)φ g = mnk ∈ P (Zp)K

′
φ

0 otherwise

is in I(ρ,K ′φ)0, it spans I(ρ,K ′φ)0. Thus F 0
φ,z(g) = ψ(det g)ξ1(µ(g))A(ρ1,−z, F 1

φ)(g)

is a constant multiple of F ′(g). Appealing to part (ii) of Lemma 9.2.4 shows that
F 0
φ,z(1) = |ps|Kφ, proving the lemma.

9.3. Good Eisenstein series.

9.3.1. Eisenstein data. Let (π, V ) be an irreducible (gl2,K
′
∞)×GL2(Af )-subrepresentation

of A0(GL2) and let V = ⊗Vπ and π = ⊗πw be identifications as in 9.1.4. We assume that
each (πw, Vw) satisfies the hypotheses of either 9.1.1 or 9.1.2. In addition, we assume
that π∞ is as in (9.2.1.a). Let χ be the central character of π.

By an Eisenstein datum for π (andK) we will mean a 4-tupleD = {Σ, ϕ, ψ, τ} consisting
of a finite set of primes Σ, a cuspform ϕ ∈ V that is completely reducible (that is, ϕ is
identified with a pure tensor ⊗φw ∈ ⊗Vw), and unitary Hecke characters ψ = ⊗ψw and
τ = ⊗τw of A×K/K×, all such that

• Σ contains p, all primes that ramify in K, and all primes ` such that π`, ψ`, or
τ` is ramified;
• for all k ∈ K ′∞,+, π∞(k)φ∞ = j(k, i)−κφ∞;
• if ` 6∈ Σ then φ` is the newvector implicit in the identification V = ⊗Vw;
• if ` ∈ Σ, ` 6= p, then φ` has a conductor with respect to π̃`;
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• if ` = p, then φp is an eigenvector for πp but not a newvector if πp is unramified
(i.e., the conductor of φ relative to πp is not (1));
• ψ|A×Q = χ;

• τ∞(x) = (x/|x|)−κ = ψ∞(x).

Here κ is as in (9.2.1.a). The inclusion in Σ of the primes that ramify in K simplifies
later formulas. Note that since p is unramified in K, Σ contains a prime other than p.

Let D = (Σ, ϕ, ψ, τ) be an Eisenstein datum, fixed throughout the rest of this section.
Let ρw, ρ, I(ρw), I(ρ), etc., to be the objects associated with the triples (πw, ψw, τw) and
(π, ψ, τ) in 9.1.1-9.1.4.

Let ξ = ⊗ξw := ψ/τ . For ` ∈ Σ, ` 6= p, let t` > 0 be the smallest integer such that `t`

is contained in each of condπ̃`(φ`), cond(ψ`), and cond(ξ`). Put

KD := Kφp ×
∏

`∈Σ,`6=p
K`(`

t` , `t`)×
∏
`6∈Σ

G(Z`)

where Kφp is as in 9.2.5. Let ν` : K`(`
t` , `t`)→ C be the character denoted by ν in 9.2.3

(defined using ψ` and ξ` for ψ and ξ in 9.2.3). Similary, let ν0 : Kφp → C× be as in 9.2.5

(defined using ψp and τp for ψ and τ in 9.2.5). Let νD : KD → C× be the character
defined by

νD((kw)) := ν0(kp)×
∏

`∈Σ,`6=p
ν`(k`).

Let UD := ker(νD).

Let (ξκ, Vκ) be the representation of K∞ in 9.2.1. Let Fκ ∈ I(ρ∞)ξκ be the unique
vector such that Fκ(1) = φ∞ (the uniqueness follows from (9.2.1.c)). Let FD := (ξκ, UD)
and let

ϕD : U → I(ρ)FD , ϕD(z) = Fκ ⊗ F 0
φp,z ⊗`∈Σ,`6=p Fφ`,t`,t` ⊗`6=Σ Fρ` ,

where U := {z ∈ C : Re(z) > 3/2}. The analytic properties of ϕD are inherited from
F 0
φp,z

, so to see that ϕD is holomorphic it suffices to observe that z 7→ F 0
φp,z

is, and

holomorphy of the latter follows from Lemma 9.1.3. Let

ED(z, g) := E(ϕD, z)(g) and AD(z, g) := A(ϕD, z)(g).

These then are also holomorphic functions on U with values in A(G)FD and I(ρ∨)FD ,
respectively.

In what follows we let ρf := ⊗w 6=∞ρw and I(ρf ) := ⊗w 6=∞I(ρw) (the restricted ten-
sor product with respect to the Fρ` ’s for almost all `), and define A(ρf , z,−) as we
did A(ρ, z,−). Then I(ρ) is identified with I(ρ∞) ⊗ I(ρf ) and if Re(z) > 3/2 then
A(ρ, z,⊗fw) = A(ρ, z, f∞)⊗A(ρf , z,⊗w-∞fw).

Lemma 9.3.2. Suppose κ > 6 and let zκ := (κ − 3)/2. Let F = Fκ ⊗ Ff ∈ I(ρ) =
I(ρ∞)⊗ I(ρf ).

(i) A(ρ, zκ, F ) = 0.
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(ii) E(F, zκ, g)P = Fzκ(g).

In particular, AD(zκ, g) = 0 and ED(zκ,−)P = ϕD(zκ).

Proof. Since zκ > 3/2, A(ρ, zκ, F ) = A(ρ∞, zκ, Fκ) ⊗ A(ρf , zκ, Ff ) by (9.1.5.c). By
(9.2.1.e), A(ρ∞, zκ, Fκ) = c(ρ∞, zκ)F∨κ , where F∨κ ∈ I(ρ∨∞) is the unique vector such that
F∨κ (w) = φ∞. It follows easily from Lemma 9.2.2 that c(ρ∞, zκ) = 0. This proves part
(i). Part (ii) then follows from Lemma 9.1.6.

If κ > 6, then for any F = Fκ⊗Ff ∈ I(ρ) we define a function of (Z, x) ∈ H×G(Af ):

E(Z, x;F ) := J(g, i)κµ(g)−κE(F, zκ, gx), g ∈ G+(R), g(i) = Z.

We write ED(Z, x) for E(Z, x;ϕD(zκ)).

Proposition 9.3.3. Suppose κ > 6 and F = Fκ ⊗ Ff . Then E(Z, x;F ) is a Hermitian
modular form of weight κ. In particular, ED ∈Mκ(KD, νD).

Proof. It is enough to prove that E(Z, x;F ) is a holomorphic function on H, and to prove
this it is enough to prove that Fx(Z) := J(g, i)κµ(g)−κFzκ(gx), g ∈ G+(R), g(i) = Z, is
holomorphic for any x. For, by (9.1.5.a),

E(Z, x;F ) =
∑

γ∈P (Q)\G(Q)

J(γ, Z)−κFγx(γ(Z)),

with the series converging uniformly for Z in any compact subset of H and so defining
a holomorphic function on H if each Fγx(Z) is holomorphic .

Let ϕx = φ∞ ⊗ Ff,zκ(x) ∈ V . By the hypotheses on π∞ and the choice of φ∞,

(9.3.3.a) fx(z) := j(g, i)κ det(g)−κ/2ϕx(g), g ∈ GL2(R), g(i) = z ∈ h,

is a holomorphic weight κ modular form on the upper half-plane h. Suppose now that
Z ∈ H and g ∈ G+(R) is such that g(i) = Z. Without loss of generality we may assume

g =

(
t
y
t−1

y−1

)(
1
n 1

1 −n̄
1

)(
1 a b

1 b̄ c
1

1

)
, t, y ∈ R×, n, b ∈ C, a, c ∈ R.

Then

Z = ( z1 z2z̄2 z3 ) , z1 = t2i+ t2a ∈ h,

and

Fx(Z) = (ty)−κFκ,zκ(g)⊗ Ff,zκ(x)

= t−κ(π∞(
(
t ta
t−1

)
)φ∞ ⊗ Ff,zκ(x))(1)

= t−κϕx(
(
t ta
t−1

)
)

= fx(z1),

(9.3.3.b)

and so Fx(Z) is holomorphic.
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9.3.4. Fourier expansions. Let D be an Eisenstein datum. For f ∈ I(ρ) (ρ being associ-
ated with D as in the previous section) and for any z at which ED(f, z, g) is holomorphic
(so in particular for Re(z) > 3/2)

E(f, z, g) =
∑

β∈S(Q)

µ(β, f, z, g),

where

µ(β, f, z, g) :=

∫
S(Q)\S(A)

E(f, z, ( 1 m
1 ) g)eA(−Trβm)dm.

We note that

(9.3.4.a)
µ(β, f, z, ( 1 m

1 ) g) = eA(Trβm)µ(β, f, z, g), m ∈ S(A)

µ(β, f, z, diag(u, tū−1)g) = µ(tūβu, f, z, g), u ∈ GL2(K).

If κ > 6 and F = Fκ ⊗ Ff , then E(Z, x;F ) is a holomorphic Hermitian modular form
of weight κ by Proposition 9.3.3 and so has a Fourier expansion

(9.3.4.b) E(Z, x;F ) =
∑

β∈S(Q),β≥0

c(β, F, x)e(TrβZ), c(β, F, x) ∈ C.

Comparing (9.3.4.a) and (9.3.4.b) yields

(9.3.4.c)
c(β, F, x) det(ū)κe(iTr (βutū)) = µ(β, F, zκ, diag(u, tū−1)x), u ∈ GL2(C)

c(β, F, diag(ζ, tζ̄−1)x) = det tζ̄−κc(tζ̄βζ, F, x), ζ ∈ GL2(K).

Comparing the first of the preceding equations with part (ii) of Lemma 9.3.2 and (9.3.3.b)
yields

(9.3.4.d) c(( n 0
0 0 ) , F, x) = a(n, fx), n ∈ Q,

where fx is as in (9.3.3.a).

Specializing to the case F = ϕD(z), we write µD(β, z, g) for µ(β, F, z, g), and if z = zκ
then we write cD(β, x) for c(β, F, x).

Lemma 9.3.5. Suppose κ > 6. Let β = ( n 0
0 0 ) ∈ S(Q).

(i) If x` 6∈ P (Q`)wKt`,t` for some ` ∈ Σ, ` 6= p, then cD(β, x) = 0.
(ii) If πp, φp, ψp, and τp are in the Generic Case of 9.2.5 and if xp 6∈ P (Qp)K

′
φp

,

then cD(β, x) = 0.

This follows easily from (9.3.4.d) and the definitions of Fφ`,t`,t` , F
0
φp,z

, and fx (with an

appeal to Lemma 9.2.7 for part (ii)).
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9.4. The classical picture I. By a classical datum we will mean a 4-tuple D =
(f, ψ, ξ,Σ) consisting of

• an eigenform f ∈ Sκ(N,χ) of level N = Mpr, p -M ;
• an idele class character ψ of K such that ψ∞(z) = z−κ and ψ|A×Q = χ| · |−κQ ;

• an idele class character ξ of K of finite order;
• a finite set of primes Σ containing all primes that divide Nm(fψfξ)N and all

primes that ramify in K.

If κ > 6 we associate with each classical datum D a holomorphic Hermitian Eisenstein
series ED of weight κ. We do this by first associating to D an Eisenstein datum D and
then setting ED(Z, x) := ED(Z, x).

Let D = (f, ψ, ξ,Σ) be a classical datum as above. Let χ0 be the unique unitary idele

class character of A× such that χ0|Ẑ× =
∏
`|M χ`. Let w(M) ∈ GL2(Af ) be defined by

w
(M)
` = η if `|M and w

(M)
` = 1 otherwise, and let ϕ be the automorphic form on GL2(A)

defined by

ϕ(g) := fA(gw(M))χ−1
0 (det g).

Note that ϕ(gk) = χ−1
0 (d)χp(dp)ϕ(g) for all k ∈ U ′′(N) where

U ′′(N) := {
(
a b
c d

)
∈ GL2(Ẑ) : b ∈M Ẑ, c ∈ prẐ}.

If σN ∈ SL2(Z) is such that σ−1
N U ′(N) = w(M)U ′(N) and we let

fD := f |κσN ,

then

ϕ(g) = j(g∞)−κ det(g∞)κ/2fD(g∞(i)),

g = γg∞u ∈ GL2(Q)GL+
2 (R)U ′′1 (N), U ′′1 (N) = {k ∈ U ′′(N) : dk − 1 ∈ N Ẑ}.

More generally, for x ∈ GL2(Af ) we put fD(z, x) := | detx|−κ/2Q j(g, i)κ det(g)−κ/2ϕ(gx),

g ∈ GL+
2 (R) such that g(i) = z (so fD(z) = fD(z, u) for all u ∈ U ′′1 (N)).

Let (π, V ) be the unitary cuspidal automorphic representation in A0(GL2) generated
by ϕ. This has central character χπ = χχ−2

0 . In particular, χπ|Ẑ× = χp
∏
`|M χ−1

` . Since

fA is an eigenform and hence a pure tensor, say fA = ⊗fv, in the representation it
generates, it follows from the definition of ϕ that ϕ is also a pure tensor, say ϕ = ⊗φv. If
` -M , then φ` is an eigenform relative to π` with eigenvalue a`n(ϕ`) = χ−1

0,` (`
n)a`n(f`) =

χ−1
0,` (`

n)`1−κ/2a(`n, f). If ` | M then ϕ` is an eigenform relative to π̃` and so has a

conductor with respect to π̃`.

Let ψ0 := ψχ−1
0 | · |

κ/2
K and let τ0 := ψξ̄| · |κ/2K . Note that ψ0|A× = χπ. Then D :=

(Σ, ϕ, ψ0, τ0) is an Eisenstein datum for π, which we refer to as the Eisenstein datum
associated with D. We will often write KD for KD and KD,` for the `-component of KD.
Similarly, we will write νD for νD.
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If κ > 6 then ED(Z, x) := ED(Z, x) is defined and is a holomorphic Hermitian modular
form of weight κ; in particular, ED ∈Mκ(KD, νD). Writing cD(β, x) for cD(β, x) we then
have

(9.4.0.a) ED(Z, x) =
∑

β∈S(Q),β≥0

cD(β, x)e(Tr (βZ)).

Lemma 9.4.1. Let x ∈ G(Ẑ). Let β = ( n 0
0 0 ) ∈ S(Q), n ≥ 0.

(i) If x` 6∈ P (Z`)wKD,` for some ` ∈ Σ, ` 6= p, then cD(β, x) = 0.
(ii) If πp, φp, ψ0,p, and τ0,p are in the Generic Case of 9.2.5 and xp 6∈ P (Qp)K

′
φp

then

cD(β, x) = 0.

(iii) If x = mnw(M)k ∈ MP (Ẑ)NP (Ẑ)w(M)KD, m = m(aA, b) with a, b ∈ (O ⊗ Ẑ)×

and A ∈ GL2(Ẑ), then

cD(β, x) = p−rνD(k)ψξ̄(b)χ−1
0 ψ(a)|aādetA|κQa(n, fD(−, A)), pr||Nm(fξ).

Proof. Parts (i) and (ii) are immediate consequences of Lemma 9.3.5. To prove part (iii),
let FD := ϕD(zκ) ∈ I(ρ), where D is the Eisenstein datum associated with the classical
datum D and ϕD is as in 9.3.1, and write FD = Fκ ⊗ FD,f ∈ I(ρ) = I(ρ∞) ⊗ I(ρf ).

Then FD(x) = φ∞ ⊗ FD,f (w(M)). Following the notation preceding (9.3.3.a), we let
ϕx = FD(x). Then

ϕx = νD(k)τ0(b)ψ0(b)|aādetA/bb̄|κ/2Q π(A)φ∞ ⊗ F 0
φp,zκ(1)⊗`6=p φ`.

By Corollary 9.2.7, F 0
φp,zκ

(1) = p−rφp, and therefore

ϕx = p−rνD(k)τ0(b)ψ0(b)|aā detA/bb̄|κ/2Q π(A)ϕ,

and so

fx(z) = p−rνD(k)τ0(b)ψ0(b)|aādetA/bb̄|κ/2Q j(g, i)κ det g−κ/2ϕ(gA)

for g ∈ GL+
2 (R) such that g(i) = z. Part (iii) now follows from (9.3.4.d) and the

definitions of ψ0, τ0, and fD(z,A).

Let π(f) = ⊗πv(f) be the representation generated by fA and let

W ′(f) :=
∏
`6=p

ε(π`(f), 1/2),

where the epsilon factors are defined with respect to the additive characters e`. Let

f ′D(z) := W ′(f)−1M−κ/2fD(Mz) ∈ Sκ(Γ1(N)).

If f is primitive at each `|M then a(1, f ′D) = 1 and

(9.4.1.a) a(n, f ′D) =
∏

`r||n,`-M

a(`r, f)χ̄0,`(`
r)

∏
`r||n,`|M,a(`,f)6=0

a(`r, f)−1`r(κ−1)χ̄0,`(`
r).

9.5. Hecke operators and L-functions.
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9.5.1. Local Hecke algebras. Let ` be a prime. For ease of notation, we will assume
throughout this section that ` is unramified in K. We will also write K for Kr,s if r and
s are understood or if their exact values are unimportant.

If r = s = 0 (i.e., K = K`) then we let H̃K be the free abelian group on the set
{KgK : g ∈ G(Q`)} of double-cosets. This is a ring under the usual double-coset
multiplication. It is isomorphic to the ring C∞c (K\G(Q`)/K,Z) of locally-constant, Z-
valued, K-bi-invariant functions on G(Q`) (this latter ring is denoted R` in 5.5.11); the
isomorphism comes by identifying the double coset KgK with its characteristic function.

For any s > 0 we let

M2(O`; s) := {
(
a b
c d

)
∈M2(O`) ∩GL2(K`) : c ∈ λsO`, a ∈ O×}.

We let M2(O`; 0) := M2(O`). If r, s > 0 we let H̃K be the free group on the set of

double-cosets {Kdiag(A, tĀ−1)K : A ∈ M2(O`; s), tĀS(Z`)A ⊆ S(Z`)}. Then H̃K is a
commutative ring under the usual double-coset multiplication; parahoric decomposition
of K with respect to the parabolic Q shows that the map

Kdiag(A, tĀ−1)K 7→ |detAĀ|−2
` K ′`(`

s)AK ′`(`
s)

determines an isomorphism of H̃K with a commutative GL2-Hecke algebra that is com-
patible with double-coset multiplication.

We set HK := H̃K ⊗ Z[q1/2, q−1/2].

9.5.2. The Satake map. Recall that T ⊂ G is the standard diagonal torus. For a prime
` let X` := T (Q`)/T (Z`). Given t ∈ T (Q`) we write [t] for its image in X`. We single
out some elements of T (Q`) (and hence of X`) for future use. If ` does not split in K let

t1 := diag(1, `, 1, `−1) t2 := diag(`, 1, `−1, 1).

If ` splits in K let

t
(1)
1 := diag(1, (`, 1), 1, (1, `−1)), t

(1)
2 := diag((`, 1), 1, (1, `−1), 1),

t
(2)
i := t̄

(1)
i , ti = t

(1)
i t

(2)
i , i = 1, 2.

Let t0 := diag(`, `, 1, 1). Let also z0 := diag(`, `, `, `). If ` splits in K let z
(1)
0 =

(diag(`, `, `, `), 1) and z
(2)
0 = (1,diag(`, `, `, `)). Put

R` := Z[X`, q
1/2, q−1/2] =

{
Z[{[ti], [ti]−1}i=1,2, [t0], [t0]−1, q1/2, q−1/2] ` non-split

Z[{[t(j)i ], [t
(j)
i ]−1}1≤i,j≤2, [t0], [t0]−1, q1/2, q−1/2] ` split.

That is, R` is the group ring of X` over Z[q1/2, q−1/2]. The local Weyl group WG,` acts
on R` through its action on X`: w · [t] = [wtw−1].

Any element of KgK ∈ H̃K has a decomposition KgK = ttiniK, ti ∈ T (Q`), ni ∈
NB(Q`). We define SK(KgK) ∈ R` by SK(KgK) =

∑
δ

1/2
B (ti)[ti]. This extends linearly

to a map SK : HK → R`.
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Proposition 9.5.3. Suppose r = s = 0 or r, s > 0. The map SK : HK → R` is an

injection of rings. Moreover, when r = s = 0 the map SK identifies HK with the RWG,`

` .

When r = s = 0 this proposition follows from the usual Satake isomorphism. When
r, s > 0 the previously described isomorphism of H̃K with a GL2-Hecke algebra reduces
this to a well-known situation for GL2.

Suppose r = s = 0. As a consequence of this proposition we may define elements in HK
by specifying their images in R

WG,`

` . When ` is inert in K we let Ti ∈ HK , i = 1, ..., 4,
be determined by

(9.5.3.a) 1 +
4∑
i=1

SK(Ti)X
i =

2∏
i=1

(1− q3/2[ti]X)(1− q3/2[ti]
−1X).

Similarly, when ` splits in K we let T
(j)
i ∈ HK , i = 1, .., 4, j = 1, 2, be determined by

(9.5.3.b) 1 +
4∑
i=1

SK(T
(j)
i )Xi =

2∏
i=1

(1− q3/2[t
(j)
i ]X)(1− q3/2[t

(j′)
i ]−1X), j′ = 3− j.

The Ti and T
(j)
i actually belong to H̃K. This is well-known in the split case (it can be

deduced, for example from the discussion on pp.228-229 of [G98]). In the inert case we
just note that T1 = Kt1K, T2 = Kt1t2K + q6, T3 = q3T1, and T4 = 1. Let Z0 be defined

by SK(Z0) = [z0], and if ` splits let Z
(j)
0 be defined by SK(Z

(j)
0 ) = [zj0]. We let H′K ⊂ H̃K

be the subring generated by {T1, .., T4, Z0} if ` is inert and by {T (j)
1 , ..., T

(j)
4 , Z

(j)
0 : j =

1, 2} if ` splits.

9.5.4. Actions on induced representations. We return to the set-up of 9.1.2, freely using
the notation from there and from 9.2.3.

Let KgK be such that KgK = tbiK with bi ∈ B(Q`) or bi ∈ αB(Q`)α
−1, α =

diag(η, η−1). For each z ∈ C we define an action of KgK on I(ρ,K) by

[KgK]zf :=

{∑
ψ−1(ai)τ

−1(di)σ(ρ, z)(bi)f r, s > 0∑
σ(ρ, z)(bi)f r = s = 0,

bi =

( ai ∗ ∗ ∗
∗ di ∗ ∗∗ ∗

∗ ∗

)
.

This defines an action of HK on I(ρ,K). When r = s = 0 this action is the same as the
usual convolution action of the characteristic function of KgK on the space of functions
{fz : f ∈ I(ρ,K)}.

9.5.5. The unramified case. Continuing with the conventions of the previous paragraph,
suppose r = s = 0 (so in particular, π, ψ, and τ are unramified). Then K = K` and
I(ρ,K) is one-dimensional. It follows that Fρ is an eigenvector for the action of HK
associated with each z ∈ C. The eigenvalues can be determined as follows.

Given a character α : T (Q`) → C let I(α) be the set of locally-constant functions

f : G(Q`) → C such that f(tng) = αδ
1/2
B (t)f(g), t ∈ T (Q`), b ∈ NB(Q`); G(Q`) acts
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on I(α) via right translation. So I(α) is the usual induction of α from B to G. The
space I(α)K is non-zero (in which case it is one-dimensional) if and only if α is trivial on
T (Z`), in which case α defines a character of X` and hence a homomorphism R` → C.
Let λα : HK → C be the homomorphism obtained by composition with SK ; this extends
to a homorphism HK [X]→ C[X]. There is an action of HK on I(α)K defined by

[KgK]f(x) :=
∑

f(xbi), KgK = tbiK, bi ∈ B(Q`),

and we have

[h]f = λα(h)f, h ∈ HK , f ∈ I(α)K .

Each (I(ρ), σ(ρ, z)) is isomorphic to some I(α), with α trivial on T (Z`), as represen-
tations of G(Q`). Such an isomorphism is HK-invariant. Suppose π'π(µ1, µ2). Then
(I(ρ), σ(ρ, z)) is isomorphic to I(α) with

α(diag(λx̄−1, λȳ−1, x, y)) = ψ(x)τ(y)µ1(λ/xx̄)|λ/yȳ|z` .

Let λρ,z := λα; this extends to a homomorphism H̃K [[X]]→ C[[X]].

If ` does not split in K we set

(9.5.5.a) ZK(X) := 1 +
4∑
i=1

TiX
i ∈ H′K [X].

If ` splits in K then we define Z
(j)
K (X) by the same formula but with Ti replaced by T

(j)
i .

If ` does not split in K, then it follows from (9.5.3.a) and (9.5.5.a) that

λρ,z(ZK) = (1−q3/2ψ(`)µ1(q)−1X)(1− q3/2ψ̄c(`)µ1(q)X)

× (1− τ(`)qz+3/2X)(1− τ̄ c(`)q−z+3/2X).
(9.5.5.b)

Similarly, if ` splits in K then it follows from (9.5.3.b) that

λρ,z(Z
(j)
K ) = (1−q3/2ψj(`)µ1(q)−1Xj)(1− q3/2ψ̄j′(`)µ1(q)Xj)

× (1− τj(`)qz+3/2X)(1− τ̄j′(`)q−z+3/2X),
(9.5.5.c)

where j′ = 3− j.

9.5.6. Ramified cases. Suppose now we are in the situation of 9.2.3 but that K = Kr,t

with r, t > 0 and with λr contained in condπ̃(φ) and λt contained in cond(ξ).

Lemma 9.5.7. Suppose ` splits in K. If φ is an eigenform for π̃ such that `|condπ̃(φ)
and if cond(ξ) = (`t), then for any z ∈ C, Fφ,r,t is an eigenform for the action of each
[KdK]z, d = (diag(`a1 , `a2 , `a4 , `a3), 1) with a1 ≥ a2 ≥ a3 ≥ a4. In particular,

[KdK]zFφ,r,t = `(a2−a3)(3/2+z)`a1−a2+a3−a4a`a1−a4 (φ)Fφ,r,t,

where a`a1−a4 (φ) is the eigenvalue with respect to π̃.
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Proof. Let d be as in the lemma. Then KdK = tnidK with ni running over the elements(
1 x

1
1
−x̄ 1

)( 1 α β
1 β̄ γ

1
1

)
x ∈ O`/(`a1−a2 , `a3−a4), α ∈ Z`/`

a1−a4 , β ∈ O`/(`a1−a3 , `a2−a4), γ ∈ Z`/`
a2−a3},

and so the operator [KdK]z is defined. Let F := Fφ,r,t and F ′ := [KdK]zF .

Let W ′ ⊂ WG,` be such that G(Z`) = tx∈W ′P (Z`)xKQ(λ). Suppose n ∈ KQ(λ).
Then Fz(xnnid) 6= 0 only if xnni ∈ P (Q`)w(K ∩NB(Z`))d

−1 ⊆ P (Q`)wNB(Z`). Since
ni ∈ Q(Z`) it follows that xn ∈ P (Q`)wQ(Z`) = P (Q`)wKQ(λ). Therefore it must
be that x ∈ wWQ,` and hence F ′ is supported on P (Z`)wQ(Z`). Then by part (i) of
Lemma 9.2.4 it follows that F ′ is supported on P (Z`)wK and that F ′ = cF if and only
if F ′(w) = cφ.

Since Fz(wnid) 6= 0 only if ni ∈ w−1P (Z`)wd(K ∩ NB(Z`))d
−1, it is easily seen from

the description of ni that this happens only if β = 0,γ = 0. And so

F ′(w) = ψ((`−a1 , `a4))τ((`−a2 , `a3))
∑

{ni : β=γ=0}

Fz(wnid)

= `a1−a2+a3−a4ψ((`−a1 , `a4))τ((`−a2 , `a3))
∑

{ni : x=β=γ=0}

Fz(wnid)

= `a1−a2+a3−a4`(a2−a3)(3/2+z)
∑

α∈Z/`a1−a4

π̃(( 1 α
1 )
(
`a1−a4

1

)
)φ

= `(a2−a3)(3/2+z)`a1−a2+a3−a4a`a1−a4 (φ)φ.

9.5.8. Actions on p-adic sections. Supposing we are in the setting of 9.2.5, we modify
the actions in 9.5.4 to get actions on I(ρ,Kφ)0: for z ∈ C and KφgKφ ∈ HKφ

[KφgKφ]0zf :=
∑

ψ−1(ai)τ
−1(di)σ(ρ, z)(bi)f, KφtKφ = tbiKφ, bi =

( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

ai ∗
∗ di

)
.

This is related to the action on I(ρ1,Kφ) as follows. Let f ∈ I(ρ1,Kφ). If f ′ ∈ I(ρ,Kφ)0

is given by f ′(x) = ψ(detx)ξ̄(µ(x))A(ρ1,−z, f)(x), then

(9.5.8.a) [KφgKφ]−zf = cf =⇒ [KφgKφ]0zf
′ = cf ′.

Lemma 9.5.9. For z ∈ C, F 0
φ,z is an eigenvector for the action of [KφdKφ]z, d =

(diag(pa1 , pa2 , pa4 , pa3), 1) with a1 ≥ a2 ≥ a3 ≥ a4. In particular,

[KφdKφ]0zF
0
φ,z = p(a2−a3)(3/2−z)pa1−a2+a3−a4apa1−a4 (φ).

This follows immediately from (9.5.8.a) and Lemma 9.5.7.

For an Eisenstein datum D, let UD,p ⊆ HKD,p be the subalgebra generated by the
double cosets KD,pdKD,p with d as in the preceding lemma.
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9.5.10. Consequences for Eisenstein series. Let D = (Σ, ϕ, ψ, τ) be an Eisenstein datum
for a unitary cuspidal representation (π, V ) of GL2/Q as in 9.3.1, the notation from which
we freely use. Let

HΣ := ⊗`6∈ΣH′K` ,
the restricted tensor product being with respect to the identity elements. Then HΣ acts
on I(ρ)Σ := ⊗` 6∈ΣI(ρ`,K`), and hence on I(ρ)D := I(ρ∞)⊗ I(ρp,KD,p)

0⊗`∈Σ\{p} I(ρ`)⊗
I(ρ)Σ, in the obvious way: if h = ⊗h` ∈ HΣ and f = ⊗f` ∈ I(ρ)Σ then [h]zf = ⊗[h`]zf`.
The action of UD,p on I(ρ,KD,p)

0 also gives an action on I(ρ)D that clearly commutes

with the action of HΣ.

Let A(G)D := {f ∈ A(G) : f(gk) = νD(k)f(g), k ∈ KD,p ⊗
∏
` 6∈ΣK`}. Then HΣ acts

on A(G)D in the obvious way; this is the usual double-coset action. We also define an
action of UD,p on A(G)D in analogy with the action on I(ρp,KD,p)

0. In particular, for

h ∈ HD := UD,p ⊗HΣ,

h · E(f, z, g) = E([h]zf, z, g), f ∈ I(ρ)D,

whenever E(f, z, g) is defined. Hence ED(z, g) is an eigenform for the action of HD with
the same eigenvalues as ϕD(z) = Fκ ⊗ F 0

φp,z
⊗`6=p Fφ`,t`,t` (with respect to z). We define

a homomorphism λD : UD,p ⊗HΣ → C by

h · ED(zκ, g) = λD(h)ED(zκ, g).

Note that if ` 6∈ Σ then the restriction of λD to H′K` ⊂ H
Σ is just λρ,zκ . We let

ZD,` = λD(ZKD,`), by which we mean the polynomial obtained from applying λD to the
coefficients of ZKD,` .

9.6. The classical picture II. Let D = (f, ψ, ξ,Σ) be a classical datum, and let D =
(Σ, ϕ, ψ0, τ0) be its associated Eisenstein datum. Recall that if ` 6∈ Σ then there is an
action ofHK` on Mκ(KD, νD) defined via correspondences (cf. 5.5.11). For h = K`gK` =
tbiK`, bi ∈ B(Q`), this action is just

(h · f)(Z, x) = |µ(g)|−κ`
∑

f(Z, xbi), f ∈Mκ(KD, νD).

We also define an action of UD,p on Mκ(KD, νD) as we did on A(G)D in 9.5.10, but
modified by the factor |µ(g)|−κp as above.

Suppose κ > 6. We define λD : HΣ → C by h · ED = λD(h)ED. If h = K`gK` ∈
H′K` then λD(h) = |µ(g)|−κA λD(h). We continue to denote by λD its extension to a

homomorphism HΣ[X]→ C[X].

Let v be a finite place of K lying over a rational prime ` 6∈ Σ. If ` splits in K let iv = 1
or 2, according to whether the valuation associated to v comes from the projection onto
the first or second factor of K` = Q` ×Q`. Let Qv(X) ∈ H′K` [X] be defined by

(9.6.0.a) Qv(X) :=

{
ZK`(Z0X) if ` does not split

Z
(iv)
K`

(Z
(3−iv)
0 X) if ` splits.
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Proposition 9.6.1. Suppose κ > 6. Let v be a finite place of K lying over a rational
prime ` 6∈ Σ, and let qv be the order of the residue field of v. Then λD(Qv)(q

−s
v ) is the

Euler factor at v of the Dirichlet series

LΣ
K(f, χ̄0ξ̄

cψc, s− 2)LΣ(χ̄0ψ
c, s− 3)LΣ(χχ̄0ξ̄

′ψc, s− κ).

In this proposition, χ0 is the idele class character so denoted in 9.4.

Recall that f is ordinary at p if the eigenvalue of the Hecke operator Up acting on f is

a p-adic unit (with respect to the fixed embeddings Q ↪→ Qp ↪→ C). This is equivalent

to a(p, f) being a p-adic unit and hence to χ0(p)pκ/2−1ap(φp) = a(p, f) being a p-adic
unit, where ϕ = ⊗φv is the form appearing in the Eisenstein datum D associated with
D.

Proposition 9.6.2. Suppose κ > 6 and p|fξ. Let t := (diag(pa1 , pa2 , pa4 , pa3), 1) ∈ T (Qp)
with a1 ≤ a2 ≤ a3 ≤ a4. Let ut be the operator defined in 6.2. Then

ut · ED =

4∏
i=1

βaii ,

where

(β1, ..., β4) = (a(p, f)−1ψp,2(p), χ−1
0,pψp,2ξp,2(p), pκχ0,pψ

−1
p,1ξ

−1
p,1(p), a(p, f)pκψ−1

p,1(p)).

In particular, if f is ordinary, then so is ED.

Proof. The operator ut acts on ED as

p(κ−2)(a3+a4)+2(a1+a2)τ0,p((p
−a3 , pa2))ψ0,p((p

−a4 , pa1)KD,pt
−1KD,p.

Since p|fξ (so p|cond(ξ0,p)), and since p|N (so p|condπ0,p(φp)), it follows that π0,p, ψ0,p,
τ0,p, and φp satisfy the hypotheses of Lemma 9.5.9. In particular, ED is an eigenform for
the action of ut. That the eigenvalues are as stated then also follows from Lemma 9.5.9.
That ED is ordinary if f is ordinary follows from the simple observation that in this case
each of the βi’s is a p-adic unit. For this last point, the crucial observation is that the
values of χ0 and ξ are p-adic units (these are finite characters) while the valuation of
ψp((p

a, pb)) = ψp,1(pa)ψp,2(pb) is the same as paκ.

10. Hermitian theta functions

In this section we recall the Weil representations and theta functions associated with
certain definite Hermitian matrices and define some specific Schwartz functions that enter
into our later expressions for Fourier coefficients of the Eisenstein series ED. As in §9,
we adopt an adelic point of view for the most part, first defining and analyzing various
local Schwartz functions and then combining them into global objects. The motivation
for the specific Schwartz functions included here come from the calculations in §11. This
section can be safely omitted from a first reading and only referred to as need arises in
subsequent calculations (see especially 11.8 and 11.9).
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10.1. Generalities. Let V be the two-dimensional K-space of column vectors.

The local set-up. Let v be a place of Q. Let h ∈ S2(Qv), deth 6= 0. Then < x, y >h:=
tx̄hy defines a non-degenerate Hermitian pairing on Vv := V ⊗Qv. Let Uh be the unitary
group of this pairing and let GUh be its similitude group (algebraic groups over Qv) with
similitude character µh : GUh → Gm. Let V1 := K2 and < −,− >1 be the pairing on V1

defined by < x, y >1= xw1
tȳ. The unitary group of this pairing is just U1/Q. Let W :=

Vv⊗Kv V1,v, where V1,v := V1⊗Qv. Then (−,−) := TrKv/Qv
(< −,− >h ⊗Kv < −,− >1)

is a Qv-linear pairing on W that makes W into an 8-dimensional symplectic space over
Qv. The canonical embedding of Uh×U1 into Sp(W ) realizes the pair (Uh, U1) as a dual
pair in Sp(W ). Let λv be a character of K×v such that λv|Q×v = 1. In [Ku94], a splitting

Uh(Qv) × U1(Qv) ↪→ Mp(W,Qv) of the metaplectic cover Mp(W,Qv) → Sp(W,Qv) is
associated with the character λv; we use this splitting to identify Uh(Qv)×U1(Qv) with
a subgroup of Mp(W,Qv).

We let ωh,v be the corresponding Weil representation of Uh(Qv)× U1(Qv) (associated
with λv and ev) on the Schwartz space S(Vv) : the action of (u, g) on Φ ∈ S(Vv) is
written ωh,v(u, g)Φ. If u = 1 we often omit u, writing ωh,v(g) to mean ωh,v(1, g). Then
ωh,v satisfies:

• ωh,v(u, g)Φ(x) = ωh,v(1, g)Φ(u−1x);
• ωh,v(diag(a, tā−1))Φ(x) = λ(a)|a|KΦ(xa), a ∈ K×v ;
• ωh,v(r(S))Φ(x) = Φ(x)ev(< x, x >h S), S ∈ Qv;
• ωh,v(η)Φ(x) = | deth|v

∫
Vv

Φ(y)ev(TrK/Q < y, x >h)dy.

We often drop the subscript v from ωh,v.

The global set-up. Let h ∈ S2(Q), h > 0. We define global versions of Uh, GUh, W , and

(−,−) analogously to the above. Fixing an idele class character λ = ⊗λv of A×K/K×
such that λ|A×Q = 1, the associated local splittings described above then determine a

global splitting Uh(A) × U1(A) ↪→ Mp(W,A) and hence an action ωh := ⊗ωh,v of
Uh(A)× U1(A) on the Schwartz space S(V ⊗A).

10.1.1. Theta functions. Given Φ ∈ S(V n ⊗A) we let

Θh(u, g; Φ) :=
∑
x∈V

ωh(u, g)Φ(x).

This is an automorphic form on Uh(A)× U1(A).

10.2. Some useful Schwartz functions. We now define various Schwartz functions
that show up in later formulas.

10.2.1. Archimedean Schwartz functions. Let Φh,∞ ∈ S(V ⊗R) be

Φh,∞(x) = e−2π<x,x>h .
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Henceforth we assume that

(10.2.1.a) λ∞(z) = (z/|z|)−2.

Lemma 10.2.2. Given z ∈ h, let Φh,z(x) := e(< x, x >h z) (so Φh,i = Φh,∞). For any
g ∈ U1(R),

ωh(g)Φh,z = J1(g, z)−2Φh,g(z).

In particular, if k ∈ K+
∞,1 then ωh(k)Φh,∞ = J1(k, i)−2Φh,∞.

Proof. Since U1(R) is generated by η and the elements of Q1(R) ∩ U1(R) it suffices to
check the asserted formula for these, and in these cases the formula is a simple conse-
quence of the formulas for the actions of the Weil representation ωh.

10.2.3. `-adic Schwartz functions. Let Φ0 ∈ S(V`) be the characteristic function of the
set of column vectors with entries in O`. For y ∈ GL2(K`) let Φ0,y(x) := Φ0(y−1x).

Lemma 10.2.4. Let h ∈ S2(Q`), deth 6= 0. Let y ∈ GL2(K`). Suppose tȳhy ∈ S2(Z`)
∗.

(i) If λ is unramified, ` is unramified in K, and h, y ∈ GL2(O`), then

ωh(U1(Z`))Φ0,y = Φ0,y.

(ii) If D` det tȳhy|`r, r > 0, then

ωh(k)Φ0,y = λ(ak)Φ0,y, k ∈ {
(
a b
c d

)
∈ U1(Z`) : `r|c}.

Proof. We first note that for b ∈ Z`

ωh(
(

1 b
1

)
)Φ0,y(x) = Φ0,y(x)e(tx̄hxb)

= Φ0,y(x)e(tx̄tȳ−1tȳhyy−1xb) = Φ0,y(x),

the last equality following since Φ0,y(x) = 0 unless the entries of y−1x are in O`, in which
case tx̄tȳ−1tȳhyy−1x ∈ Z` as tȳhy ∈ S2(Z`)

∗ and so the exponential term equals 1. For
a ∈ O×` we also have ωh(diag(a, ā−1))Φ0,y = λ(a)Φ0,y. Therefore ωh(g)Φ0,y = λ(ag)Φ0,y

for all g ∈ B1(Z`) ∩ U1(Z`).

Let Φ′ := ωh(η)Φ0,y. By definition

Φ′(x) = | deth|`
∫
yM2×1(O`)

e`(TrK/Q
tūhx)du.

Then Φ′(x) = 0 unless hx ∈ tȳ−1M2×1(O`)δ−1
K , in which case Φ′(x) = |deth/yȳ|`D−1

` .

Suppose λ is unramified. If D` = 1 (so δK ∈ O×` ) and h, y ∈ GL2(O`), then it follows
that Φ′ = Φ0. Since U1(Z`) is generated by η and B1(Z`) ∩ U1(Z`), it then follows that
in this case ωh(U1(Z`))Φ0 = Φ0, proving (i).

To prove part (ii) we note that any k as in the statement can be written as

k = ( 1
c 1 ) g, `r|c, g ∈ B1(Z`) ∩ U1(Z`).
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Then

ωh(k)Φ0,y = λ(ak)ωh(( 1
c 1 ))Φ0,y = λ(ak)ωh(η−1

(
1 −c

1

)
)Φ′.

Let Φ′′ := ωh(
(

1 −c
1

)
)Φ′. Then Φ′′(x) = Φ′(x)e(−tx̄hxc), so Φ′′(x) is zero unless

x = h−1tȳ−1v with v ∈ M2×1(O`)δ−1, in which case tx̄hxc = tv̄y−1h−1tȳ−1vc ∈ Z`
as y−1h−1tȳ−1c ∈ D`S2(Z`)

∗. Therefore Φ′′ = Φ′. From this it follows that ωh(k)Φ0,y =
λ(ak)ωh(η−1)Φ′′ = λ(ak)ωh(η−1)Φ′ = λ(ak)Φ0,y, proving (ii).

Let θ be a character of K×` and let x ∈ cond(θ) be invertible (i.e., x ∈ K×` ). Let

Φθ,x(u) :=
∑

a∈(O`/x)×

θ(a)Φ0(t(u1 + a/x, u2)), u = t(u1, u2).

For y ∈ GL2(K`) we let Φθ,x,y(u) := Φθ,x(y−1u). We let Φh,θ,x := ωh(η−1)Φθ,x and
Φh,θ,x,y := ωh(η−1)Φθ,x,y.

Lemma 10.2.5. Let h ∈ S2(Q`), deth 6= 0. Let y ∈ GL2(K`). Suppose tȳhy ∈ S2(Z`)
∗.

Let θ be a character of K×` and let 0 6= x ∈ cond(θ) be such that `|x. Let (c) :=
cond(θ) ∩ ($`), where $` = ` if ` is split in K and otherwise $` is a uniformizer at `.

(i) If cD` det tȳhy|x and y−1hy ∈ GL2(O`) and D` = 1 or y−1h−1tȳ−1 = ( ∗ ∗∗ d ) with
d ∈ Z`, then

ωh(k)Φθ,x,y = λθ(ak)Φθ,x,y, k ∈ U1(Z`), D`|ck, xx̄|bk.

(ii) The support of Φh,θ,x,y is in h−1tȳ−1L∗θ,x, where if ` is non-split in K then

L∗θ,x := {t(u1, u2) : u2 ∈ δ−1
K O`, ū1 ∈

x

cδK

{
O` cond(θ) = O`
O×` cond(θ) 6= O`

},

and if ` splits in K then

L∗θ,x := {t(u1, u2) : u2 ∈ δ−1
K O`, ū1,i ∈

xi
ciδK

{
Z` cond(θi) = Z`

Z×` cond(θi) 6= Z`
},

with ū1 = (ū1,1, ū1,2), x = (x1, x2), c = (c1, c2) ∈ K` = Q` ×Q` and θ = (θ1, θ2).
Furthermore, for v = h−1tȳ−1u with u ∈ L∗θ,x

Φh,θ,x,y(v) = |dethyȳ|`D−1
`

∑
a∈(O`/x)×

θ(a)e`(TrK/Qaū1/x).

Proof. We first note that Φθ,x,y is supported on the lattice yLx, Lx := {u = t(u1, u2) :

u1 ∈ 1
xO
×
` , u2 ∈ O`} and that for v = yu ∈ yLx, Φθ,x,y(v) = θ(−xu1).

Let Φ′ := ωh(η)Φθ,x,y. Then

Φ′(v) = | dethyȳ|`
∫
Lx

θ(−xu1)e`(TrK/Q
tūtȳhv)du.
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It follows that Φ′(v) = 0 unless v ∈ h−1tȳ−1L∗θ,x with

L∗θ,x := {t(w1, w2) : w2 ∈ δ−1O`, w̄1 ∈
x

cδK

{
O` cond(θ) = O`
O×` cond(θ) 6= O`

}

if ` non-split in K, and with

L∗θ,x := {t(w1, w2) : w2 ∈ δ−1
K O`, w̄1,i ∈

xi
ciδK

{
Z` cond(θi) = Z`

Z×` cond(θi) 6= Z`
}

if ` splits in K, where w̄1 = (w̄1,1, w̄1,2), x = (x1, x2), c = (c1, c2) ∈ K` = Q` ×Q`, and
θ = (θ1, θ2). It then follows that for v = h−1tȳ−1w ∈ h−1tȳ−1L∗θ,x,

Φ′(v) = |dethyȳ|`D−1
` θ(−1)

∑
a∈(O`/x)×

θ(a)e`(TrK/Qaw̄1/x).

Part (i) can now be proved by a simple modification of the arguments proving Lemma
10.2.4. Part (ii) is just the formula for ωβ(−1)Φ′(v) = Φ′(−v).

Lemma 10.2.6. Suppose ` splits in K. Let (c) := cond(θ) and suppose c = (`r, `s) with
r, s > 0. Let γ = (1, η) ∈ SL2(O`) = SL2(Z`) × SL2(Z`). Suppose h = diag(α, β) with
α, β ∈ Z×` .

(i) Φh,θ,c,γ is supported on

L′ := {u = t(a, b) : a ∈ Z` × Z×` , b ∈ Z×` × Z`},

and for u ∈ L′

Φh,θ,c,γ(u) = θ−1
1 (αa2)g(θ1)θ−1

2 (βb1)g(θ2),

where a = (a1, a2), b = (b1, b2) ∈ Z` × Z`, and θ = (θ1, θ2).

(ii) ωh(u, k)Φh,θ,c = θ−1
1 (ag)θ2(dg)λθ(dk)Φh,θ,c for u = (g, g′) ∈ Uh(Z`) with pmax(r,s)|cg

and for k ∈ U1(Z`) such that pmax(r,s)|ck.

Proof. Part (i) follows immediately from part (ii) of Lemma 10.2.5. The claim of part
(ii) for the action of u follows immediately from part (i), while the claim for the action of
k can be proved by a simple modification of the arguments proving Lemma 10.2.4 (with
an appeal to part (i) of Lemma 10.2.5).

10.3. Connections with classical theta functions. Assume (10.2.1.a) holds. If Φ ∈
S(V ⊗A) is such that Φ(u) = Φh,∞(u∞)Φf (uf ) for some Φf ∈ S(V ⊗Af ), then we let

θh(g, z; Φ) := J1(g∞, i)
2θh(g, g∞; Φ), z ∈ h, g∞ ∈ U1(R), g∞(i) = z, g ∈ Uh(A).
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By Lemma 10.2.2

θh(g, z; Φ) =
∑
x∈V

J1(g∞, i)
2ωh(g, g∞)Φ(x)

=
∑
x∈V

Φf (g−1x)J1(g∞, i)
2ωh(g∞)Φh,i(x)

=
∑
x∈V

Φf (g−1x)Φh,g∞(i)(x)

=
∑
x∈V

Φf (g−1x)e(< x, x >h z).

(10.3.0.a)

This last series is clearly holomorphic in z, so θh(g, z; Φ) is a weight 2 modular form.

11. Siegel Eisenstein series and their pull-backs

In this section we recall the pull-back formulas of Garrett and Shimura that, among
other things, realize the Klingen-type Eisenstein series from 9.1.5 as inner-products of
cuspforms on h with the pull-back to H1×h of Siegel Eisenstein series on H3. The Fourier-
Jacobi coefficients of these latter series are more amenable to calculation, and we combine
explicit formulas for these coefficients with the pull-back formulas to express the Fourier
coefficients of the Klingen-type Eisenstein as Peterson inner-products of cuspsforms and
theta and Eisenstein series on h. These last formulas are crucial ingredients in the
analysis in §13 of the p-adic interpolations of §12

The organization of this section is similar to §9. We begin in 11.1, 11.2, and 11.3 with
generalities on Siegel Eisenstein series on Gn, their pullbacks to embedded Gm × Gm′
(m′ = m or m+ 1 and n = m+m′), and their Fourier-Jacobi coefficients. Then in 11.4
we make explicit choices of local Siegel sections of representations of Gn(Qv) induced
from characters of the Siegel parabolic Q(Qv). As before, we separately consider the
sections at the archimedean place, at the ` 6= p (unramified and ramified) places, and
at p. In case, for the sections defined, we compute the local Fourier coefficient, the
pullback section (that is the local section of the representation of Gm′(Qv) obtained by
pulling back the Siegel section and integrating against a specific vector in a representation
of Gm(Qv)), and the local Fourier-Jacobi coefficient; for the last two calculations we
specialize to m = 1. Among the key results are proofs that the local sections defined
in §9 arise as pullbacks of these Siegel sections. In particular, Proposition 11.4.13 is
crucial to the identification of the sections at p in 9.2.5 as pullbacks of Siegel sections.
In 11.5, 11.6, and 11.7, we explain how the Eisenstein series ED and ED are obtained
by pulling back certain Siegel Eisenstein series and how the Fourier coefficients of ED

can be expressed in terms of the Fourier-Jacobi coefficients the Siegel Eisenstein series.
The rest of this section is taken up with further analysis of the resulting formulas for
the Fourier coefficients of ED. The most important results are Proposition 11.8.2 and
Lemmas 11.8.2 and 11.9.4.
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11.1. Siegel Eisenstein series on Gn: the general set-up. We recall the definition
of the Siegel Eisenstein series on Gn and some of their well-known properties.

For a place v of Q and a character χ of K×v we let In(χ) be the space of smooth Kn,v-
finite functions f : Kn,v → C such that f(qk) = χ(detDq)f(k) for all q ∈ Qn(Qv)∩Kn,v.
Given z ∈ C and f ∈ I(χ) we define a function f(z,−) : Gn(Qv) → C by f(z, qk) :=

χ(det(Dq))|detAqD
−1
q |

z+n/2
v f(k), q =

(
Aq Bq

Dq

)
∈ Qn(Qv) and k ∈ Kn,v.

For an idele class character χ = ⊗χv of A×K we similarly define a space In(χ) of smooth
Kn,A-finite functions on Kn,A. We also similarly define f(z,−) given f ∈ In(χ) and
z ∈ C. There is an identification ⊗In(χv) = In(χ), the former being the restricted

tensor product defined using the spherical vectors f sphv ∈ In(χv), f
sph
v (Kn,v) = 1, at the

finite places v where χv is unramified: ⊗fv is identified with k 7→
∏
v fv(kv).

Let U ⊆ C be an open set. By a meromorphic (resp. holomorphic) section of In(χ)
on U we mean a function ϕ : U → In(χ) taking values in a finite-dimensional subspace
V ⊂ In(χ) and such that ϕ : U → V is meromorphic (resp. holomorphic).

The functions f(z,−) are sections of the induced representations obtained by parabolic

induction from the one-dimensional representation q 7→ χ(detDq)δQn(q)z/n of the Siegel
parabolic Qn (so the local representations are degenerate principal series).

Let χ = ⊗χv be a unitary idele class character of A×K. For f ∈ In(χ) we consider the
Eisenstein series

(11.1.0.b) E(f ; z, g) :=
∑

γ∈Qn(Q)\Gn(Q)

f(z, γg),

often referred to as a Siegel Eisenstein series. This series converges absolutely and
uniformly for (z, g) in compact subsets of {Re(z) > n/2} ×Gn(A) and defines an auto-
morphic form on Gn and a holomorphic function on {Re(z) > n/2}. The convergence
of this series was essentially shown by Godement (cf. [Bo66, Thm. 11.2]); it also follows
from [Sh97, Prop. A3.7] (see also the paragraph preceeding Lemma 18.8 of [Sh97]).

The Eisenstein series E(f ; z, g) has a meromorphic continuation in z to all of C. If
ϕ : U → In(χ) is a meromorphic section, then we put E(ϕ; z, g) := E(ϕ(z); z, g). This
is clearly a meromorphic function of z ∈ U and an automorphic form on Gn for those z
where it is holomorphic. Both the meromorphic continuation and the functional equation
given in (11.1.1.d) below are well-known (compare [LR05, p.335]) and follow from the
general theory of Eisenstein series. This is explained for symplectic and orthogonal
groups in [GPSR, Part A, §5]; the unitary case is similar.

Remark. Our conventions here depart somewhat from some of the literature; here we
have essentially identified the Levi of Un ∩Qn with GLn/K via Dg whereas Ag (or even
tAg) is common. Our conventions seem better suited for some of the later calculations
related to objects in §9. The effect of our choices is that in appeals to the literature χ
must frequently be replaced with (χc)−1. For example the space {f(z, g) : f ∈ In(χ)}
is the space I((χc)−1, z) in [LR05].
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11.1.1. Intertwining operators and functional equations. Let χ be a unitary character of
K×v , v a place of Q. For f ∈ In(χ), z ∈ C, and k ∈ Kn,v, we consider the integral

(11.1.1.a) M(z, f)(k) := χ̄n(µn(k))

∫
NQn (Qv)

f(z, wnrk)dr.

For z in compact subsets of {Re(z) > n/2} this integral converges absolutely and uni-
formly, with the convergence being uniform in k. Clearly, M(z, f) ∈ In(χ̄c). It thus
defines a holomorphic section z 7→ M(z, f) on {Re(z) > 3/2}. This has a continuation
to a meromorphic section on all of C. In particular, if v is finite and χ is unramified
then

(11.1.1.b) M(z, fsphv )(k) = D−n(n−1)/4
v

n−1∏
i=0

L(2z + i− n+ 1, χ̄′χiK)

L(2z + n− i, χ̄′χiK)
,

where χ′ = χ|Q×v .

Let χ = ⊗χv be a unitary idele class character. For f ∈ In(χ), z ∈ C, and k ∈ Kn,A

we consider the integral M(z, f)(k) as in (11.1.1.a) but with the integration being over
NQn(A). This again converges absolutely and uniformly for z in compact subsets of
{Re(z) > n/2}, with the convergence being uniform in k. Thus z 7→ M(z, f) defines
a holomorphic section {Re(z) > n/2} → In(χ̄c). This, too, has a continuation to a
meromorphic section on C. For Re(z) > n/2 at least, we have

(11.1.1.c) M(z, f) = ⊗vM(z, fv), f = ⊗fv.

The functional equation of the Siegel Eisenstein series is the identity

(11.1.1.d) E(f ; z, g) = χn(µn(g))E(M(z, f);−z, g).

This should be viewed as an identification of meromorphic functions on C. If ϕ : U →
In(χ) is a meromorphic section, then we set M(ϕ)(z) = M(z, ϕ(z)). This is clearly a
meromorphic section on U . From (11.1.1.d) it follows that

(11.1.1.e) E(ϕ; z, g) = χn(µn(g))E(M(ϕ),−z, g).

11.2. Pull-backs of Siegel Eisenstein series. We recall the pull-back formulas of
Garrett and Shimura, which expresses Klingen-type Eisenstein series in terms of restric-
tions (pull-backs) of Siegel Eisenstein series to subgroups. But first we define various
maps between groups that intervene in the statement of the general formula as well as
in the particular instances used in subsequent sections.

11.2.1. Some isomorphisms and embeddings. Let Vn := K2n. Then wn defines a skew-
Hermitian pairing < −,− >n on Vn: < x, y >n:= xwn

tȳ. The group Gn/Q is the unitary
similitude group GU(Vn) of the Hermitian space (Vn, < −,− >n).

We write an element v ∈ Vn as v = (v1, v2) with vi ∈ Kn. We write an element
v ∈ Vn+1 as v = (v1, x, v2, y) with (v1, v2) ∈ Vn and x, y ∈ K. Let Wn := Vn+1 ⊕ Vn and
W ′n := Vn ⊕ Vn. The matrices wn+1 ⊕ −wn and wn ⊕ −wn define Hermitian pairings
on Wn and W ′n, respectively, and we write GU(Wn) and GU(W ′n) for their respective
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similitude groups (algebraic groups over Q). Let Xn := {(v1, 0, v2, y) ⊕ (v1, v2) ∈ Wn}
and X ′n := {(v1, v2)⊕ (v1, v2) ∈W ′n}. These are maximal isotropic subspaces of Wn and
W ′n, respectively, and we let PXn ⊂ GU(Wn) and PX′n ⊂ GU(W ′m) be their respective
stabilizers.

The isomorphisms Wn
∼→ V2n+1, (v1, x, v2, y) ⊕ (u1, u2) 7→ (v1, x, u2, v2, y, u1), and

W ′n
∼→ V2n, (v1, v2) ⊕ (u1, u2) 7→ (v1, u2, v2, u1) are given by the matrices (written in

block form conforming to how we have written the elements of Wn,W
′
n, etc.)

R :=

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0

 and R′ :=

(
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

)
,

respectively, and the maps g 7→ R−1gR and g 7→ R
′−1gR′ determine Q-isomorphisms

αn : GU(Wn)
∼→ G2n+1 and α′n : GU(W ′n)

∼→ G2n. The maps (v1, x, u2, v2, y, u1) 7→
(v1 − u1, x, u2 − v2, v2, y, u1) and (v1, u2, v2, u1) 7→ (v1 − u1, u2 − v2, v2, u1) are given
respectively by the matrices

S :=

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 −1 1 0 0
0 0 0 0 1 0
−1 0 0 0 0 1

 ∈ Gn and S′ :=

(
1 0 0 0
0 1 0 0
0 −1 1 0
−1 0 0 1

)
,

and g 7→ S−1gS and g 7→ (S′)−1gS′ define isomorphisms βn : G2n+1
∼→ G2n+1 and

β′n : G2n
∼→ G2n, respectively. We let γn := βn ◦ αn : GU(Wn)

∼→ G2n+1 and γ′n :=

β′n ◦ α′n : GU(W ′n)
∼→ G2n. Clearly, Xn · RS = {(0, 0, 0, ∗, ∗, ∗)}, so γn(PXn) = Q2n+1,

the Siegel parabolic of G2n+1. Similarly, γ′n(PX′n) = Q2n.

Let Gn+1,n := {(g, g′) ∈ Gn+1 × Gn : µn+1(g) = µn(g′)} and let Gn,n := {(g, g′) ∈
Gn × Gn : µn(g) = µn(g′)}. These are clearly subgroups of GU(Wn) and GU(W ′n),
respectively. It is easy to see that

γ−1
n (Q2n+1) ∩Gn+1,n = {(m(g, x)n, g) : g ∈ Gn, x ∈ ResK/QGm, n ∈ NPn+1}

and

γ
′−1
n (Q2n) ∩Gn,n = {(g, g) : g ∈ Gn}.

The obvious inclusion W ′n ↪→ Wn induces an embedding σn : GU(W ′n) ↪→ GU(Wn)
given by

σn(g) :=


a1 0 a2 0 b1 b2
0 µn(g) 0 0 0 0
a3 0 a4 0 b3 b4
0 0 0 1 0 0
c1 0 c2 0 d1 d2
c3 0 c4 0 d3 d4

 , g =
(
A B
C D

)
, A = ( a1 a2

a3 a4 ) , ai ∈Mn/K, etc.,



144 CHRISTOPHER SKINNER AND ERIC URBAN

and, by restriction, an embedding Gn,n ↪→ Gn+1,n; the latter is given by (g, g′) 7→
(m(g, 1), g′). These are compatible with the embedding ιn : G2n → G2n+1 defined by

ιn(g) :=


a1 0 a2 b1 0 b2
0 µn(g) 0 0 0 0
a3 0 a4 b3 0 b4
c1 0 c2 d1 0 d2
0 0 0 0 1 0
c3 0 c4 d3 0 d4

 , Ag = ( a1 a2
a3 a4 ) , ai ∈Mn/K, etc.,

in the sense that ιn(γ′n(g)) = γn(σn(g)). Note that Q2n+1 ∩ ιn(G2n) = ιn(Q2n).

11.2.2. The pull-back formulas. Let χ be a unitary idele class character of A×K. Given a
cuspform φ on Gn we consider

Fφ(f ; z, g) :=

∫
Un(A)

f(z, γ(g, g1h))χ̄(det g1h)φ(g1h)dg1,

f ∈ Im+n(χ), g ∈ Gm(A), h ∈ Gn(A), µm(g) = µn(h), m = n+ 1 or n,

(11.2.2.a)

with γ = γn or γ′n depending on whether m = n+1 or m = n. This is clearly independent
of h. The pull-back formulas are the identities in the following proposition.

Proposition 11.2.3. Let χ be a unitary idele class character of A×K.

(i) If f ∈ I2n(χ), then Fφ(f ; z, g) converges absolutely and uniformly for (z, g) in
compact sets of {Re(z) > n}×Gn(A), and for any h ∈ Gn(A) such that µn(h) =
µn(g)

(11.2.3.a)

∫
Un(Q)\Un(A)

E(f ; z, γ′n(g, g1h))χ̄(det g1h)φ(g1h)dg1 = Fφ(f ; z, g).

(ii) If f ∈ I2n+1(χ), then Fφ(f ; z, g) converges absolutely and uniformly for (z, g) in
compact sets of {Re(z) > n+ 1/2}×Gn+1(A), and for any h ∈ Gn(A) such that
µn(h) = µn+1(g)∫

Un(Q)\Un(A)
E(f ; z, γn(g, g1h))χ̄(det g1h)φ(g1h)dg1

=
∑

γ∈Pn+1(Q)\Gn+1(Q)

Fφ(f ; z, γg),
(11.2.3.b)

with the series converging absolutely and uniformly for (z, g) in compact subsets
of {Re(z) > n+ 1/2} ×Gn+1(A).

Part (i) is the well-known doubling formula of Piatetski-Shapiro and Rallis [GPSR,
Part A]. Part (ii) is a straightforward generalization. Both formulas follow from a de-
scription of representatives of Qn+m\Gn+m/γ(Gm,n) (for such a description see [Sh97,
Props. 2.4,2.7]) and the cuspidality of φ. We will be interested only in the case n = 1. In
this case the right-hand side of (11.2.3.b) is an Eisenstein series of the type considered
in 9.1.5.

Let (π, V ), ψ, τ , ρ, and I(ρ) be as in 9.1.4. We extend φ ∈ V to a cuspform on
G1(A) by setting φ((a, g)) := ψ(a)φ(g). If f ∈ I3(τ), then, at least for Re(z) > 3/2,
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Fφ(f ; z, g) converges and its restriction to KA belongs to I(ρ). The map z 7→ Fφ(f ; z,−)
is a holomorphic map, which we also denote Fφ(f), from {Re(z) > 3/2} to a finite-
dimensional subspace of I(ρ). In this instance (11.2.3.a) becomes

(11.2.3.c)

∫
U1(Q)\U1(A)

E(f ; z, γ1(g, g1h))τ̄(det g1h)φ(g1h)dg1 = E(Fφ(f), z, g),

where E(Fφ(f), z, g) is the Klingen-type Eisenstein series from 9.1.5. This is an instance
of the general pull-back formula of Garrett and Shimura. Note that the meromorphic
continuation of E(f ; z, g) yields, via the left-hand side of (11.2.3.c), a meromorphic
continuation of E(Fφ(f), z, g).

Let f ∈ I2n+1(χ) and let f ′ ∈ I2n(χ) be defined by f ′(k) = f(ιn(k)). Then

Fφ(f ; z,m(g, 1)) = Fφ(f ′; z + 1/2, g).

It then follows from (11.2.3.a) that, at least for Re(z) > n− 1/2,

Fφ(f ; z,m(g, 1)) =

∫
Un(Q)\Un(A)

E(f ′; z + 1/2,γ′n(g, g1h))

× χ̄(det g1h)φ(g1h)dg1,

(11.2.3.d)

where h ∈ Gn(A) satisfies µn(h) = µn(g).

Remark. In 11.6 below we use the identity (11.2.3.c) to express ED and ED as inner-
products of pull-backs of explicit Siegel Eisenstein series with cuspforms. The resulting
inner-product identities are crucial ingredients in the p-adic interpolations of §12.

11.3. Fourier-Jacobi expansions: generalities. Let 0 ≤ r < n be an integer. Each
Eisenstein series E(f ; z, g) has a Fourier-Jacobi expansion

(11.3.0.e) E(f ; z, g) =
∑

β∈Sn−r(Q)

Eβ(f ; z, g)

where

(11.3.0.f) Eβ(f ; z, g) :=

∫
Sn−r(Q)\Sn−r(A)

E(f ; z,
(

1n S 0
0 0
1n

)
g)eA(−Tr (βS))dS.

Lemma 11.3.1. Let f = ⊗vfv ∈ In(χ) be such that for some prime ` the support of f`
is in Qn(Q`)wnQn(Q`). Let β ∈ Sn(Q) and q ∈ Qn(A). If Re(z) > n/2 then

(11.3.1.a) Eβ(f ; z, q) =
∏
v

∫
Sn(Qv)

fv(z, wnr(Sv)qv)ev(−TrβSv)dSv.

In particular, the integrals on the right-hand side converge absolutely for Re(z) > n/2.

This is well-known. The hypothesis on f` implies E(f ; z, q) =
∑

γ∈wnNQn (Q) f(z, γq),

and then the lemma follows from the absolute convergence of this series.

The following lemma will be used later to express certain Fourier-Jacobi coefficients of
Siegel Eisenstein series on G3 as products of Eisenstein series and theta functions.
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Lemma 11.3.2. Suppose f ∈ I3(χ) and β ∈ S2(Q), β > 0. Let V be the two-dimensional
K-space of column vectors. If Re(z) > 3/2 then

Eβ(f ; z, g) =
∑

γ∈Q1(Q)\G1(Q),γ∈U1(Q)

∑
x∈V

∫
S2(A)

f(w3

(
13

S x
tx̄ 0
13

)
α1(1, γ)g)eA(−TrβS)dS.

Proof. Let H ⊆ G3 be the stabilizer of the two-dimensional subspace {(0, 0, 0, x1, x2, 0) :
xi ∈ K} of W3. By Bruhat decomposition

G3(Q) = Q3(Q)ξ0H(Q) tQ3(Q)ξ1H(Q) tQ3(Q)ξ2H(Q),

where

ξ0 = 1 ξ1 =

( 1
12

−1
12

)
ξ2 = α1(w2, 1).

From the series defining Eβ(f ; z, g) we find

Eβ(f ; z, g) =

3∑
i=0

∑
ζ∈Q3(Q)\Q3(Q)ξiH(Q)

∫
S2(Q)\S2(A)

f(z, ζ
(

1n S 0
0 0
1n

)
g)eA(−TrβS)dS.

It is relatively easy to see that the summands vanish when i = 0, 1; in these cases we
have that the integral in the summand equals∫

S2(Q)\S2(A)
f(z, ζ

(
13

s1 s2 0
s̄2 0 0
0 0 0

13

)
g)e(−TrβS)dS, S = ( s1 s2s̄2 s3 ) ,

and the hypothesis β > 0 ensures that the integration over s3 yields zero. The lemma
then follows upon observing that

Q3(Q)ξ2H(Q) = tζ∈Q1(Q)\G1(Q),γ∈U1(Q) tx∈V tS∈S2(Q)Q3(Q)ξ2

(
12 x S 0

1 0 0
12
tx̄ 1

)
α1(1, η−1ζ)

= tγ∈Q1(Q)\G1(Q),ζ∈U1(Q) tx∈V tS∈S2(Q)Q3(Q)w3

(
13

S x
tx̄ 0
13

)
α1(1, ζ).

The following formula is key to identifying the integral in the preceding lemma as
a product of a Schwartz function in S(V ⊗ Qv) and a Siegel section in I1(χ). Let
a ∈ A×K, b ∈ A. Then(

13
S x
tx̄ 0
13

)
α1(1,

(
a ā−1b
ā−1

)
) =

(
12 xbā−1

ā−1

0 0 12

0 ā−1b −btx̄ a

)(
13

S−xtx̄b xa
ātx̄ 0

0 13

)
.

For any place v , f ∈ I3(χv), x ∈ V ⊗Qv, g ∈ U1(Qv), y ∈ GL2(Qv), and β ∈ S2(Qv),
let

FJβ(f ; z, x, g, y) :=

∫
S2(Qv)

f(z, w3

(
13

S x
tx̄ 0
13

)
α1(diag(y, tȳ−1), g))ev(−TrβS)dS.

Then it follows from the above matrix identity that

(11.3.2.a) FJβ(f ; z, x,
(
a ā−1b
ā−1

)
g, y) = χcv(a)−1|aā|z+3/2

v ev(−tx̄βxb)FJβ(f ; z, xa, g, y).
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It is also clear that for u ∈ Uβ(A), Uβ being the unitary group associated to β in 10.1,

(11.3.2.b) FJβ(f ; z, x, g, uy) = χ(detu)| detuū|−z+1/2
A FJβ(f ; z, u−1x, g, y).

If, as a function of x, FJβ(f ; z, x, g, y) ∈ S(V ⊗Qv) (this is nearly always the case, but
we make it explicit when needed) then (11.3.2.a) can be written as

FJβ(f ; z, x,
(
a ā−1b
ā−1

)
g, y)

= (λv/χ
c
v)(a)|aā|z+1/2

v ωβ(
(
a −ā−1b

ā−1

)
)FJβ(f ; z, x, g, y)

(11.3.2.c)

and (11.3.2.b) becomes

(11.3.2.d) FJβ(f ; z, x, g, uy) = χ(detu)|detuū|−z+1/2
A ωβ(u, 1)FJβ(f ; z, x, g, y).

The character λ in (11.3.2.c) is the character implicit in the definition of the Weil rep-
resentation ωβ.

11.4. Some good Siegel sections. We define some explicit functions in the various
In(χ)’s and compute their (local) Fourier-Jacobi coefficients. We also compute various
local analogs of the pull-back integral (11.2.2.a).

11.4.1. Archimedean Siegel sections. Let κ ≥ 0 be an integer. Then χ(x) = (x/|x|)−κ is
a character of C×.

The sections. We let fκ,n ∈ In(χ) be defined by fκ,n(k) := Jn(k, i)−κ. Then

(11.4.1.a) fκ,n(z, qk) = Jn(k, i)−κχ(detDq)| detAqD
−1
q |z+n/2, q ∈ Qn(R), k ∈ Kn,∞.

If g ∈ Un(R) then fκ,n(z, g) = Jn(g, i)−κ|Jn(g, i)|κ−2z−n. As usual, if n is understood we
may drop the subscript from our notation.

Fourier-Jacobi coefficients. Given a matrix β ∈ Sn(R) we consider the local Fourier
coefficient

fκ,n,β(z, g) :=

∫
Sn(R)

fκ(z, wn
(

1n S
1n

)
g)e∞(−TrβS)dS.

This converges absolutely and uniformly for z in compact sets of {Re(z) > n/2}.

Lemma 11.4.2. Suppose β ∈ Sn(R). The function z 7→ fκ,n,β(z, g) has a meromorphic
continuation to all of C. Furthermore, if κ ≥ n then fκ,n,β(z, g) is holomorphic at
zκ := (κ − n)/2 and for y ∈ GLn(C), fκ,n,β(zκ,diag(y, tȳ−1)) = 0 if detβ ≤ 0, and if
detβ > 0 then

fκ,n,β(zκ, diag(y, tȳ−1)) =
(−2)−n(2πi)nκ(2/π)n(n−1)/2∏n−1

j=0 (κ− j − 1)!
e(iTr (βytȳ)) det(β)κ−n det ȳκ.
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Proof. Since Gn(R) = Qn(R)Kn,∞, it clearly suffices to prove the first two claims under
the assumption that g = diag(y, tȳ−1). Let x := wnn(S)diag(y, tȳ−1). Since Jn(x, i) =
(−1)n det(iytȳ + S) det ȳ−1, fκ,n,β(z,diag(y, tȳ−1)) equals

(−1)nκ det ȳκ| det ȳ|2(z−zκ)×
∫
Sn(R)

e(−Tr (βS)) det(iytȳ+S)−κ−z+zκ det(−iytȳ+S)−z+zκdS.

This equals

2n(n−1)/2(−1)nκ det ȳκ|det ȳ|2(z−zκ)ξ(ytȳ, β; z − zκ + κ, z − zκ)

where ξ(−,−; s, s′) is the function in [Sh97, (18.11.4)] (bear in mind that the volume

form dS is 2n(n−1)/2 times that in loc. cit.), which is meromorphic as a function of s and
s′ by, for example, [Sh97, Lemma 18.12]. From this same lemma it follows easily that
fκ,β(z, g) is holomorphic at z = zκ if κ ≥ n and that the value at zκ is zero if β ≤ 0.

To complete the proof of the lemma it suffices to note that

2n(n−1)/2−2ξ(ytȳ, β; s, 0) = (−1)n(−2πi)ns
∫
Sn(R)

e2πiTr (βS)(2πytȳ + 2πiS)−sdS.

By [Sh82, (1.23)], if Re(s) sufficiently large this equals

(−1)n2n(n−1)/2(−2πi)nsπ−n(n−1)/2
n−1∏
j=0

Γ(s− j)−1e(Trβytȳ) detβs−n.

The formula at s = κ then follows from the meromorphicity of ξ(−,−; s, s′).

Suppose now that n = 3. For β ∈ S2(R) let FJβ,κ(z, x, g, y) := FJβ(fκ; z, x, g, y).

Lemma 11.4.3. Let zκ := (κ− 3)/2. Let β ∈ S2(R), detβ > 0.

(i) FJβ,κ(zκ, x, η, 1) = fκ,2,β(zκ + 1/2, 1)e(i < x, x >β).
(ii) For g ∈ U1(R)

FJβ,κ(zκ, x, g, y) = e(iTrβytȳ) det ȳκc(β, κ)fκ−2,1(zκ, g
′)ωβ(g′)Φβ,∞(x),

where

g′ =
(

1
−1

)
g ( 1

1 ) and c(β, κ) =
(2πi)2κ(2/π)

4(κ− 1)!(κ− 2)!
detβκ−2

and the Weil representation ωβ is defined using the character λ∞(z) = (z/|z|)−2.

Proof. If x = 0 then part (i) is clear. Suppose then that x 6= 0. Then x = At(a, 0) for
some A ∈ U(2) and a ∈ R>0. It then easily follows that

FJβ,κ(z, x, η, 1) = FJtĀβA,κ(z, t(a, 0), η, 1),

and so, upon noting that fκ,2,β(z, 1) = fκ,2,tĀβA(z, 1), to complete the proof of part (i)

we may assume x = t(a, 0) with a ∈ R>0.
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Let u :=
√
a2 + 1. Then

(
13

0 0 a
0 0 0
a 0 0

13

)
=

 u
1

u
a/u 1/u

1
a/u 1/u




1/u a/u
1

1/u a/u
−a/u 1/u

1
−a/u 1/u

 .

Write k(a) for the second matrix in the product on the right; this belongs to K+
3,∞. It

then follows (since x = t(a, 0)) that

w3

(
13

S x
tx 0
13

)
= w3


u ∗ s1/u s2

1 ∗ s̄2/u s3
u
a/u 1/u

1
a/u ∗ ∗ 1/u

 k(a)

=

 1/u ∗ ∗ ∗
1 ∗ ∗ ∗

∗ ∗ 1/u ∗ ∗ ∗
u ∗ ∗

1
u

w3

 1 s1/u2 s2/u
1 s̄2/u s3

1
1

1
1

 k(a).

Substituting into the integral defining FJβ,κ(z, t(a, 0), η, 1) we find

FJβ,κ(zκ,
t(a, 0), η, 1) = u4−2κFJβ′,κ(zκ, 0, η, 1), β′ = ( a 1 )β ( a 1 )

= u4−2κfκ,2,β′(zκ, 1)

= fκ,2,β(zκ, 1)e(ia2β1), β =
(
β1 β2

β̄2 β3

)
,

the last equality following from Lemma 11.4.2. This proves part (i).

To prove part (ii) we first note that

FJβ,κ(zκ, x, g, y) = det ȳκ det yȳ2−κFJtȳβy,κ(zκ, y
−1x, g, 1).

Let β′ := tȳβy and x′ := y−1x. Let g ∈ U1(R) and write g = pηk with p =
(
a ā−1b
ā−1

)
∈

B1(R) and k ∈ K ′1,∞. Then g′ =
(
a −ā−1b

ā−1

)
k−1. It follows from (11.3.2.d) and part (i)

of this lemma that

FJβ′,κ(zκ, x
′, g, 1) = χ̄c(a)|a|κe(−btx̄′β′x′)J1(k, i)κFJβ′,κ(zκ, x

′a, η, 1)

= χ̄c(a)|a|κe(−btx̄′β′x′)J1(k, i)κfκ,2,β′(κ/2− 1, 1)e(iaātx̄′β′x′)

= χ̄c(a)|a|κJi(k, i)κe((−b+ iaā)tx̄βx)fκ,2,β′(κ/2− 1, 1)

= ωβ,∞(g′)Φβ,∞(x)fκ−2,1(zκ, g
′)fκ,2,β′(κ/2− 1, 1).

Part (ii) then follows from Lemma 11.4.2.

Pull-back integrals. We now consider analogs of (11.2.3.a), but only in the case n = 1.
Let (π, V ), (π1, H), and ψ = τ be as in 9.1.1 and 9.2.1. We extend π1 to a representation
πψ of G1(R) on H by setting πψ((a, g))h = ψ(a)π1(g)h. Let φ ∈ V be the unique (up
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to scalar) non-zero vector such that π(k)φ = j(k, i)−κφ for all k ∈ K ′∞,+. Let fκ ∈ I3(τ)
be as above and let

Fκ(z, g) :=

∫
U1(R)

fκ(z, S−1α1(g, g1h))τ̄(det g1h)π1(g1h)φdg1,

g ∈ G2(R), h ∈ G1(R), µ1(h) = µ2(g).

(11.4.3.a)

If this integral converges for some z and g, then a simple calculation shows that Fκ(z, pg)

converges for all p ∈ P (R) and Fκ(z, pg) = ρ(p)δ(p)z+3/2Fκ(z, g), where ρ is the repre-
sentation associated with the triple (π, ψ, τ) as in 9.1.1. Letting ξκ be the representation
of K∞ defined in 9.2.1, another easy calculation shows that Fκ(z, gk) converges for all
k ∈ K∞ and equals ξκ(k)Fκ(z, g). Since G(R) = P (R)gK∞, this proves that Fκ(z, g′)
converges for all g′ ∈ G(R).

Similarly, for fκ ∈ I2(τ) and g ∈ G1(R) we let

F ′κ(z, g) :=

∫
U1(R)

fκ(z, S−1α′1(g, g1h))τ̄(det g1h)π1(g1h)φdg1,

g, h ∈ G1(R), µ1(h) = µ1(g).

(11.4.3.b)

Note that F ′κ(z + 1/2, g) = Fκ(z,m(g, 1)).

Lemma 11.4.4. The integrals (11.4.3.a) and (11.4.3.b) converge if Re(z) ≥ (κ−m−1)/2
and Re(z) > (m− 1− κ)/2, m = 2 and 1, respectively, and for such z we have:

(i) Fκ(z, g) = π2−2z−1 Γ(z+(1+κ)/2)
Γ(z+(3+κ/2))Fκ,z(g);

(ii) F ′κ(z, g) = π2−2z Γ(z+κ/2)
Γ(z+1+κ/2)πψ(g)φ.

On the right-hand side of the equality in part (i), Fκ ∈ I(ρ) is the function so denoted
in 9.3.1 and defined using φ.

Proof. Since G(R) = P (R)K∞, it follows from the observations preceding the lemma
that it suffices to show that Fκ(z, 1) converges for the indicated values of z and satisfies
Fκ(z, 1) = π2−2z−1Γ(z + (1 + κ)/2)Γ(z + (3 + κ)/2)−1φ.

We fix a (gl2,K
′
∞)-module embedding ι : V ↪→ A0(GL2) of π such that if ϕ = ι(φ)

then f(h) := j(g, i)κ det(g)−κ/2ϕ(g), g ∈ GL+
2 (R), h = g(i) ∈ h, is a holomorphic weight

κ cuspform. Then ι extends to a Hilbert-space identification of H with the GL2(R)-
submodule of L2(GL2(Q)\GL2(A)) generated by ϕ: ϕ(xg) = ι(π1(g)φ)(x). We extend
ϕ to a function on G1(R) by setting ϕ((a, g)) := ψ(a)ϕ(g), so ϕ(xg) = ι(πψ(g)φ)(x). If

(11.4.4.a)

∫
U1(R)

fκ(z, S−1α1(1, g))τ̄(det g)ϕ(xg)dg

converges for all x, then Fκ(z, 1) also converges and (11.4.4.a) equals ι(Fκ(z, 1))(x).

Without loss of generality we may assume x ∈ SL2(R). Let h := g(i) = a + bi. Then
it is straightforward to check that the integrand in (11.4.4.a) equals

(11.4.4.b) J3(S−1α1(1, g), i)−κ|J3(S−1α1(1, g), i)|κ−2z−3τ̄(det g)j(xg, i)−κf(x(h)).
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Since

J3(S−1α1(1, g), i) = J3(S−1, α1(1, g)(i))J3(α1(1, g), i) = (1− i/h̄)J3(α1(1, g), i),

and since j(xg, i) = j(x, h)j(g, i), j(g, i)J3(α1(1, g), i)τ̄(det g) = ib−1h̄, and |J3(α1(1, g), i)| =
b−1/2|h̄|, we find that (11.4.4.b) equals

i−κ(h̄− i)−κ|h̄− i|κ−2z−3bz+3/2+κ/2j(x, h)−κf(x(h)).

Therefore (11.4.4.a) equals∫
h
iκ(i− h̄)−κ|i− h̄|κ−2z−3bz+3/2+k/2j(x, h)−κf(x(h))

dadb

b2
, h = a+ ib.

This last integral is well-known to converge for z as in the statement of the lemma and
to equal π2−2z−1Γ(z + (1 − κ)/2)Γ(z + (3 − κ)/2)−1j(x, i)−κf(x(i)) (cf. [Sh95, Lemma
4.7]). Since j(x, i)−κf(x(i)) = ϕ(x), the lemma follows.

11.4.5. `-adic Siegel sections: the unramified case. Let χ be a unitary character of K×` .
For f ∈ In(χ) and β ∈ Sn−r(Q`), 0 ≤ r < n, we consider the local Fourier coefficient

fβ(z, g) :=

∫
Sn−r(Q`)

f(z, wn

(
1n S 0

0 0
1n

)
g)e`(−TrβS)dS.

This converges absolutely and uniformly for z in compact subsets of {Re(z) > n/2}.

Fourier-Jacobi coefficients. Suppose now that χ is unramified.

Lemma 11.4.6. Let β ∈ Sn(Q`) and let r := rank(β). Then for y ∈ GLn(K`)

fsph`,β (z,diag(y, tȳ−1)) = χ(det y)|det yȳ|−z+n/2` D
−n(n−1)/4
`

×
∏n−1
i=r L(2z + i− n+ 1, χ̄′χiK)∏n−1
i=0 L(2z + n− i, χ̄′χiK)

h`,tȳβy(χ̄
′(`)`−2z−n),

where h`,tȳβy ∈ Z[X] is a monic polynomial depending on ` and tȳβy but not on χ.

This is well-known; see Propositions 18.14 and 19.2 of [Sh97].

If ` is unramified in K, then a matrix β ∈ S2(Z`) will be called `-primitive if detβ ∈ Z×` .
If β is `-primitive then h`,β = 1 (cf. [Sh97, 19.2]).

Lemma 11.4.7. Suppose ` is unramified in K. Let β ∈ S2(Q`) such that detβ 6= 0. Let
y ∈ GL2(K`) such that tȳβy ∈ S2(Z`). Let λ be an unramified character of K×` such that
λ|Q×` = 1.

(i) If β, y ∈ GL2(O`) then for u ∈ Uβ(Q`)

FJβ(fsph3 ; z, x, g, uy) = χ(detu)| detuū|−z+1/2
`

f sph1 (z, g)ωβ(u, g)Φ0,y(x)∏1
i=0 L(2z + 3− i, χ̄′χiK)

.
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(ii) If tȳβy ∈ GL2(O`) and g = ( 1
n 1 ), n ∈ Q`, then for u ∈ Uβ(Q`)

FJβ(fsph3 ; z, x, g, uy) = χ(detuy)|detuy|−z+1/2
K

fsph1 (z, g)ωβ(u, g)Φ0,y(x)∏1
i=0 L(2z + 3− i, χ̄′χiK)

.

Here f sph1 ∈ I1(χ/λ) is the unramified spherical function, the Weil representation ωβ is
defined using λ, and Φ0,y ∈ S(V ⊗Q`) is as in 10.2.3.

Proof. We first note that the argument proving part (i) of Lemma 11.4.3 can be adapted
to show

FJβ(fsph3 ; z, x, 1, uy) = χ(detuy)| detuy|−z+1/2
K FJtȳβy(f

sph
3 ; z, y−1u−1x, 1, 1)

= χ(detuy)| detuy|−z+1/2
K Φ0(y−1u−1x)fsph2,tȳβy(z + 1/2, 1)

= χ(detuy)| detuy|−z+1/2
K ωβ(u, 1)Φ0,y(x)f sph2,tȳβy(z + 1/2, 1),

where fsph2 = fsph` ∈ I2(χ). Let p ∈ B1(Q`)∩U1(Q`) and k ∈ U1(Z`). Then by (11.3.2.c)
and the preceding equalities

FJβ(fsph3 ; z, x, pk, uy) = fsph1 (pk)ωβ(p)Φ0,y(x)fsph2,tȳβy(z + 1/2, 1),

with fsph1 = fsph` ∈ I1(χ/λ). Part (i) of the lemma then follows upon appeal to the
preceding lemma and part (i) of Lemma 10.2.4. The proof of part (ii) is a simple
calculation appealing to the equality

FJβ(fsph3 ; z, x, g, uy) = χ(detuy)|detuy|−z+1/2
K FJtȳβy(f

sph
3 ; z, y−1u−1x, g, 1)

and to part (i).

Pull-back integrals. Suppose now that n = 1. We return to the setup and notation of
9.1.2. In particular, we let (π, V ), ψ, τ , ρ, and ξ := ψ/τ be as in 9.1.2. Then the pair
(π, ψ) determines a representation of G1(Q`) on V , which we denote πψ: if g = (a, b)
then πψ(g)v := ψ(a)π(b)v. Let φ ∈ V . Let m = 1 or 2. Given f ∈ Im+1(τ) we consider
the local analog of (11.2.2.a):

(11.4.7.a) Fφ(f ; z, g) :=

∫
U1(Q`)

f(z, γ(g, g1h))τ̄(det g1h)πψ(g1h)φdg1,

where γ = γ1 or γ′1 depending on whether m = 2 or m = 1. If m = 2 and the integral
converges for some z and g, then a simple calculation shows that Fφ(f ; z, pg) converges

for all p ∈ P (Q`) and equals ρ(p)δ(p)z+3/2Fφ(f ; z, g). If Fφ(f ; z, g) converges for all g
then, since f is Km+1,`-finite, Fφ(f ; z, pg) is Km,`-finite; in particular, if m = 2 then
Fφ(f ; z, g) = Fz(g) for some F ∈ I(ρ).
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Lemma 11.4.8. Suppose π, ψ, and τ are unramified and φ is a newvector. If Re(z) >
(m+ 1)/2 then (11.4.7.a) converges and

Fφ(fsph` ; z, g) =


L(π̃,ξ,z+1/2)∏1

i=0 L(2z+2−i,τ̄ ′χiK)
πψ(g)φ m = 1

L(π̃,ξ,z+1)∏1
i=0 L(2z+3−i,τ̄ ′χiK)

Fρ,z(g) m = 2.

Here, Fρ is the function defined in 9.1.2 using the newvector φ. The lemma is well-known
(cf. [LR05, Prop. 3.3]).

11.4.9. `-adic Siegel sections: ramified cases.

The sections. Let χ be a unitary character of K×` . We let f †n ∈ In(χ) be the function sup-

ported onQn(Z`)wnNQn(Z`) (= Qn(Z`)wnKQn(λt) for any t > 0) such that f †n(wnr) = 1,
r ∈ NQn(Z`). Given (λu) ⊆ O` contained in the conductor of χ, we let fu,n ∈ In(χ) be
the function such that fu,n(k) = χ(detDk) if k ∈ KQn(λu) and fu,n(k) = 0 otherwise.

When n is understood we sometimes drop it from our notation for these sections.

Lemma 11.4.10. Suppose ` is not ramified in K and suppose χ is such that O` 6=
cond(χ) ⊇ cond(χχc). Let (`u) := cond(χ̄c). Then M(z, f †n) = fu,n ∈ In(χ̄c) for all
z ∈ C.

Proof. It suffices by analytic continuation to prove the lemma for Re(z) > n/2, so we
also assume this. Let f := M(z, f †) (which exists since Re(z) > 3/2). Let t := u if ` is
inert and let t := max{u′, u′′}, u = (u′, u′′), if ` splits. Note that KQn(`t) = KQn(`u) in
both cases. The hypotheses on χ imply that t > 0.

Let F (g) := f(z, gxt) with xt := diag(1, `t)w−1
n . We will show that F is supported on

Qn(Q`)wnKQn(`t). It will then follow that f is supported on KQn(`t). This will prove
the lemma since it is easily seen that f(1) = 1.

Let v ∈ 1 + `t−1O` be such that χ(v) 6= χ̄c(v), which is possible by the hypotheses on
χ and χc. We have

Gn(Q`) = tx∈WQn\WGn/WQn
tr∈Nx,t Qn(Q`)xrKQn(`t),

with each Nx,t a subset of KQn(`) ∩ Nopp
Qn

(Z`) and Nwn,t = {1}. Let wn 6= x ∈
WQn\WGn/WQn . Let 0 ≤ m ≤ n, be such that if y = diag(1m, v, 1n−m−1) and
d = diag(ȳ−1, y) then x−1dx = d (such an m always exists). Then for r ∈ Nt,x,
χ̄c(v)F (xr) = F (dxr) = F (xrkd) = χ(v)F (xr) since x−1dxr = rkx−1dx for some
k ∈ Nopp

Qn
(Z`) ∩ KQn(`t). Since χ̄(v) 6= χ(v) it must be that F (xr) = 0. Thus F is

supported on Qn(Q`)wnKQn(`t).

Fourier-Jacobi coefficients. We now prove a number of results about the Fourier-Jacobi
coefficients of these sections and their images under interwining operators.
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Let

(11.4.10.a) Sn(Z`)
∗ := {β ∈ Sn(Q`) : Tr (βS) ∈ Z`, S ∈ Sn(Z`)}.

Lemma 11.4.11. Let A ∈ GLn(K`). If detβ 6= 0 then

f †n,β(z, diag(A, tĀ−1)) =

{
χ(detA)| detAĀ|−z+n/2` D

−n(n−1)/4
`

tĀβA ∈ Sn(Z`)
∗

0 otherwise.

Here D` is the absolute discriminant of K` over Q`. This is a straightforward calculation.

Lemma 11.4.12. Suppose ` splits in K and β ∈ Sn(Q`), detβ 6= 0.

(i) If β 6∈ Sn(Z`)
∗ then M(z, f †n)β(−z, 1) = 0.

(ii) Suppose β ∈ Sn(Z`)
∗. Let c := ord`(cond(χ′)). Then

M(z, f †n)β(−z, 1) = χ′(detβ)|detβ|−2z
` g(χ̄′)ncn(χ′, z).

where

cn(χ′, z) :=

{
χ′(`nc)`2ncz−cn(n+1)/2 c > 0

`2nz−n(n+1)/2 c = 0.

Proof. By meromorphic continuation it suffices to prove the lemma for Re(z) > n/2, so
we assume this. Then

M(z, f †)β(−z, 1) =

∫
Sn(Q`)

∫
Sn(Q`)

f †(z, wnr(S)wnr(X))e`(−TrβX)dXdS.

Since

wnr(S)wnr(X) =
(−1 −X
S −1+SX

)
,

we see that wnr(S)wnr(X) ∈ Qn(Q`)wnNQn(Z`) if and only if S ∈ GLn(K`) and S−1 −
X ∈ Sn(Z`), in which case

wnr(S)wnr(X) =
(
−S−1 1

−S

)
wn
(

1 −S−1+X
1

)
and

f †(z, wnr(S)wnr(X))e`(−TrβX) = χ(det(−S))| detS|−2z−n
` e`(−TrβS−1)e`(Trβ(S−1−X)).

It follows that, upon making the obvious change of variables,

M(z, f †)β(−z, 1) =

∫
Sn(Q`)∩GLn(K`)

χ̄(detS)|detS|2z−n` e`(TrβS)dS

×
∫
Sn(Z`)

e`(TrβY )dY.

Since the integral over Y vanishes if β 6∈ Sn(Z`)
∗ we have that M(s, f †)β(−z, 1) = 0 if

β 6∈ Sn(Z`)
∗.



THE IWASAWA MAIN CONJECTURES FOR GL2 155

Assume then that β ∈ Sn(Z`). Then the integral over Y equals 1. Using the hypothesis
that ` splits (so Sn(Z`)

∗ = Sn(Z`)) and the identification K` = Q` ×Q` to write S =
(g, tg) yields

M(z, f †)β(−z, 1) =

∫
GLn(Q`)

χ̄′(det g)|det g|2z` e`(Trβ1g)d×g,

where β = (β1,
tβ1) and d×x is | detx|−n` times the Haar measure on Mn(Q`). Let B ⊂

GLn(Q`) be a set of coset representatives for GLn(Q`)/GLn(Z`). Then M(z, f †)β(−z, 1)
equals ∑

b∈B
| det b|2z`

∫
GLn(Z`)

χ̄′(det bg)e`(Trβ1bg)dg,

Let I(b) denote the integral in this expression. Such integrals (generalized Gauss sums)
have been evaluated in [HLS]. There it is shown that if c > 0 then I(b) = 0 unless

β1b ∈ `−max{c,1}GLn(Z`) (i.e., unless b ∈ β−1
1 `−max{c,1}GLn(Z`)), in which case I(b) is

shown to equal χ′(det `cβ)`−max{c,1}n(n+1)/2g(χ̄′)n.

Pull-back integrals. We return to the setup and notation of 9.1.2 and of the pull-back
integrals in 11.4.5. We conclude this section with a result that relates Fφ(f ; z,−) and
Fφ(M(z, f);−z,−), where Fφ(−,−,−) is as in (11.4.7.a).

Let ρ∨ be the representation associated with the triple (π1, ψ1, τ1) := (π∨⊗τ ′, ψττ c, τ̄ c)
as in 9.1.2. For φ ∈ V we let φ∨ = π(η)φ.

Proposition 11.4.13. Let m = 1 or 2. There exists a meromorphic function γ(m)(ρ, z)
on C such that

(i) if m = 1 then Fφ∨(M(z, f);−z, g) = γ(1)(ρ, z)τ(µ1(g))Fφ(f ; z, ηg); moreover, if
π ∼= π(χ1, χ2) and ` splits in K then

γ(1)(ρ, z) = ψ(−1)c2(τ ′, z)g(τ̄ ′, `e)2ε(π̃ ⊗ ξc, z + 1/2)
L(π ⊗ ξ̄c, 1/2− z)
L(π̃ ⊗ ξc, z + 1/2)

,

where c2(τ ′, z) is as in Lemma 11.4.12 and (`e) = cond(τ ′);
(ii) if m = 2 and π, ψ, and τ are the `-constituents of a global triple as in 9.1.4, then

Fφ∨(M(z, f);−z, g) = γ(2)(ρ, z)A(ρ, z, Fφ(f ; z,−))−z(g).

Each of these equalities is an identity of meromorphic functions of z.

Proof. Part (i) essentially follows from [LR05]. Let P : V ⊗ V → C be the unique (up
to scalar) G1(Q`)-pairing for π̃ψ̄ × πψ. The equality asserted is equivalent to

(11.4.13.a) P(φ1 ⊗ τ(µ1(g))Fφ∨(M(z, f);−z, g)) = γ(1)(ρ, z)P(φ1 ⊗ Fφ(f ; z, ηg))

for all φ, φ1 ∈ V , g ∈ G1(Q`). The left-hand side can be rewritten as∫
U1(Q`)

M(z, f)(−z, γ′1(g, g1h))τ̄1(det g1h)τ̄(µ1(g))P(φ1 ⊗ π1,ψ1(g1h)φ∨)dg1,
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which equals∫
U1(Q`)

M(z, f)(−z, γ′1(1, g1))τ̄1(det g1)P(φ′1 ⊗ πψ(g1)φ)dg1, φ′1 = π̃ψ̄(g−1η−1),

which in the notation of [LR05] is ZV(M(z)fz, φ
′
1 ⊗ φ) (with V = (V1, w1)). Similarly,

the pairing on the right-hand side of (11.4.13.a) equals∫
U1(Q`)

f(z, γ′1(1, g1))τ̄(det g1)P(φ′1 ⊗ πψ(g1)φ)dg1,

which is ZV(fz, φ
′
1 ⊗ φ). Theorem 3 of [LR05] asserts that there exists a meromorphic

function ΓV(z, π̃ψ̄, τ̄
c) (in the notation of loc. cit.) such that ZV(M(z)fz, φ

′
1 ⊗ φ) =

ΓV(z, π̃ψ̄, τ̄
c)ZV(fz, φ

′
1 ⊗ φ), thus γ(1)(ρ, z) := ΓV(z, π̃ψ̄, τ̄

c) has the asserted property.

Suppose now that π'π(χ1, χ2). Then by [LR05, (19), (25), and Thm. 4], in the notation
of loc. cit.,

ΓV(z, π̃ψ̄, τ̄
c) = c(z, τ̄ c, 1, e`)Γ(z, π̃ψ̄, τ̄

c, 1, e`)

= c(z, τ̄ c, 1, e`)ψ(−1)ε(π̃ ⊗ ξc, z + 1/2)
L(π ⊗ ξ̄c, 1/2− z)
L(π̃ ⊗ ξc, z + 1/2)

.

The factor c(z, τ̄ c, 1, e`) is a constant appearing in a functional equation. In our case,

it follows from its definition that this constant equals M(z, f †)1(−z, 1)/f †1(z, 1), where
the subscript ‘1’ denotes the local Fourier coefficient at 1 ∈ S2(Q`) (take f in (14) of
[LR05] to be the section f(z, g) = f †(z, gw2) of I(τ)). If ` splits in K this ratio is equal

to c2(τ ′, z)g(τ̄ ′)2 by Lemma 11.4.12, and we obtain the desired formula for γ(1)(ρ, z).

We deduce part (ii) from the functional equations for Eisenstein series. The conclusion
of part (ii) very likely holds without the hypothesis of being part of a global triple,
but we have settled for the weaker result as we can make do with it. To prove part
(ii) we change our notation: suppose (π, V ) = (⊗πv,⊗Vv), ψ = ⊗ψv, and τ = ⊗τv
are global objects as in 9.1.4. Let ρ be the representation associated with this triple.
Let (π1, ψ1, τ1) := (π∨ ⊗ τ ′, ψττ c, τ̄ c), so ρ∨ is the representation associated to this
triple. Let f ∈ I3(τ) and φ ∈ V . Let φ∨ := π(η)φ and let Fφ(f ; z,−) ∈ I(ρ) be as
in (11.2.2.a). The integral (11.2.2.a) converges if Re(z) > 3/2 and (11.2.3.d) provides a
meromorphic continuation in z to all of C. Writing Fφ(f) for the (meromorphic) function
z 7→ Fφ(f ; z,−) ∈ I(ρ), we have by (11.2.3.c)∫

U1(Q)\U1(A)
E(f ; z, γ1(g, g1h))τ̄(det g1h)φψ(g1h)dg1 = E(Fφ(f), z, g), µ1(h) = µ2(g).

Here φ has been extended to G1(A): φψ((a, g)) = ψ(a)φ(g), a ∈ A×K, g ∈ GL2(A). From
the functional equation for Siegel Eisenstein series (see (11.1.1.d)) we deduce that∫

U1(Q)\U1(A)
E(M(z, f);−z, γ1(g, g1h))τ̄1(det g1h)φ∨ψ1

(g1h)dg1 = E(Fφ(f), z, g).

By (11.2.3.c) the left-hand side equals E(Fφ∨(M(z, f)),−z, g) while by the functional
equation for Klingen-Eisenstein series the right-hand side equals E(A(ρ, z, Fφ(f)),−z, g).
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This implies

(11.4.13.b) Fφ∨(M(z, f);−z, g) = A(ρ, z, Fφ(f ; z,−))−z(g).

Let Σ be a set of places of Q including ∞, `, and those where K, π, ψ, or τ is
ramified. Suppose φ = ⊗φv with φv a newvector if v 6∈ Σ, and suppose f = ⊗fv with

fv = fsphv if v 6∈ Σ. Let g ∈ G(A) be such that gv = 1 if v 6∈ Σ. From (11.1.1.b),
(11.1.1.c), and Lemma 11.4.8 we deduce that the left-hand side of (11.4.13.b) equals
c1(ρ, z)⊗v 6∈Σ φv ⊗ Fφ∨` (M(z, f`);−z, g`) where

c1(ρ, z) :=
LΣ(π̃1 ⊗ ξ,−z + 1)

∏n−1
i=0 L

Σ(2z + 1− i, τ̄ ′χiK)

LΣ(−2z + 2, τ ′χK)
∏n−1
i=0 L

Σ(2z + 2− i, τ̄ ′χiK)
⊗v∈Σ,v 6=`Fφ∨v (M(z, fv);−z, gv).

Clearly c1(ρ, z) defines a meromorphic function from C to a finite-dimensional subspace
W of ⊗v∈Σ,v 6=`Vv. The fv, φv, and gv for v ∈ Σ, v 6= ` can be chosen so that c1(ρ, z) is not
identically zero. For example, take f∞ = M(−z, fκ), and for v -∞ take fv = M(−z, f ′v)
with f ′v having sufficiently small support. We assume such a choice has been made.

From (9.1.5.c) and (9.1.2.c) we see that the right-hand side of (11.4.13.b) equals
c2(ρ, z)⊗v 6∈Σ φv ⊗A(ρ`, z, Fφ`(f`; z,−))−z(g`) where

c2(ρ, z) :=
LΣ(π̃ ⊗ ξ, z)LΣ(2z, τ̄ ′)

LΣ(π̃ ⊗ ξ, z + 1)LΣ(2z + 1, τ̄ ′)
⊗v∈Σ,v 6=` A(ρv, z, Fφ∨v (fv; z,−))−z(gv).

Clearly c2(ρ, z) also defines a meromorphic function from C into a finite-dimensional
subspace W ′ of ⊗v∈Σ,v 6=`Vv. Since

c1(ρ, z)⊗ Fφ∨` (M(z, f`),−z, g`) = c2(ρ, z)⊗A(ρ`, z, Fφ`(f`; z,−))−z(g`),

we may take W ′ = W . Let w1, ..., wn be a basis for W and write ci(ρ, z) =
∑n

j=1 aj,i(z)wi
with the aj,i(z)’s meromorphic function. Then

aj,1Fφ∨` (M(z, f`);−z, g`) = aj,2A(ρ`, z, Fφ`(f`; z,−))−z(g`).

Since c1(ρ, z) is not identically zero, some aj0,1(z) is not identically zero. We may then

take γ(2)(ρ, z) = aj0,2(z)/aj0,1(z), proving part (ii).

11.4.14. `-adic Siegel sections: ramified cases again.

The sections. We define modified version of the sections f † that are well-adapted to the
pull-back formula.

Let m = 1 or 2. For x ∈ O` ∩ K×` let

f †,(m)
x (z, g) := f †m+1(z, g


1 1/x

1m−1 0m−1

1 1/x̄
1m−1

1
1

).

Fourier-Jacobi coefficients.
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Lemma 11.4.15. Let β = (bi,j) ∈ Sm+1(Q`). Then for all z ∈ C, f
†,(m)
x,β (z, 1) = 0 if

β 6∈ Sm+1(Z`)
∗. If β ∈ Sm+1(Z`)

∗ then

f
†,(m)
x,β (z, 1) = D

−m(m+1)/4
` e`(Tr bm+1,1/x).

This is a straightforward calculation using Lemma 11.4.11.

Lemma 11.4.16. Let β ∈ S2(Q`), detβ 6= 0. Let y ∈ GL2(K`) and suppose tȳβy ∈
S2(Z`)

∗. Let λ, θ be characters of K×` and suppose λ|Q×` = 1. Let (c) := cond(λ) ∩
cond(θ) ∩ (`). Let x ∈ K×` be such that D`|x, cond(χc)|x, and cD` det tȳβy|x. Suppose

y−1β−1tȳ−1 = ( ∗ ∗∗ d ) with d ∈ Z×` . Then for h ∈ Uβ(Q`)∑
a∈(O`/x)×

θχ̄c(a)FJβ(f †,(2)
x ; z, u, g

(
a−1

ā

)
, hy)

= χ(dethy)| dethy|−z+1/2
K D

−1/2
`

∑
b∈Z`/D`

fb(z, gη)ωβ(h, g
(

1
b 1

)
)Φθ,x,y(u),

where Φθ,x,y is as in 10.2.3, ωβ is defined using λ, and fb ∈ I1(χ/λ) is the section defined
by

fb(g) :=

{
χλ−1(dp) g = b1η ( 1 m

1 ) , b1 ∈ B1(Z`),m− b ∈ D`Z`

0 otherwise.

Recall that D` is the discriminant of K`/Q`.

Proof. Let K := {k ∈ U1(Z`) : ak − 1, dk − 1, ck ∈ (xx̄)} and K ′ := {k ∈ K : bk ∈
D`O`}. Since D`|x, K ′ is a normal subgroup of K. We also have

(11.4.16.a) K = tb∈Z`/D`
(

1 b
1

)
K ′

and a decomposition

(11.4.16.b) U1(Q`) = B′1(Q`)ηK tr B′1(Q`)xrK, B′1 := B1 ∩ U1, xr = ( 1
s 1 ) , `|s.

Let

F (g) :=
∑

a∈(O`/x)×

θχ̄c(a)FJβ(f †,(2)
x ; z, u, gη−1

(
a−1

ā

)
, hy).

Then it follows from the definition of f
†,(2)
x that

(11.4.16.c) F (gk) = F (g), k ∈ K.

In light of this, (11.4.16.b), and (11.3.2.a), to determine F (g) for all g we only need to
determine F (η) and each F (xr). We claim that

(a) F (xr) = 0 for all xr, and

(b) F (η) = χ(dethy)| dethy|−z+1/2
K D

−1/2
` Φθ,x,y(h

−1u).
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To prove this claim, we first observe that

( 1
s 1 ) η−1 =

(
−s−1 −1

−s

) (
1
−s−1 1

)
.

It then follows from (11.3.2.a) that FJβ(f
†,(2)
x ; z, u, xrη

−1, hy) is a multiple of

FJβ(f †,(2)
x ; z,−s−1u,

(
1
−s−1 1

)
, hy).

As s−1 6∈ Z`, in the integrand of the formula defining this last expression f † is evaluated
at an element that does not belong toQ3(Q`)ηNQ3(Z`), and so the value of the expression
is 0. Part (a) follows. Part (b) is clear from the definitions and the observation that

FJβ(f ; z, u, g, y) = χ(dethy)| dethy|−z+1/2
K FJtȳβy(f ; z, y−1h−1u, g, 1).

From (a) and (11.4.16.b) it follows that F (g) is supported on B′1(Q`)ηK. If g =
pη
(

1 b
1

)
k, b ∈ Z` and k ∈ K ′, then by (b) and (11.3.2.a)

F (g) = χ(det y)| det yȳ|−z+1/2
` D

−1/2
` f †1(z, g)ωβ(p)Φθ,x,y(h

−1u)

= χ(det y)| det yȳ|−z+1/2
` D

−1/2
` f †1(z, g)ωβ(h, gk−1

(
1 −b

1

)
η−1)Φθ,x,y(u)

= χ(det y)| det yȳ|−z+1/2
` D

−1/2
` f †1(z, g)ωβ(h, g

(
1 −b

1

)
η−1)Φθ,x,y(u)

= χ(det y)| det yȳ|−z+1/2
` D

−1/2
` f †1(z, g)ωβ(h, gη−1

(
1
b 1

)
)Φθ,x,y(u),

where f †1 ∈ I1(χ/λ). The next to last equation follows from the one above it by part (i)
of Lemma 10.2.5 and the fact that K ′ is normal in K. In view of (11.4.16.a), the lemma
is a simple consequence of this final expression for F (g).

Pull-back integrals. We again return to the setup and notation of 9.1.2 and of the pull-
back integrals in 11.4.5. To unify some of our formulas, in the following we write S for
S′ when m = 1.

Let T denote a triple (φ, ψ, τ) with φ ∈ V having a conductor with respect to π̃. Let
φx := πψ(ηdiag(x̄−1, x))φ and let

F
(m)
T ,x (z, g) :=

∫
U1(Q`)

f †,(m)
x (z, S−1α(g, g′h))τ̄(det g′h)πψ(g′h)φxdg

′,

where α = α1 or α′1 depending on whether m = 2 or 1. If f(z, g) = f
†,(m)
x (z, gS−1) then

F
(m)
T ,x (z, g) = Fφx(f ; z, g).

Proposition 11.4.17. Suppose x = λt, t > 0, is contained in the conductors of τ and

ψ and xx̄ ∈ (λrφ) = condπ̃(φ). Then F
(m)
T ,x (z, g) converges for all z and g and

F
(1)
T ,x(z, η) = [U1(Z`) : Kx]−1τ(x)|xx̄|−z−1

` φ

and

F
(2)
T ,x = [U1(Z`) : Kx]−1τ(x)|xx̄|−z−3/2

` Fφ,r,t

for any r ≥ max{rφ, t}. Here Kx is the subgroup defined in (11.4.17.c) below.
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Proof. We first note that

f †,(2)
x (z, S−1α1(g, g1)) = f †(z, S−1α1(g, g1)w−1

3 dxSd
−1
x w3)

= f̃x(γ1(gw−1, g1ηdiag(x̄−1, x))),
(11.4.17.a)

where dx = diag(12, x, 12, x̄
−1) and f̃x(g) := f †(z, gd−1

x w3). Note that f̃x is supported
on

Q(x) := Q3(Q`){r′(T ) =
(

1
T 1

)
: T ∈ Sx = diag(12, x̄)S3(Z`)diag(12, x)}

and satisfies f̃x(r′(T )) = f †(z, d−1
x w3) = τ c(x)|xx̄|−z−3/2

` for T ∈ Sx. We claim that

(11.4.17.b) γ1(g, 1) ∈ Q(x)⇒ g ∈ P (Q`)N
opp
Q (Z`)K(x),

where K(x) := {diag(tĀ−1, A) : A− 1 ∈ xM2(O`)}, and

γ1(1, g) ∈ Q(x)⇔ g ∈ Kx := {
(
a b
c d

)
∈ U1(Z`) : a− 1 ∈ (x̄), b ∈ (xx̄),

c ∈ O`, d− 1 ∈ (x)}.
(11.4.17.c)

For g ∈ U(Q`) write

Ag = ( a1 a2
a3 a4 )

and similarly denote the matrix entries of Bg, Cg, and Dg. Then

γ1(g, 1) =


a1 a2 −b1 b1 b2 0
a3 a4 −b3 b3 b4 0
0 0 1 0 0 0
c1 c2 1− d1 d1 d2 0
c3 c4 −d3 d3 d4 0

a1 − 1 a2 −b1 b1 b2 1

 .

So h := γ1(g, 1) ∈ Q(x) if and only if Dh is invertible and D−1
h Ch ∈ Sx. This implies that

we must have (1)Dg is invertible, (2)D−1
g Cg ∈ S(Z`), and (3) d4−detDg, d3 ∈ detDg(x).

Conditions (1) and (2) imply that g ∈ Q(Q`)N
opp
Q (Z`). Since γ1(Nopp

Q (Z`), 1)} ⊆ r′(Sx),

without loss of generality we may assume that g ∈ Q(Q`) (i.e., that Cg = 0). Since
g′ = m(1, det(Dg)

−1)g is such that detDg′ = 1 and since γ1(m(1, ∗), 1) ∈ Q3(Q`), we
may also assume that det(Dg) = 1. Then (3), together with the hypothesis t > 0, implies
that d4 ∈ O×` . So there exists n ∈ Q` such that

XDg = ( ∗ 0
∗ ∗ ) , X := ( 1 n

1 ) .

Since Y := diag(tX̄−1, X) ∈ NP (Q`), γ1(Y, 1) ∈ Q3(Q`). So upon replacing g with Y g
we may assume that g ∈ Q(Q`), detDg = 1, d3, d4 − 1 ∈ (x), and d2 = 0. It follows
that d1 − 1 ∈ (x) as well. So Dg − 1 ∈ xM2(O`). Since Ag = tD̄−1

g , we also have

Ag − 1 ∈ x̄M2(O`). Thus U := diag(A−1
g , D−1

g ) ∈ K(x). Since gU ∈ NQ(Q`) ⊂ P (Q`) it

follows that g ∈ P (Q`)K(x)Nopp
Q (Z`) = P (Q`)N

opp
Q (Z`)K(x), proving (11.4.17.b).

Next, observe that if

g =
(
a b
c d

)
∈ U1(Q`)
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then

γ1(1, g) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 d 0 0 c
−c 0 d− 1 1 0 c
0 0 0 0 1 0

1− a 0 b 0 0 a

 .

As before, h = γ1(1, g) ∈ Q(x) only if Dh is invertible and D−1
h Ch ∈ Sx. These two

conditions imply that (1) a 6= 0, (2) a−1 − 1 ∈ (x̄), (3) a−1b ∈ (xx̄), (4) a−1c ∈ O`, and
(5) 1− d− a−1bc ∈ (x). From (2) it follows that a, a−1 ∈ 1 + x̄O`, which combined with
(3), (4), and (5) implies that b ∈ (xx̄), c ∈ O`, 1 − d ∈ (x). Thus g ∈ Kx as claimed,
proving (11.4.17.c). Moreover, for such g it follows that

f̃x(γ1(1, g)) = τ(a)τ c(x)|xx̄|−z−3/2
` .

From (11.4.17.a) and (11.4.17.b) and the observation that

S−1α1(g, g1) = γ1(m(g1, 1), g1)S−1α1(m(g−1
1 , 1)g, 1) ∈ Q3(Q`)S

−1α1(m(g−1
1 , 1)g, 1)

it follows that

(11.4.17.d) f †,(2)
x (z, S−1α1(g, g1)) 6= 0⇒ g ∈ P (Q`)wKB(x) = P (Q`)wNB(Z`).

and

F
(2)
T ,x(z, w) =

∫
U1(Q`)

f̃x(γ1(1, gηdiag(x̄−1, x)))τ̄(det g)πψ(g)φxdg

= τ(x/x̄)

∫
Kx

f̃x(γ1(1, g))τ̄(det g)πψ(g)φdg

= τ(x)|xx̄|−z−3/2
` (

∫
Kx

τ(ag)τ̄(det g)ψ(dg)dg)φ

= [U1(Z`) : Kx]−1τ(x)|xx̄|−z−3/2
` φ,

(11.4.17.e)

the last line following from the one before by the definition of Kx and the hypotheses on

x. A simple variation on this argument proves the assertion of the lemma for F
(1)
T ,x(z, η).

It follows from (11.4.17.d), (11.4.17.e), and the hypothesis that xx̄ ∈ condπ̃(φ) that to
complete the proof of part (ii) it suffices to show that FT ,x(z, wn) = FT ,x(z, w) for all
n ∈ NB(Z`) ∩Kt,t. But such an n is of the form

n =

(
1
a 1

1 −ā
1

)
, a ∈ (λt).

So

α(n, 1)

 1 1/x
1 0

1 1/x̄
1

1
1

 ∈
 1 1/x

1 0
1 1/x̄

1
1

1

NB(Z`),
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and so f
†,(2)
x (z, gα(n, 1)) = f

†,(2)
x (z, g), from which the desired property of FT ,z(z, g)

follows.

Using the preceding proposition we can relate the constants γ(2) and γ(1) in Proposition
11.4.13.

Proposition 11.4.18. For m = 1 or 2, let γ(m)(ρ, z) be as in Proposition 11.4.13. If

O` 6= cond(τ) ⊇ cond(ττ c) then γ(2)(ρ, z) = γ(1)(ρ, z − 1/2).

Proof. Let φ ∈ V be an eigenform for π̃. Let (x) := (λt) ⊂ O` satisfy the conditions
of part (ii) of Proposition 11.4.17 relative to φ. For a fixed z ∈ C, let fm ∈ Im+1(τ)

be defined by fm(z, g) = f
†,(m)
x (z, gS−1). Then Fφx(fm; z, g) = F

(m)
T ,x (z, g) with T =

(φ, ψ, τ). It then follows from Lemma 9.2.4 and Proposition 11.4.17 that

A(ρ, z, Fφx(f2; z,−))(1) = A(ρ, z, F
(m)
T ,x (z,−))(1)

= [K1,` : Kx]−1τ(x)|xx̄|−z−1/2
` φ

= F
(1)
T ,x(z − 1/2, η)

= Fφx(f1; z − 1/2, η).

(11.4.18.a)

On the other hand, it follows easily from the definition of f
†,(m)
x and from Lemma 11.4.10

(which applies because of the hypotheses on τ) that

M(z, f2)(−z, γ1(m(g, 1), g′)) = M(z − 1/2, f1)(−z + 1/2, γ′1(g, g′)).

From this it follows that

Fφ∨(M(z, f2);−z, 1) = Fφ∨(M(z − 1/2, f1);−z + 1/2, 1).

By Proposition 11.4.13(ii) the left-hand side equals γ(2)(ρ, z)A(ρ, z, Fφx(f2; z,−))(1),
and by part (i) of the same proposition and (11.4.18.a) the right-hand side equals

γ(1)(ρ, z − 1/2)A(ρ, z, Fφx(f2; z,−))(1). Since A(ρ, z, Fφx(f2; z,−))(1) 6= 0 it then fol-

lows that γ(2)(ρ, z) = γ(1)(ρ, z − 1/2).

11.4.19. p-adic sections. Suppose now that ` = p. Let (π, V ), ψ, τ , ξ, and ρ be as in
9.1.2 and 9.2.3 with the additional assumption that they are the p-constituents of global
objects as in 9.1.4. Let (π1, ψ1, τ1) := (π̃, ψ̄, ψcψ̄τ̄ c) and ξ1 := ψ1/τ1 = ξ̄c be as in 9.2.5.
Let ρ1 be the representation associated with this triple. Then ρ∨1 is the representation
associated with the triple (π ⊗ ψ̄′τ̄ ′, ψ̄τ̄ τ̄ c, τ ψ̄ψc).

Let x ∈ Op be such that (x) = cond(ξ1) (so (x̄) = cond(ξ)).

The sections. For m = 1 or 2 let f
†,(m)
x ∈ Im+1(τ1). Let f

0,(m)
z ∈ Im+1(τ) be defined by

f0,(m)
z (k) := ψ(det k)ψ̄m+1(µm+1(k))M(z, f †,(m)

x )(k).

A priori this is only defined for z in an open set of C. More generally, z 7→ f
0,(m)
z should

be viewed as a meromorphic section from C to Im+1(τ).
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Let f̃u,n ∈ In(τ) be the section

f̃u,n(k) := ψ(det k)ψ̄n(µn(k))fu,n(k), fu,n ∈ In(τ̄ c1),

where fu,n is defined in 11.4.9. Note that f̃u,n(k) depends on ψ as well as τ .

Lemma 11.4.20. If ψ and τ are as in the Generic Case of 9.2.5 then

f
0,(m)
−z (z, k) = f̃t,m+1(z, k


1 1/x

1m−1 0m−1

1 1/x̄
1

1m−1

1

) ∈ Im+1(τ),

where (pt) = cond(τ̄ c1).

This is immediate from the definition of f
0,(m)
z and Lemma 11.4.10.

Fourier-Jacobi coefficients.

Lemma 11.4.21. Let β = (bi,j) ∈ Sm+1(Qp), detβ 6= 0. If β ∈ Sm+1(Zp) then

f
0,(m)
z,β (−z, 1) = τ̄ ′(detβ)|detβ|−2(m+1)z

p g(τ ′)m+1cm+1(τ̄ ′, z)ep(Tr (bm+1,1/x)),

where cm+1(τ̄ ′, z) is as in Lemma 11.4.12.

Proof. We have

f
0,(m)
z,β (−z, 1) = M(z, f †)β(−z,


1 1/x

1m−1 0m−1

1 1/x̄
1

1m−1

1

),

and so the formula in the lemma follows easily from Lemma 11.4.12.

Lemma 11.4.22. Suppose ψ and τ are as in the Generic Case of 9.2.5. Let (pt) :=
cond(τ ′). Let β ∈ S2(Qp), detβ 6= 0, and suppose β ∈ GL2(Op). Let y ∈ GL2(Op).
Let λ be an unramified character of K×p such that λ|Q×p = 1. Then for g ∈ U1(Qp) and

h ∈ Uβ(Qp)∑
a∈(Op/x)×

ξcτ(a)FJβ(f0,(2)
z ;−z, u, g

(
a−1

ā

)
, hy)

= ξ(−1)c(β, τ, z)τ(dethy)| dethh̄|−z+1/2
p f̃t,1(z, gη)ωβ(h, g)Φξc,x,y(u),

where f̃t,1 ∈ I1(τ/λ) = I1(τ) is as defined above, ωβ is defined using λ, and

c(β, τ, z) := τ̄ ′(−detβ)|detβ|2z+1
p g(τ ′)2τ̄ ′(p2t)p−4tz−5t.

Proof. Note that τ ′ = τ̄ ′1, so (pt) = cond(τ̄ ′1). Let (pc) := cond(τ̄ c1), c = (c1, c2). As τ
and ψ are in the Generic Case, t = c1 > c2 > 0.
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Recall that (x) = cond(ξ1). Let K := {k ∈ U1(Zp) : ck, ak − 1, dk − 1 ∈ (xx̄)}. Then
there is a decomposition of U1(Qp) of the form

U1(Qp) = tB′1(Qp)xrK, B′1 := B1 ∩ U1,

each xr =
(

1
d 1

)
, ordp(d) ≤ ordp(xx̄).

(11.4.22.a)

Let
F (g) :=

∑
a∈(Op/x)×

ξcτ(a)FJβ(f0,(2)
z ;−z, u, gη−1

(
a−1

ā

)
, hy).

Our hypotheses ensure that

(11.4.22.b) F (gk) = F (g), k ∈ K.
So, in light of (11.4.22.a) and (11.3.2.a), to determine F (g) it suffices to determine the
F (xr)’s. We claim that

(a) F (xr) = 0 if pt - d;
(b) if pt|d then

F (xr) = c(β, τ, z)τ(dethy)| dethh̄|−z+1/2
p

×
∑

a∈(Op/x)×

ξc(a)Φ0(y−1h−1u− t(
ad

x
, 0))ep(−TrKp/Qp

(
ā

x̄
, 0)tȳth̄βu+

aād

xx̄
);

(c) ∑
a∈(Op/x)×

ξc(a)Φ0(y−1h−1u− t(
ad

x
, 0))ep(−TrKp/Qp

(
ā

x̄
, 0)tȳth̄βu− βy

aād

xx̄
)

= ξ(−1)ωβ(η−1
(

1 −d
1

)
)Φξc,x,y(h

−1u),

where βy := (tȳβy)11. Since

FJβ(f ; z, u, g, hy) = τ(dethy)|dethh̄|−z+1/2
p FJtȳβy(f ; z, y−1h−1u, g, 1),

we can reduce (a) and (b) to the case h = y = 1. Part (c) is an easy calculation using
the explicit descriptions of the Weil representation.

We begin the proof of (a) and (b) by noting that

w3

(
13

T u
tū d
13

)
α(1, η−1)

(
13

a/x

ā/x̄
13

)
= w3

 1 a/x
1

1
1

1
−ā/x̄ 1

( 13
T ′ v
tv̄ d
13

)
α(1, η−1)

where

T ′ = T − T ′′, T ′′ =
(
āu1/x̄+aū1/x−aād/xx̄ āu2/x̄

aū2/x 0

)
, v = t(u1 − ad/x, u2).

As ψ1 and τ1 are as in the Generic Case of 9.2.5, by Lemma 11.4.20

f0,(2)
z (−z, g) = f̃c,3(−z, g

(
13

1/x
01

1/x̄
13

)
),



THE IWASAWA MAIN CONJECTURES FOR GL2 165

where (pc) = cond(τ̄ c1). As f̃c,3 = f̃t,3 by the previously noted relation between t and c,
it then follows that

FJβ(f0,(2)
z ;−z, u, xrη−1

(
a−1

ā

)
, 1) = τ̄(a)FJβ(ft;−z, v, xrη−1, 1)ep(−TrβT ′′),

where ft := ft,3 ∈ I3(τ̄ c1). To prove (a) and (b) it then suffices to show

(a′) FJβ(ft;−z, v, xrη−1, 1) = 0 if pt - d, and
(b′) FJβ(ft;−z, v, xrη−1, 1) = c(β, τ, z)Φ0(v) if pt|d.

We have

w3

(
13

S v
tv̄ d
13

)
α(1, η−1) =

(
12

−1
−12 v −S

d −tv̄ −1

)
.

This belongs to Q3(Qp)KQ3(pt) if and only if S is invertible, S−1 ∈ ptM2(Op), S−1v ∈
ptM2×1(Op), and tv̄S−1v − d ∈ ptZp. When these conditions hold the integrand in our
formula for FJβ(ft; z, v,

(
1
d 1

)
η−1, 1) equals τ(−detS)| detS|3−2z

p ep(−TrβS).

Since v = γt(b, 0) for some γ ∈ SL2(Op) and b ∈ Kp, we can reduce to the case
v = t(b, 0). Writing b = (b1, b2) with bi ∈ Qp and S = (T, tT ) with T ∈ M2(Qp) and
T−1 = ( a1 a2

a3 a4 ), the conditions on S and v can be rewritten as

(11.4.22.c) detT 6= 0 and ai, a1b1, a3b1, a1b2, a2b2, a1b1b2 − d ∈ ptZp.

When these conditions hold, the integrand in the formula for FJβ(ft; z, v,
(

1
d 1

)
η−1, 1)

equals τ ′(−detT )| detT |3−2z
p ep(−TrβT ).

Let

Γ := {
(
h j
k l

)
∈ GL2(Zp) : h, l ∈ Z×p , d(h− 1) ∈ ptZp, j ∈ Zp, k ∈ ptZp, jb2 ∈ Zp}.

This is a group. If T satisfies (11.4.22.c), then so does Tγ for γ ∈ Γ. Let T denote the
set of T ∈M2(Qp) satisfying (11.4.22.c). Then FJβ(ft; z, v,

(
1
d 1

)
η−1, 1) equals

(11.4.22.d)
∑

T∈T /Γ

|detT |5−2z
p

∫
Γ
τ ′(−detTγ)ep(−TrβTγ)dγ.

Let T ′ := βT and write T ′ = ( c1 c2c3 c4 ). Then the integral in (11.4.22.d) is zero unless
c1, c2, c4 ∈ p−tZp and c3 ∈ b2Zp + Zp. But then

β
(
b1
0

)
= T ′T−1

(
b1
0

)
=
(
c1a1b1+c2a3b1
c3a1b1+c4a3b1

)
∈M2×1(Zp).

As β ∈ GL2(Op) by hypothesis, this implies that (11.4.22.d) is zero unless b1 ∈ Zp.
Letting

Γ′ := {γ =
(
h j
k l

)
∈ GL2(Zp) : h, l ∈ Z×p , d(h− 1) ∈ ptZp, k ∈ Zp, j ∈ ptZp, kb1 ∈ Zp},

and noting that if T satisfies (11.4.22.c) then so does γT for any γ ∈ Γ′, and considering
T ′′ := Tβ, we similarly find that FJβ(ft; z, v,

(
1
d 1

)
η−1, 1) is zero unless

(b2, 0)β = (b2, 0)T−1T ′′ ∈M1×2(Zp),
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which implies that b2 ∈ Zp. Finally, for b ∈ Op the conditions S−1 ∈ ptM2(Op) and
tv̄S−1v̄ − d ∈ ptZp imply that d ∈ ptZp; the claim (a′) follows.

Note that when v = t(v1, v2) with v1, v2 ∈ Op and pt|d we have

FJβ(ft; z, v,
(

1
d 1

)
η−1, 1) = τ(−1)ft,2,β(z + 1/2, 1)

= τ(−1)M(−z − 1/2, f †2)β(z + 1/2, 1),

with f †2 ∈ I2(τ1). By Lemma 11.4.12, the last displayed line equals

τ̄ ′(−detβ)|detβ|2z+1
p g(τ ′)2τ̄ ′(p2t)p−4tz−5t,

which equals c(β, τ, z) by definition. This proves (b′).

Returning to the proof of the lemma we note that (a) implies that F (g) is supported
on B′1(Qp)K

′ with K ′ = {k ∈ U1(Zp) : ck, ak−1, dk−1 ∈ pt}. Then (b) and (c) together
with (11.3.2.c) imply that for g = b

(
1
d 1

)
k ∈ B′1(Qp)

(
1
d 1

)
K ⊂ B′1(Qp)K

′,

F (g) = ξ(−1)c(β, τ, z)τ(deth)| dethh̄|−z+1/2
p f̃t,1(g)ωβ(bη−1

(
1 −d

1

)
)Φξc,x,y(h

−1u)

= ξ(−1)c(β, τ, z)τ(deth)| dethh̄|−z+1/2
p f̃t,1(g)ωβ(h, gη−1)Φξc,x,y(u),

the second equality following from the first since ωβ(ηKη−1)Φξc,x,y = Φξc,x,y by part (i)
of Lemma 10.2.5. Then∑
a∈(Op/x)×

ξcτ(a)FJβ(f0,(2)
z ;−z, u, g

(
a−1

ā

)
, hy)

= F (gη)

= ξ(−1)c(β, τ, z)τ(deth)| dethh̄|−z+1/2
p f̃t,1(gη)ωβ(h, g)Φξc,x,y(u).

Pull-back integrals. As previously, we will write S for S′ when m = 1 to unify some of
the formulas.

Proposition 11.4.23. Let φ ∈ V be an eigenvector for π such that p|condπ(φ). Let
(x) := cond(ξ1) = (pt). Suppose t > 0 and that x is contained in cond(τ1) and

cond(ψ1) and that xx̄ ∈ condπ(φ). Let φ∨x := ψp(−1)π(diag(x, x̄−1))φ. Let f̃
0,(m)
z (g) :=

f
0,(m)
z (gS−1). Then

Fφ∨x (f̃
0,(m)
−z ; z, g) = γ(m)(ρ1,−z)[U1(Zp) : Kx]−1τ̄ c(x)|xx̄|z−(m+1)/2

p

{
F 0
φ,z(g) m = 2

πψ(g)φ m = 1,

where Kx is as in (11.4.17.c) and γ(m)(ρ1,−z) is as in Proposition 11.4.13.

Proof. Let f̃
†,(m)
x (g) := f

†,(m)
x (gS−1). We have

(11.4.23.a) Fφ∨x (f̃
0,(m)
−z ; z, g) = ψ(det g)τ(µm(g))ψ̄(µm(g))m−1Fφ∨x (M(−z, f̃ †,(m)

x ); z, g),
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where the left-hand side is defined with respect to (π, ψ, τ) and the right-hand with
respect to (π ⊗ ψ̄′τ̄ ′, ψ̄τ̄ τ̄ c, τ ψ̄ψc). Suppose m = 1. By part (i) of Proposition 11.4.13
the right-hand side of (11.4.23.a) equals

γ(1)(ρ1,−z)ψ(x/x̄)ψ(det g)τ(µ1(g))τ1(µ1(g))Fφx(f̃ †,(1)
x ;−z, ηg),

φx = π̃(ηdiag(x̄−1, x))φ,

which in turn equals

γ(1)(ρ1,−z)ψ(x/x̄)πψ(g)Fφx(f̃ †,(1)
x ;−z, η).

By Proposition 11.4.17 this equals

γ(1)(ρ1,−z)[U1(Zp) : Kx]−1ψ(x/x̄)τ1(x)|xx̄|z−1
` πψ(g)φ.

Since τ1 = τ̄ cψcψ̄, the proposition is true in the case m = 1.

Suppose then that m = 2. By part (ii) of Proposition 11.4.13 the right-hand side of
(11.4.23.a) equals

(11.4.23.b) γ(2)(ρ1,−z))ψ(x/x̄)ψ(det g)ξ̄(µ(g))A(ρ1,−z, Fφx(f̃ †,(2)
x ;−z,−))z(g).

Since
Fφx(f̃ †,(2)

x ) = τ1(x)|xx̄|z−3/2[U1(Zp) : Kx]−1Fφ,t,t ∈ I(ρ1)

by Proposition 11.4.17, it then follows from the definition of F 0
φ,z that (11.4.23.b) equals

γ(2)(ρ1,−z)τ̄ c(x)|xx̄|z−3/2
p [U1(Zp) : Kx]−1F 0

φ,z.

11.5. Good Siegel Eisenstein series. Let (π, V ) = (⊗πv,⊗Vv) be as in 9.3.1 and let
D = (Σ, ϕ, ψ, τ) be an Eisenstein datum for π (also as in 9.3.1). We augment this datum
with a choice of an integer MD satisfying

• MD is divisible only by primes in Σ\{p};
• for ` ∈ Σ\{p}, MD is contained in δKcond(ξ`),

cond(ψ`), cond(τ`),and condπ̃`(φ`).

(11.5.0.c)

All constructions to follow and subsequent formulas depend on this choice. Of course,
in our applications we are free to choose a suitable MD.

Let xp := ptp ∈ Op be such that (xp) = cond(ξcp). Let

UD := Kxp,p

∏
`∈Σ\{p}

KMD,`

∏
`6∈Σ

U1(Z`),

with Kx,` as in (11.4.17.c).

For m = 1 or 2 we define a meromorphic section f
(m)
D : C → Im+1(τ) as follows:

f
(m)
D (z) = ⊗f (m)

D,w(z) where

• f (m)
∞ (z) := fκ ∈ Im+1(τ∞);
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• if ` 6∈ Σ then f
(m)
D,` (z) := fsph` ∈ Im+1(τ`);

• if ` ∈ Σ, ` 6= p, then f
(m)
D,` (z) := f

†,(m)
MD

∈ Im+1(τ`);

• f (m)
D,p (z) := f

0,(m)
−z ∈ Im+1(τp), where xp is used to define f

0,(m)
−z .

We let H
(m)
D (z, g) := E(f

(m)
D ; z, g).

Let

K
(m)
D := {k ∈ Gm+1(Ẑ) : 1− k ∈M2

D|xpx̄p|−1M2(m+1)(O`)}

Then it easily follows from the definition of the f
(m)
D,` (z)’s that

(11.5.0.d) H
(m)
D (z, gk) = H

(m)
D (z, g), k ∈ K(m)

D ,

and that if tp > 0, xp ∈ cond(ψ), and xpx̄p ∈ condπ(φp) then

(11.5.0.e) H
(m)
D (z, gα(1, k)) = τ(akp)H

(m)
D (z, g), k ∈ UD.

For u ∈ GLm+1(AK,f ) let

L(m)
u := {β ∈ Sm+1(Q) : β ≥ 0, Trβγ ∈ Ẑ, γ ∈ uSm+1(Ẑ)tū}.

Lemma 11.5.1.

(i) If κ ≥ m+ 1 then H
(m)
D is holomorphic at zκ := (κ−m− 1)/2.

(ii) If κ ≥ m+ 1 and if g ∈ Qm+1(A) then

H
(m)
D (zκ, g) =

∑
β∈Sm+1(Q),β>0

H
(m)
D,β (zκ, g).

Furthermore, if β > 0, g∞ = r(X)diag(Y, tȲ −1) and gf = r(a)diag(u, tū−1) ∈
Gm+1(Af ), then H

(m)
D,β (zκ, g) = 0 if β 6∈ L(m)

u and otherwise

H
(m)
D,β (zκ, g) =eA(Trβa)

(−2)−m−1(2πi)(m+1)κ(2/π)m(m+1)/2 detβκ−m−1 det Ȳ κ∏m
j=0(κ− j − 1)!

∏m
j=0 L

S(κ− j, τ̄ ′χjK)

× e(Tr (β(X + iY tȲ ))
∏
`∈S

fD,βu,`(zκ, 1)

× τ(detu)| detuū|m+1−κ/2
Q

∏
`6∈S

h`,β(τ̄ ′`(`)`
−κ),

βu = tūβu,

for any finite set of places S ⊇ Σ such that g` ∈ Km+1,` if ` 6∈ S.

Proof. It follows from Lemma 11.3.1 that if Re(z) > (m + 1)/2 and q ∈ Qm+1(A) then

H
(m)
D,β (z, q) =

∏
f

(m)
D,w(z, qw). Let S ⊇ Σ be any finite set of places containing ∞ and all
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primes ` that ramify in K or are such that q` 6∈ Km+1,`. From the definition of the f
(m)
D,w’s

and Lemma 11.4.6 it follows that if r = rankβ then

H
(m)
D,β (z, q) =

∏m
i=r L

S(2z + i−m, τ̄ ′χiK)∏m
i=0 L

S(2z +m+ 1− i, τ̄ ′χiK)

∏
w∈S

f
(m)
D,w,β(z, qw)

×
∏
6̀∈S
h`,β(τ̄ ′`(`)`

−2z−m−1).
(11.5.1.a)

Assuming κ ≥ m + 1, to establish the holomorphy of H
(m)
D (z, q) at z = zκ it suffices to

prove that (11.5.1.a) is holomorphic at zκ (by the usual argument; cf. [Sh97, Prop. 19.1]).
Since any g ∈ Gm+1(A) can be written as g = γqk with γ ∈ Gm+1(Q), q ∈ Qm+1(A),

and k ∈ K+
m+1,∞K

(m)
D , it would then follow that H

(m)
D (z, g) is holomorphic at zκ.

The holomorphy at zκ of the ratio of L-functions is clear, and that of fD,∞,β(z, q∞)
follows from Lemma 11.4.2. If ` 6∈ Σ then the desired holomorphy of fD,`,β(z, q`) follows
directly from (11.1.1.b), while if ` ∈ Σ, ` 6= p, then the holomorphy follows from Lemma
11.4.11. Finally, the holomorphy of fD,p,β(z, qp) at zκ follows from Lemma 11.4.21.

Suppose g is as in part (ii) of the lemma. By Lemma 11.4.2, f
(m)
D,∞,β(zκ, g∞) =

fκ,β(zκ, g∞) = 0 unless β > 0, and so H
(m)
D,β (zκ, g) = 0 by (11.5.1.a) unless β > 0. If

β > 0 then the value asserted for H
(m)
D,β (zκ, g) is a consequence of (11.5.1.a) and Lemmas

11.4.2 and 11.4.6.

As a consequence of part (i) of the preceding lemma, if κ ≥ m + 1 we can define a

function H
(m)
D (Z, x) on Hm+1 ×Gm+1(Af ) by

H
(m)
D (Z, x) := µm+1(g∞)(m+1)κ/2Jm+1(g∞, i)

−κH
(m)
D ((κ−m− 1)/2, g∞x),

g∞ ∈ G+
m+1(R), g∞(i) = Z.

Lemma 11.5.2. Suppose κ ≥ m+ 1. Then H
(m)
D (Z, x) ∈Mκ(K

(m)
D ).

Proof. Since Gm+1(A) = tGm+1(Q)G+
m+1(R)qiK

+
m+1,∞K

(m)
D for some qi ∈ Qm+1(Af ),

by the definition of f
(m)
D,∞(z, g) and (11.5.0.d) it suffices to show that each H

(m)
D (Z, qi)

is holomorphic as a function of Z. But if Z = X + iY tȲ and qi = r(ai)diag(ui,
tū−1
i ),

then it follows from part (ii) of Lemma 11.5.1 upon taking g = r(X)diag(Y, tȲ −1)qi

that H
(m)
D (Z, qi) =

∑
β∈L(m)

ui
,detβ>0

ci(β)e(Tr (βZ)) for some ci(β) ∈ C, and this series is

visibly holomorphic in Z.

Supposing κ ≥ m+1, for β ∈ Sm+1(Q), β ≥ 0, we will denote by A
(m)
D,β(x) the β-Fourier

coefficient of H
(m)
D (Z, x).
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Lemma 11.5.3. Suppose κ ≥ m+ 1 and that x = diag(u, ū−1), u ∈ GLm+1(AK,f ) with

u` = diag(1m, ā`), a` ∈ O×` , if ` ∈ Σ. If β 6∈ L(m)
u or if detβ = 0 then AD,β(x) = 0, and

for β = (βij) ∈ L(m)
u with detβ > 0

A
(m)
D,β(x) = D

−m(m+1)/4
K

(−2)−m−1(2πi)(m+1)κ(2/π)m(m+1)/2(detβ| detβ|p)κ−m−1∏m
j=0(κ− j − 1)!

∏m
j=0 L

Σ(κ− j, τ̄ ′χjK)

× τ̄p(ap det(β))g(τ ′p)
m+1c(τ̄ ′p, (m+ 1− κ)/2)ep(TrKp/Qp

(apβm+1,1/xp))

×
∏

`∈Σ,`6=p
τ c` (a`)e`(TrK`/Q`

(a`βm+1,1/MD))

×
∏
6̀∈Σ

τ`(detu`)|u`ū`|
m+1−κ/2
` h`,tū`βu`(τ̄`(`)`

−κ).

This is a straightforward consequence of part (ii) of Lemma 11.5.1, part (i) of Proposition
11.4.17, and Lemma 11.4.21.

11.6. ED via pull-back. We continue with the notation of the preceding section and of
9.3.1. We extend ϕ to a cuspform ϕψ on G1(A) by setting ϕψ((a, g)) := ψ(a)ϕ(g). Let
ϕ0 be the cuspform defined by

ϕ0(g) := ψp(−1)ϕψ(gy), yv :=


1 v =∞, v 6∈ Σ

ηdiag(M−1
D ,MD) v = ` ∈ Σ, v 6= p

diag(xp, x̄
−1
p ) v = p.

Proposition 11.6.1. Let m = 1 or 2. Suppose that (xp) = (ptp) with tp > 0 and that
xp ∈ cond(ψ) and xpx̄p ∈ condπp(φp) (where φp is defined by ϕ = ⊗φv). Let g ∈ Gm(A)
and h ∈ G1(A) be such that µ1(h) = µm(g). If κ ≥ m+ 1 then∫

U1(Q)\U1(A)
H

(m)
D (z, α(g, g′h))τ̄(det g′h)ϕ0(g′h)dg′

= [U1(Ẑ) : UD]−1

{
c

(1)
D (z)ϕ(g) m = 1

c
(2)
D (z)ED(z, g) m = 2,

(11.6.1.a)

where

c
(m)
D (z) :=π2−2z−m+1M

2z+(m+1)
D |xpx̄p|z−(m+1)/2

p τ̄ cp(MDxp)

× Γ(z + (m− 1 + κ)/2)LΣ(π̃, ξ, z +m/2)

Γ(z + (m+ 1 + κ)/2)
∏1
i=0 L

Σ(τ̄ ′εiK, 2z +m+ 1− i)
γ(m)(ρ1,p,−z)

with γ(m)(ρ1,p,−z) as in Proposition 11.4.23 and ρ1,p as in 11.4.9.

Of course, (11.6.1.a) is to be viewed as an equality of meromorphic functions in z; note

that this shows that c
(2)
D (z)ED(z, g) is defined at z = zκ := (κ − 3)/2 even though

ED(z, g) may not be.
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Proof. By uniqueness of meromorphic continuation it suffices to prove the proposition
for Re(z) sufficiently large, so we may assume Re(z) > 2(m+ 1). Then

H
(m)
D (z, α(g, g′h)) = E(f

(m)
D ; z, α(g, g′h)) = E(f̃

(m)
D ; z, γ(g, g′h)),

f̃
(m)
D (z, g) = f

(m)
D (z, gS−1),

where we follow an earlier convention and write S for S′ when m = 1. It then follows
from Proposition 11.2.3 that the left side of (11.6.1.a) equals{

Fϕ0(f̃
(1)
D ; z, g) m = 1

E(Fϕ0(f̃
(2)
D ; z,−), z, g) m = 2.

To prove the proposition it therefore suffices to prove that [U1(Ẑ) : UD]Fϕ0(f̃
(m)
D ; z,−)

equals c
(1)
D (z)ϕ if m = 1 and c

(2)
D (z)ϕD(z) if m = 2, where ϕD : C→ I(ρ) is as in 9.3.1.

Recall that ϕ corresponds to some φ = ⊗φv ∈ ⊗Vv and so ϕ0 corresponds to φ0 =
ψp(−1) ⊗ φ0,v, φ0,v = πv(yv)φv. Then via the identification V = ⊗Vv, the automorphic
form

g1 7→

{
Fϕ0(f̃

(1)
D ; z, g1g) m = 1

Fϕ0(f̃
(2)
D ; z,m(g1, 1)g) m = 2

, g1 ∈ GL2(A),

is identified with

ψp(−1)

∫
U1(A)

f̃
(m)
D (z, γ(g, g′h))τ̄(det g′h)πψ(g′h)φ0dg

′,

which factors as

ψp(−1)
∏
v

∫
U1(Qv)

f
(m)
D,v (z, S−1α(gv, g

′
vhv))τ̄v(det g′vhv)πv,ψv(g

′
vhv)φ0,vdg

′
v.

The proposition then follows from the definitions of the f
(m)
D,v ’s, Lemmas 11.4.4 and 11.4.8,

and Propositions 11.4.17 and 11.4.23; the hypotheses on xp ensure that we can appeal
to Proposition 11.4.23 when v = p.

Let β ∈ Sm(Q). If m = 1 let

φβ(g) :=

∫
S1(Q)\S1(A)

ϕ(
(

1 S
1

)
g)dS

be the β-Fourier coefficient of ϕ. If m = 2, recall that µD(β, g) is the β-Fourier coefficient

of ED(z, g) (see 9.3.4). Let H
(m)
D,β (z, g) be the β-Fourier-Jacobi coefficient of H

(m)
D (z, g)

(see 11.3). The following is an immediate consequence of the preceding proposition.

Proposition 11.6.2. Let m = 1 or 2. Suppose that (xp) = (ptp) with tp > 0 and that
xp ∈ cond(ψ) and xpx̄p ∈ condπp(φp) (where φp is defined by ϕ = ⊗φv). Let g ∈ Gm(A)
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and h ∈ G1(A) be such that µ1(h) = µm(g). Let β ∈ Sm(Q). If κ ≥ m+ 1 then

∫
U1(Q)\U1(A)

H
(m)
D,β (z, α(g, g′h))τ̄(det g′h)ϕ0(g′h)dg′

= [U1(Ẑ) : UD]−1

{
c

(1)
D (z)ϕβ(g) m = 1

c
(2)
D (z)µD(β, z, g) m = 2,

(11.6.2.a)

where c
(m)
D (z) is as in Proposition 11.6.1.

Still assuming that xp satisfies the hypotheses in Proposition 11.6.2, the integral in
(11.6.2.a) can be transformed into an expression that is more easily given a classical
interpretation.

Let hK be the class number of K. Let a1, ..., ahK ∈ Ô be representatives for the class
group of K. We can and do assume that each ai = (qi, 1) ∈ Oqi for some prime qi 6∈ Σ
that splits in K. Let

ΓD := U1(Q) ∩ UD, ΓD,i := U1(Q) ∩
(
a−1
i

āi

)
UD

(
ai
ā−1
i

)
=
(

1
qi

)
ΓD

(
1
q−1
i

)
.

If γ ∈ ΓD then det γ ≡ 1 modulo some odd rational prime (since p is odd). Since
det γ ∈ O× it follows that det γ = 1, and since γ = (a,m) with aādetm = µ1(g) =
1 = det(γ) = a2 detm, it must be that a = ā. So without loss of generality, a = 1 and
detm = det γ = 1. In particular

ΓD = η(Γ1(pupMD) ∩ Γ0(prpM2
D))η−1,

(pup) := (xp) ∩ Zp, (prp) := (xpx̄p).

Let Y ⊂ Ô be any set of representatives for (Ô/x̄pMD)×/(Ẑ/pupMD)×. Then

U1(A) = thKi=1 ta∈Y U1(Q)U1(R)
(
a−1
i a−1

āiā

)
UD.

Letting

H̃
(m)
D,β (z, g) :=

∑
a∈(Ô/(xpMD))×

χπ,pχ̄πξ
cτ(a)H

(m)
D,β (z, gα(1,diag(a−1, ā))),

(this is independent of the choice of the a’s) we then have as a consequence of (11.5.0.e)
and the fact that ϕ0(gk) = ϕ0(g) for k ∈ UD that if g ∈ Um(A), then the left-hand side
of (11.6.2.a) equals

(#(Z/pupMD)×)−1[U1(Ẑ) : UD]−1

×
hK∑
i=1

τ̄ cτ(ai)

∫
ΓD,i\U1(R)

H̃
(m)
D,β (z, α(g, g′diag(a−1

i , āi)))

× τ̄(det g′)ϕ0(g′diag(a−1
i , āi))dg

′.
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Since

(11.6.2.b) H̃
(m)
D,β (z, gα(1, diag(a−1, a))) = χ̄2

π,pχπ(a)H̃
(m)
D,β (z, g), a ∈ Ẑ×,

and

ϕ0(gdiag(a−1, a)) = χ2
π,pχ̄π(a)ϕ0(g), a ∈ Ẑ×,

we can rewrite the integral as

[U1(Ẑ) : UD]−1 ×
hK∑
i=1

τ̄ cτ(ai)

∫
Γ′D,i\U1(R)/K+

1,∞

H̃
(m)
D,β (z, α(g, g′diag(a−1

i , āi)))

× τ̄(det g′)ϕ0(g′diag(a−1
i , āi))dg

′,

(11.6.2.c)

where Γ′D,i is defined by replacing ΓD with Γ′D := ηΓ0(prpM2
D)η−1 in the definition of

ΓD,i.

Since g′ ∈ U1(R) in (11.6.2.c), we have

ϕ0(g′diag(a−1
i , āi)) = ψ̄(ai)χ̄p(qi)ϕ0(diag(1, q−1

i )∞g
′).

If we further assume that gf = diag(u, tū−1), u ∈ GLm(AK,f ), then we also have

H̃
(m)
D,β (z, α(g, g′

(
a−1
i

āi

)
))

= τ̄m−1
p (qi)τ̄

mτ c(ai)H̃
(m)
D,β (z, α(

(
1m

q−1
i 1m

)
∞
g
(
ai1m

ā−1
i 1m

)
,
(

1
q−1
i

)
∞
g′))).

Substituting the right-hand sides of these last two equalities into (11.6.2.c) yields the
following corollary of Proposition 11.6.1.

Corollary 11.6.3. Let m = 1 or 2 and β ∈ Sm(Q). Suppose that xp is as in Proposition
11.6.1. If κ ≥ m+ 1 and g ∈ Um(A) is such that gf = diag(u, tū−1), then

hK∑
j=1

τ̄mp ξ̄p(qj)τ̄
mξ̄(aj)

∫
Γ′D,j\U1(R)

H̃
(m)
D,β (z, α(

(
1m

q−1
j 1m

)
∞
g
(
aj1m

ā−1
j 1m

)
,
(

1
q−1
j

)
∞
g′)))

× τ̄(det g′)ϕ0(
(

1
q−1
j

)
∞
g′)dg′

=

{
c

(1)
D (z)ϕβ(g) m = 1

c
(2)
D (z)µD(β, z, g) m = 2,

(11.6.3.a)

where c
(m)
D is as in Proposition 11.6.1.

11.7. The classical picture III. Let D = (f, ψ, ξ,Σ) be a classical datum as in 9.4 and
let D = (Σ, ϕ, ψ0, τ0) be the associated Eisenstein datum (also as in 9.4). So in particular
f is an eigenform in Sκ(N,χ) with N = Mpr, p -M and r > 0, and the central character
of π (the representation generated by ϕ) is χπ = χ1χ̄

2
0 = χ̄χ2

p, χ being the adele class
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character associated with χ and χ0 being as in 9.4. We continue with the notation used
in the preceding section, assuming in addition that

(11.7.0.b) xp = ptp with tp > 0 and xp ∈ cond(ψ0), xpx̄p ∈ condπp(φp).

Let
prp := xpx̄p,

so rp > 0 is an integer. Choose MD as in the preceding section and let

ΓD := Γ0(prpM) and Γ′D := Γ0(prpM2
D).

Let zκ := (κ−m− 1)/2. Let β ∈ Sm(Q). For w ∈ H1 and x ∈ Gm+1(Af ) let

h
(m)
D,β(w;x) := Jm+1(g, i)κµm+1(g)−mκ/2H

(m)
D,β (zκ, gx),

g ∈ Gm+1(R), g(i) = ( i
w ) .

Then

(11.7.0.c) h
(m)
D,β(w;x) = e(Trβi)

∑
n∈Q

 ∑
β′∈Sm+1(β,n)

A
(m)
D,β′(x)

 e(nw),

Sm+1(β, n) := {β′ =
(
β a
tā n

)
∈ Sm+1(Q) : a ∈ K},

where A
(m)
D,β′(x) is the β′-Fourier coefficient of H

(m)
D (Z;x) as in 11.5. From (11.5.0.e) it

follows that for x ∈ α(Um(Af ), 1),

h
(m)
D,β(w;x) ∈Mκ(ηΓDη

−1).

Suppose x ∈ α(Um(Af ), 1). Let

h̃
(m)
D,β(w;x) : = Jm+1(g, i)κµm+1(g)−mκ/2H̃

(m)
D,β (zκ, gx), g ∈ Gm+1(R), g(i) = ( i

w )

=
∑

a∈(Ô/xpMD)×

χ0ξ
c
0τ0(a)h

(m)
D,β(w;xα(1,diag(a−1, ā))).

This belongs to Mκ(prpM2
D, χ), and so for x ∈ Um(Af )

g̃
(m)
D,β,j(w;x) := e(−Tr iβ/qj)h̃

(m)
D,β/qj (w;α(x

(
aj1m

ā−1
j 1m

)
, 1)) ∈Mκ(prpM2

D, χ).

Let

g̃
(m)
D,β(w;x) :=

hK∑
j=1

qmκj ψ̄mp ξ
m−1
p (qj)χ0ψ̄

mξm−1(aj)g̃
(m)
D,β,j(w;x) ∈Mκ(prpM2

D, χ)

and

g
(m)
D,β(w;x) :=

∑
amod M1MD

g̃
(m)
D,β(

w + a

M1MD
;x) ∈Mκ(prpM,χ), M1 := MD/M.

Let fD(w, x) be as in 9.4. Note that fD(w, 1) = fD(w). Let aD(β, x) be the β-Fourier
coefficient of fD(w, x). Recall that cD(β, x) denotes the β-Fourier coefficient of ED(Z, x).
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Proposition 11.7.1. Assume (11.7.0.b) holds and let x = diag(u, tū−1), u ∈ GLm(AK,f ).

Suppose u ∈ A×f if m = 1. Suppose also κ ≥ 2 if m = 1 and κ > 6 if m = 2. Let

β ∈ Sm(Q).

(i) There exists a constant C
(m)
D depending only on D and m such that

(11.7.1.a) < g
(m)
D,β(−;x), f c|κ

(
−1

prpM

)
>ΓD

= C
(m)
D

{
aD(β, x) m = 1

cD(β, x) m = 2.

(ii) If a(p, f) 6= 0 and if p|fχ and p|fχ−1ξ then

C
(1)
D = −π22−κi−κχ̄pξ

c
p(MD)M2κ

D (Mprp)−κ/2prp+np(κ−2)

×
Γ(κ− 1)LΣ

K(f, χ−1ξ, κ− 1)

Γ(κ)
∏1
j=0 L

Σ(χ−1ξ′χjK, κ− j)

× ψ̄p(−1)c2(τ̄ ′0,p, 1− κ/2)g(τ ′0,p)
2

× a(p, f)rp−npχpξ̄
c
p(yp)g(ξcp, xp)g(χ̄pξ

c
p, yp),

(11.7.1.b)

where (yp) := cond(χ̄pξ
c
p) and (pnp) := (ypȳp).

(iii) If Op 6= cond(ξpψ
−2
p ψcp) ⊇ cond(χ̄pξpξ

c
p) then C

(2)
D = C

(1)
D .

Proof. From the definition of ϕ and ϕ0 it follows that for g ∈ SL2(R),

ϕ0(
(

1
q−1
j

)
∞
g) = aD,1q

κ/2
j M−κD p−rpκ/2J1(g, i)−κf(qjM

−2
D p−rpz)

= aD,1J1(g, i)−κ(f |κ
(
qj
M2
Dp

rp

)
)(z),

z = g(i), aD,1 := (−1)κψp(x̄
−1
p MD)prpκ/2.

Let zκ := (κ−m− 1)/2. If g ∈ Um(Af ) and g′ ∈ SL2(R) then

H̃
(m)
D,β (zκ, α(

(
1m

q−1
j 1m

)
∞
g
(
aj1m

ā−1
j 1m

)
,
(

1
q−1
j

)
∞
g′)

= q
(m−1)κ/2
j J1(g′′, i)−κe(Trβi)g̃

(m)
D,β,j(

1

qjw̄
; g)

= q
mκ/2
j i−κj(g′, i)

−κ
e(Trβi)(g̃

(m)
D,β,j(−; g)|κ

( −1
qj

)
)(−w̄),

g′′ =
(
dg′ cg′
bg′ ag′

)
, w = g′(i).

Since g will remain fixed in what follows we suppress it in our notation, writing g̃
(m)
D,β,j(w)

for g̃
(m)
D,β,j(w; g), etc.
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As j(g′, i)j(g′, i) = Im(w)−1, it follows that for g = diag(u, tū−1), u ∈ GL2(AK,f ), the
integral in (11.6.3.a) at z = zκ equals

e(Trβi)aD,2q
mκ/2
j

∫
Γ′D,j\h

(g̃
(m)
D,β,j |κ

( −1
qj

)
)(−w̄)(f |κ

(
qj
M2
Dp

rp

)
)(w)Im(w)κdvol(w),

aD,2 := i−κaD,1,

dvol(w) being the standard invariant volume form on h. Upon making the substitution
u = −w̄ this becomes

−e(Trβi)aD,2q
mκ/2
j < g̃

(m)
D,β,j |κ

( −1
qj

)
, f c|κ

(
qj
M2
Dp

rp

)
>Γ′D,j

,

which in turn equals

−e(Trβi)aD,2q
mκ/2
j < g̃

(m)
D,β,j , f

c|κ
(

−1
prpM2

D

)
>Γ′D

.

It then follows that the left-hand side of (11.6.3.a) equals

−e(Trβi)aD,2 < g̃
(m)
D,β , f

c|κ
(

−1
prpM2

D

)
>Γ′D

,

which equals

−e(Trβi)aD,2M
−κ
D Mκ/2 < g

(m)
D,β , f

c|κ
(

−1
prpM

)
>ΓD

.

Since cD(β, g) = e(Trβi)µD(β, zκ, g), it then follows from (11.6.3.a) that (11.7.1.a) holds
with

C
(m)
D := −c(m)

D (zκ)Mκ
DM

−κ/2/aD,2,

with c
(m)
D (z) as in Proposition 11.6.1, proving part (i). In particular,

C
(m)
D = −π22−κi−κξcp(xp/MD)χ̄p(M

2
D)M2κ

D (Mprp)−κ/2p(m+1)rp

×
Γ(κ− 1)LΣ

K(f, χ−1ξ, κ− 1)

Γ(κ)
∏1
j=0 L

Σ(χ−1ξ′χjK, κ− j)
γ(m)(ρp,−zκ),

(11.7.1.c)

where ρp is the representation associated with (π̃p, ψ̄0,p, τ̄
c
0,pψ

c
0,pψ̄0,p) and γ(m)(ρp, z) is

as in Proposition 11.4.13.

If a(p, f) 6= 0 then πp'π(µ1, µ2) with µ1|Z×p = 1, µ2|Z×p = χp|Z×p , and p(κ−1)/2µ1χ0,p(p) =

a(p, f). It then follows from Proposition 11.4.13(i) that under the hypotheses of part (ii)

(11.7.1.d) γ(1)(ρp, 1− κ/2) = ψ0,p(−1)c2(τ̄ ′0,p, 1− κ/2)g(τ ′0,p)
2

2∏
j=1

ε(µj ξ̄0,p,−zκ).

Since for any character λ of K×p

ε(λ, s) =

∫
c−1O×p

λ−1(a)|a|−sK ep(Tr a)da = |c|sKλ(c)g(λ−1, c), (c) := cond(λ),
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we have

ε(µ1ξ̄0,p,−zκ) = prp(κ−3)/2µ1ξ̄
c
0,p(xp)g(µ−1

1 ξc0,p, xp)

= prp(κ−3)/2(µ1χ0,p(p))
rp ξ̄p(xp)g(µ−1

1 ξc0,p, xp)

= p−rpa(p, f)rp ξ̄cp(xp)g(ξcp, xp).

(11.7.1.e)

Similarly, if y = pvp ∈ Op is such that (y) = cond(χpξ̄
c
p) = cond(µ2ξ̄

c
0,p) and pnp = yȳ

then

(11.7.1.f) ε(µ2ξ̄0,p,−zκ) = pnp(κ−2)a(p, f)−npχpξ̄
c
p(yp)g(χ̄pξ

c
p, yp).

Combining (11.7.1.c), (11.7.1.d), (11.7.1.e), and (11.7.1.f) yields the equality in part (ii)
of the proposition. Part (iii) follows from (11.7.1.c) and part (iii) of Proposition 11.4.13.

For n ∈ Q≥0 let b̃
(m)
D,β(n, x) be the n-Fourier coefficient of g̃

(m)
D,β(w;x) and b

(m)
D,β(n, x) the

n-Fourier coefficient of g
(m)
D,β(w;x). Then

(11.7.1.g) b
(m)
D,β(n, x) =

{
MDM1b̃

(m)
D,β(MDM1n, x) n ∈ Z

0 otherwise.

Proposition 11.7.2. Suppose y = diag(u, tū−1) , u ∈ GLm(AΣ
K,f ). For i = 1, ..., hK let

vi := diag(uāi, 1). For β ∈ Sm(Q), β′ ≥ 0, and n ∈ Q≥0 let

L(m)
vi (β, n) := {T =

(
β/qi c
c̄ n

)
∈ L(m)

vi , T > 0}.

This is a finite set.

(i)

b̃
(m)
D,β(n, y) =

hK∑
j=1

qmκj ψ̄mp ξ
m−1
p (qj)χ0ψ̄

mξm−1(aj)

×
∑

T∈L(m)
vj

(β,n)

∑
a∈(Ô/(xpMD))×

χ0ξ
c
0τ0(a)A

(m)
D,T (yj,a),

where yj,a := diag(uaj , ā, ū
−1ā−1

j , a−1).

(ii) Let (x`) := cond(ξc`). Suppose xp = ptp with tp > 0. If T ∈ L
(m)
vi (β, n) then

AD,T (yi,a) = 0 unless T ∗p := Tm+1,1 ∈ O×p and T ∗` := Tm+1,1x`δK/MD ∈ O` for
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all ` ∈ Σ\{p} , in which case∑
a∈(Ô/xpMD)×

χ0ξ
c
0τ0(a)AD,T (yj,a)

=D
−m(m+1)/4
K

(−2)−m−1(2πi)(m+1)κ(2/π)m(m+1)/2∏m
i=0(κ− i− 1)!

∏m
i=0 L

Σ(κ− i, χ̄ξχjK)

× (detT |detT |p)κ−m−1τ̄0,p(detT )

× g(τ ′0,p)
m+1cm+1(τ̄ ′0,p,−zκ)

× ξ̄cp(T ∗p )g(ξcp, xp)

×M2
D

∏
`∈Σ,`6=p

|x`|K


ξ̄c`(T

∗
` )g(ξc` , x`δK) (x`) 6= O`, T ∗` ∈ O

×
`

0 (x`) 6= O`, T ∗` 6∈ O
×
`

1 (x`) = O`

× χ̄0ψξ̄(a
m
j detu)| detu|−κ/2K

∏
`6∈Σ

h`,qjtū`Tu`(χ̄`ξ
′
`(`)`

−κ).

Proof. By (11.7.0.c) we have

g̃
(m)
D,β,j(w; y) = e(−Trβi)

∑
a∈(Ô/xpMD)×

χ0ξ
c
0τ0(a)h

(m)
D,β/qj (w; yj,a)

=
∑

n∈Q≥0

∑
T∈Sm+1(β,n)

∑
a∈(Ô/xpMD)×

χ0ξ
c
0τ0(a)A

(m)
D,T (yj,a)e(nw)

=
∑

n∈Q≥0

∑
T∈L(m)

vj
(β,n)

∑
a∈(Ô/xpMD)×

χ0ξ
c
0τ0(a)A

(m)
D,T (yj,a)e(nw).

Part (i) then follows from the definition of g̃
(m)
D,β(w; y). Part (ii) follows from part (i) and

Lemma 11.5.3.

Some normalizations

We normalize the preceding results so that the resulting formulas are better suited for
p-adic interpolation.

Let (y`) := cond(χ̄`ξ
c
`) and let (`e`) := cond(τ̄ ′0,`) = cond(χ̄`ξ

′
`). Put

B
(m)
D :=

∏m
j=0(κ− j − 1)!

∏m
j=0 L

Σ(κ− j, χ̄ξ′εjK)
∏
`∈Σ\{p} χ`ξ̄

c
`(y`δK)g(χ̄`ξ

c
` , y`δK)|y`δK|2−κK

χ̄pξcp(MD)M2κ
D ψp(−1)cm+1(τ̄ ′0,p, (m+ 1− κ)/2)g(τ ′0,p)

m+1g(ξcp, xp)

× i(−1)m2m(m+2)(2πi)−(m+1)κ(π/2)m(m+1)/2

×

{∏
`∈Σ\{p} χ`ξ̄

′
`(`

e`)`e`(κ−2)g(χ`ξ̄
′
`)
−1 m = 2

1 m = 1
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and let

f
(m)
D,β,x(w) := B

(m)
D g

(m)
D,β(w;x).

Let ρ
(m)
D,β(n, x) be the n-Fourier coefficient of f

(m)
D,β,x(w). The following is an immediate

consequence of (11.7.1.g), Proposition 11.7.2, and the fact that τ0 = ψξ̄| · |κ/2K .

Lemma 11.7.3. Suppose y = diag(u, ū−1), u ∈ GLm(AΣ
K,f ). Let vi := diag(uai, 1).

Suppose xp = ptp with tp > 0. Then for n ∈ Z

ρ
(m)
D,β(n, y) = −i2m(m+1)−1D

−m(m+1)/4
K M−1

hK∑
i=1

qmκi ψ̄mp ξ
m−1
p (qi)χ0ψ̄

mξm−1(ai)

×
∑

T∈L(m)
vi

(β,MDM1n)

R
(m)
D,T

where RD,T = 0 unless T ∗p ∈ O×p and T ∗` ∈ O` for all ` ∈ Σ\{p} (T ∗` being as in
Proposition 11.7.2) in which case

R
(m)
D,T = (detT | detT |p)−m−1ξ̄cp(T

∗
p )
∏
` 6=p

ψ`ξ̄`(detT )

× ψp(−1)χpξ̄
c
p(MD)M4−2κ

D

×
∏

`∈Σ,` 6=p
|x`|K


ξ̄c`(T

∗
` )g(ξc` , x`δK) (x`) 6= O`, T ∗` ∈ O

×
`

0 (x`) 6= O`, T ∗` 6∈ O
×
`

1 (x`) = O`
×

∏
`∈Σ,` 6=p

χ`ξ̄
c
`(y`δK)|y`δK|2−κK g(χ̄`ξ

c
` , y`δK)

× χ̄0ψξ̄(a
m
j detu)|detu|−κ/2K

∏
` 6∈Σ

h`,qjtū`Tu`(χ̄`ξ
′
`(`)`

−κ)

×

{∏
`∈Σ\{p} χ`ξ̄

′
`(`

e`)`e`(κ−2)g(χ`ξ̄
′
`)
−1 m = 2

1 m = 1.

Let π(f) = ⊗πv(f) be the (unitary) automorphic representation generated by fA. Let
W ′(f) :=

∏
6̀=p ε(π`(f), 1/2) and W (f)p := ε(πp(f), 1/2). These are algebraic numbers

and W ′(f) satisfies |W ′(f)|p = 1.

We now assume that

(11.7.3.a) a(p, f) 6= 0

and set

(11.7.3.b) S(f) := a(p, f)−rpr(κ/2−1)W ′(f)−1.



180 CHRISTOPHER SKINNER AND ERIC URBAN

Assuming (11.7.0.b) let

L
(m)
D :=

2−3(2i)κ+1

a(p, f)rpprp(1−κ/2)
B

(m)
D C

(m)
D Mκ/2

with C
(m)
D as defined in Proposition 11.7.1.

Proposition 11.7.4. Suppose κ ≥ 2 if m = 1 and κ > 6 if m = 2. Assume (11.7.3.a)
holds. Suppose x = diag(u, tū−1) with u ∈ GLm(AK,f ). Suppose p|fχ̄ξ and pr|Nm(fξ).
Suppose also cond(ψp)|fcξOp.

(i)

< f
(m)
D,β,x, f

c|κ
(

−1
prpM

)
>ΓD

< f, f c|κ
(

−1
prpM

)
>ΓD

=
L

(m)
D

2−3(2i)κ+1S(f) < f, f c|κ
( −1
N

)
>Γ0(N)

×M−κ/2W ′(f)−1

{
aD(T, x) m = 1

cD(T, x) m = 2.

(ii)

L
(1)
D = a(p, f)−ordp(Nm(fχ̄ξ))

(
(k − 2)!

(−2πi)κ−1

)2

g(χ̄ξ)Nm(fχ̄ξd)κ−2LΣ
K(f, χ̄ξ, κ− 1).

In particular, if ξ = θ ◦Nm for some Dirichlet character θ then

L
(1)
D =

1∏
j=0

a(p, f)−ordp(cond(χ̄θχjK))
(k − 1)!fκ−1

χ̄θχjK
LΣ(f, χ̄θχjK, κ− 1)

(−2πi)κ−1G(χ̄θχjK)
.

(iii) Under the hypotheses of Proposition 11.4.18

L
(2)
D = prpL

(1)
D × L(3− κ, χξ̄′)

∏
`∈Σ

(1− χ̄ξ′(`)`2−κ).

Proof. Our hypotheses on the conductors ensures that (11.7.0.b) holds. To deduce part
(i) we first observe that since a(p, f) 6= 0,

< f, f c|κ
(

−1
prpM

)
>ΓD

= a(p, f)rp−rp(r−rp)(κ/2−1) < f, f c|κ
( −1
N

)
>Γ0(N)

= W ′(f)a(p, f)rpp−rp(κ/2−1)S(f) < f, f c|κ
( −1
N

)
>Γ0(N) .

We next note that it follows from Proposition 11.7.1 that

< f
(m)
D,β,x, f

c|κ
(

−1
prpM

)
>ΓD

= B
(m)
D C

(m)
D ×

{
aD(T, x) m = 1

cD(T, x) m = 2.

Combining these two equalities with the definition of L
(m)
D yields part (i) of the propo-

sition.
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Part (ii) is a straightforward calculation. For part (iii) we note that under the hypothe-

ses of Proposition 11.4.18, C
(2)
D = prpC

(1)
D , so

L
(2)
D /L

(1)
D = prpB

(2)
D /B

(1)
D

= prp
(κ− 3)!LΣ(κ− 2, χ̄ξ′)c2(τ̄ ′0,p, (κ− 2)/2)

∏
`6=p `

e`(κ−2)

2κ−3iκ−2πκ−2c3(τ̄ ′0,p, (κ− 3)/2)g(χpξ̄′p)
∏
`6=p χ̄`ξ

′
`(`

e`)g(χ`ξ̄
′
`)

= prp
(κ− 3)!LΣ(κ− 2, χ̄ξ′)fκ−2

χ̄ξ′

2κ−3iκπκ−2iκ−2χ(−1)G(χ̄ξ′)

= prpL(3− κ, χξ̄′)
∏
`∈Σ

(1− χ̄ξ′(`)`2−κ),

the second displayed line following from the first by the definition of the B
(m)
D ’s, the

third from the second by the definition of the cm+1’s and properties of Gauss sums, and
the fourth following from the third by the functional equation for L(s, χ̄ξ′).

Recall that in 9.4 we put f ′D(z) := Mκ/2W ′(f)−1fD(Mz), so

a(n, f ′D) = Mκ/2W ′(f)−1aD(n/M, 1).

Since a(1, f ′D) = 1, the following is an immediate consequence of the preceding proposi-
tion.

Corollary 11.7.5. Under the hypotheses of Proposition 11.7.2

< f
(1)
D,1/M,1, f

c|κ
(

−1
prpM

)
>ΓD

< f, f c|κ
(

−1
prpM

)
>ΓD

=
L

(1)
D

2−3(2i)κ+1S(f) < f, f c|κ
( −1
N

)
>Γ0(N)

.

For any x ∈ G(Af ) let

(11.7.5.a) GD(Z, x) := Mκ/2W ′(f)−1L
(2)
D |µ(x)|−κQ ED(Z, x)

and let CD(β, x) denote the β-Fourier coefficient of GD(Z, x).

Corollary 11.7.6. Under the hypotheses of Proposition 11.7.2

< f
(2)
D,β,x, f

c|κ
(

−1
prpM

)
>ΓD

< f, f c|κ
(

−1
prpM

)
>ΓD

=
CD(β, x)

2−3(2i)κ+1S(f) < f, f c|κ
( −1
N

)
>Γ0(N)

.

11.8. A formula for CD(β, x). The aim of this section is to express certain Fourier
coefficients of GD(Z, x) as essentially Rankin-Selberg convolutions of f and sums of
theta functions. This is used in §13 below to prove various p-adic properties of these
coefficients.
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11.8.1. The formula. Let D = (f, ψ, ξ,Σ) be a classical datum and let D = (ϕ,ψ0, τ0,Σ)
be its associated Eisenstein datum. We assume

(11.8.1.a) πp, φp, ψ0,p, and τ0,p are as in the Generic Case of 9.2.5

(π = π(fA)⊗ χ−1
0 = ⊗πv, ϕ = ⊗φv). Let λ be an idele class character of A×K such that

• λ|A× = 1;

• λ∞(x) = (x/|x|)−2;

• λ` is unramified if ` 6∈ Σ\{p}.
(11.8.1.b)

Let a1, ..., ahK ∈ A×K be representatives of the class group of K as in the previous
sections; so ai = (qi, 1) for some rational prime qi 6∈ Σ. Let Q = {q1, ..., qhK}.

Let β ∈ S2(Q), β > 0, and u ∈ GL2(AK,f ) be such that

• u` ∈ GL2(O`) for ` 6∈ Q;

• tūβu ∈ S2(Z`)
∗ for all primes `;

• tūβu is `-primitive for all ` 6∈ Σ\{p};
• if u−1β−1tū−1 = ( ∗ ∗∗ d ) then d` ∈ Z×` for all ` ∈ Σ\{p}.

(11.8.1.c)

Let MD be as in 11.5 and also satisfying

(11.8.1.d) cond(λ)|MD and DK det tūβu|MD.

In what follows we drop the superscript ‘(2)’ from our previous notation. Additionally,
all Weil representations that show up are defined using the splitting determined by the
character λ (see 10.1). For the definitions of the Schwartz functions and Siegel sections
that appear below the reader should consult 10.2.3 and 11.4.

Let h ∈ S2(Q), h > 0, and let y ∈ GL2(AK,f ) be such that h, yp ∈ GL2(Op), tȳhy ∈
S2(Z`)

∗ for all `, tȳhy is `-primitive for all ` 6∈ Σ, and y−1h−1tȳ−1 = ( ∗ ∗∗ d ) with d` ∈ Z×`
for all ` ∈ Σ\{p}. Assume that DK det tȳhy|MD. Let r ∈ Uh(Af ). Then by Lemma
11.3.2, for g ∈ U1(A) and g′ = diag(ry, tr̄−1tȳ−1) we have for Re(z) > 3/2

HD,h(z, α(g′, g)) =
∑

γ∈B1(Q)\G1(Q),γ∈U1(Q)

∑
x∈V

Fh(z;x, γg, ry)

where

Fh(z;x, g, ry) :=
∏
v

Fh,v(z;x, gv, rvyv), Fh,v(z;x, gv, rvyv) := FJh(fD,v, z;x, gv, rvyv),

with FJh as in (11.3.2.c).

Let zκ := (κ− 3)/2. By Lemma 11.4.3

Fh,∞(zκ;x, g∞, 1) =
(2πi)2κ(2/π)

4(κ− 1)!(κ− 2)!
dethκ−2e(iTrh)fκ−2,1(zκ, g

′
∞)ωh(r∞, g

′
∞)Φh,∞(x),
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with fκ,1 ∈ I1(τ0,∞/λ∞) and g′∞ =
(

1
−1

)
g∞ ( 1

1 ). By Lemma 11.4.7 if ` 6∈ Σ and
y` ∈ GL2(O`) then

Fh,`(z;x, g`, r`y`) =
τ0,`(r`)|det r`r̄`|

−z+1/2
`∏1

j=0 L(2z + 3− j, τ̄ ′0,`χ
j
K,`)

f sph1 (z, g`)ωh(r`, g`)Φ0,y`(x),

with f sph1 ∈ I1(τ0,`/λ`). By Lemma 11.4.15 if ` ∈ Σ\{p} then

∑
a∈(O`/MD)×

χ0ξ
c
0τ0(a)Fh,`(z;x, g`

(
a−1

ā

)
, r`y`)

=
∑

a∈(O`/MD)×

χξ̄τ̄ c0(a)Fh,`(z;x, g`
(
a−1

ā

)
, r`y`)

= τ0(det r`y`)|det r`y`|
−z+1/2
K D

−1/2
`

∑
b∈Z`/D`

fb(z, g`η)ωh(r`, g`
(

1
b 1

)
)Φχ`ξ̄`,MD,y`

(x)

with fb ∈ I1(τ0,`/λ`) as in the lemma. Similarly, by Lemma 11.4.22

∑
a∈(Op/x̄p)×

χ0ξ
c
0τ0(a)Fh,p(−z;x, gp

(
a−1

ā

)
, rpy)

=
∑

a∈(Op/x̄p)×

ξcτ(a)Fh,p(−z;x, gp
(
a−1

ā

)
, rpy)

= ψp(−1)τ̄ ′0,p(deth)| deth|2z+1
p g(τ ′0,p)τ̄

′
0,p(p

2up)p−4upz−5upτ0(det rpyp)| det rp|−z+1/2
K

× f̃up,1(z, gpη)ωh(rp, gp)Φξc,xp,yp(x),

with (pup) := cond(τ ′0,p) and f̃up,1 ∈ I1(τ0,p/λp) as in (11.4.19). Finally, if ` 6∈ Σ but

y` 6∈ GL2(O`), then by part (ii) of Lemma 11.4.7 if g` = ( 1
n 1 ), n ∈ Q`,

Fh,`(z;x, g`, r`y`) =
τ0(det r`y`)|det r`y`|

−z+1/2
K∏1

j=0 L(2z + 3− j, τ̄ ′0,`χ
j
K,`)

fsph1 (g`)ωβ(r`, g`)Φ0,y`(x).
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Let w ∈ h and let γ∞ ∈ SL2(R) such that γ∞(i) = w. Taking h = β/qj , y = uaj , and
g = ( 1

1 ) γ∞ ( 1
1 ) in the above we find that for x = diag(ru, tr̄−1tū−1)

H̃D,β/qj (zκ, α(
(
aj12

ā−1
j 12

)
x, g))

=
∑

a∈(Ô/xpMD)×

χ0ξ
c
0τ0(a)HD,β/qjα(

(
aj12

ā−1
j 12

)
x, g

(
a−1

ā

)
))

=
∑

γ∈B1(Q)\G1(Q)

∑
v∈V

∑
a∈(Ô/xpMD)×

χ0ξ
c
0τ0(a)Fβ/qj (zκ; v, γg

(
a−1

ā

)
, ry)

=
∑

γ=η−1 or γ=η( 1 n
1 )η−1,n∈Q

∑
v∈V

∑
a∈(Ô/xpMD)×

χ0ξ
c
0τ0(a)Fβ/qj (zκ; v, γg

(
a−1

ā

)
, ry)

= e(iTrβ/qj)τ
2
0,p(qj)τ

2
0 (aj)q

−κ
j CD(β, r, u)

∑
b∈Z/DK

∑
n∈Q

f̃D,b(zκ, η ( 1 n
1 ) γ∞)

×
∑
v∈V

ωr,β/qj (η ( 1 n
1 ) γ∞

(
1 −b

1

)
f
)ΦD,β/qj ,y(v),

where

CD(β, r, u) :=
(2πi)2κ(2/π)D

−1/2
K χξ̄(det ru)| det ru|2K detβκ−2

4
∏1
j=0(κ− 1− j)!LΣ(κ− j, χ̄ξ′χjK)

× ψp(−1)χ̄pξ
′
p(detβ)| detβ|κ−2

p g(χpξ̄
′
p)

2χ̄pξ
′
p(p

2up)pup ,

f̃D,b is the Siegel section

f̃D,b := fκ−2,1f̃up,1
∏

`∈Σ\{p}

fb,`
∏
`6∈Σ

fsph` ∈ I1(τ0/λ)

with fb,` the local Siegel section at ` previously denoted by fb, and ΦD,h,y is the Schwartz
function

ΦD,h,y := Φh,∞Φh,ξcp,xp,yp

∏
`6∈Σ\{p}

Φh,χ`ξ̄`,MD,y`

∏
` 6∈Σ

Φ0,y` ∈ S(V ⊗A).

Letting ED,b(g) := E(f̃D,b, zκ; g) and ΘD,h,y(r, g) := Θh(r, g; ΦD,h,y) we have

H̃D,β/qj (zκ, α(
(
aj12

ā−1
j 12

)
x, g))

= e(iTrβ/qj)τ
2
0,p(qj)τ

2
0 (aj)q

−κ
j CD(β, r, u)

∑
b∈Z/DK

ED,b(γ∞)ΘD,β/qj ,uaj (r,
(

1 b
1

)
γ∞).

Setting ED,b(w) := j(γ∞, i)
κ−2ED,b(γ∞) and ΘD,h,y(r, w) := j(γ∞, i)

2ΘD,h,y(r, γ∞) we
then have

h̃D,β/qj (w;α(
(
aj12

ā−1
j 12

)
x, 1))

= e(iTrβ/qj)τ
2
0,p(qj)τ

2
0 (aj)q

−κ
j CD(β, r, u)

∑
b∈Z/DK

ED,b(w)ΘD,β/qj ,uaj (r, w + b),
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and so

(11.8.1.e) g̃D,β(w;x) = CD(β, r, u)

hK∑
j=1

ξ̄p(qj)ξ̄(aj)
∑

b∈Z/DK

ED,b(w)ΘD,β/qj ,uaj (r, w + b).

Let
FD(k) := fκ−2,1(k∞)f̃up,1(kp)

∏
`∈Σ\{p}

f †` (k`)
∏
`6∈Σ

fsph` (k`) ∈ I1(τ0/λ)

and ED(g) := E(FD, zκ; g). Put ED(w) := j(γ, i)κ−2ED(γ∞). It is easy to see that

ED,b(g) = δ2−κ
K ED(g

(
1 −b

1

)
f

(
δK

δ̄−1
K

)
f
),

and hence that

ED,b(w) = D2−κ
K ED(

w + b

DK
).

Putting

ΘD,β(r, w;u) :=

hK∑
j=1

ξ̄p(qj)ξ̄(aj)ΘD,β/qj ,uaj (r,DKw)

it then follows from (11.8.1.e) that

(11.8.1.f) g̃D,β(w;x) = CD(β, r, u)D2−κ
K

∑
b∈Z/DK

ED(
w + b

DK
)ΘD,β(r,

w + b

DK
;u),

and hence

< gD,β(−, x), f c|κ
(

−1
prpM

)
>ΓD

= (MDM1)κ/2 < g̃D,β(−, x), f c|κ
(

−1
prpM2

D

)
>Γ0(prpM2

D)

= CD(β, r, u)D
2−κ/2
K (MDM1)κ/2

× < ED(−)ΘD,β(r,−;u), f c|κ
(

−1
prpM2

DDK

)
>Γ0(prpM2

DDK) .

(11.8.1.g)

Some more normalizations

Let

BD,1 :=
(κ− 3)!LΣ(κ− 2, χ̄ξ′)

−2(2πi)κ−2g(χpξ̄′p)χ̄pξ
′
p(p

up)p2up
,

BD,2 :=
23i−2D

3/2−κ/2
K (MDM1)κ/2

∏
`∈Σ\{p} χ`ξ̄

c
`(y`δK)g(χ̄`ξ

c
` , y`δK)|y`δK|2−κK

χ̄pξcp(MD)M2κ
D g(ξcp, xp)

,

and

BD(β, r, u) :=
ψξ̄(det ru)|det ru|2Kχ̄pξ′p(detβ)|detβ|κp detβκ−2∏

`∈Σ\{p} χ̄`ξ
′
`(`

e`)`e`(2−κ)g(χ`ξ̄
′
`)

.

Then
B

(2)
D CD(β, r, u)D

2−κ/2
K (MDM1)κ/2 = BD(β, r, u)BD,1BD,2.
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Putting

ED(w) := BD,1ED(w) and ΘD,β(r, w;u) := BD,2ΘD,β(r, w;u),

we then have

< fD,β,x(−),f c|κ
(

−1
prpM

)
>ΓD

= B
(2)
D < gD,β(−;x), f c|κ

(
−1

prpM

)
>ΓD

= BD(β, r, u) < ED(−)ΘD,β(r,−;u), f c|κ
(

−1
prpM2

DDK

)
>Γ0(prpM2

DDK) .

Combining this with Corollary 11.7.6 yields the following.

Proposition 11.8.2. Let D = (f, ψ, ξ,Σ) be a classical datum such that (11.8.1.a) holds.
Let β ∈ S2(Q), β > 0, and u ∈ GL2(AK,f ) be such that (11.8.1.c) and (11.8.1.d) hold.
Let h ∈ Uβ(Af ). Then for x := diag(hu, th̄−1tū−1)

CD(β, x)

2−3(2i)κ+1S(f) < f, f c|κ
( −1
N

)
>Γ0(N)

= BD(β, h, u)
< ED(−)ΘD,β(h,−;u), f c|κ

(
−1

prpM2
DDK

)
>Γ0(prpM2

DDK)

< f, f c|κ
(

−1
prpM

)
>ΓD

.

11.9. Identifying ED and ΘD,β(h,−;u). Keeping to the conventions, assumptions, and
notation of the preceding section, we identify ED(w) and ΘD,β(h,w;u) as essentially
familiar and much-studied modular forms and highlight some of their properties (for the
theta functions we only do this for special β’s).

11.9.1. Identifying ED. Let D = (f, ψ, ξ,Σ) be as in 11.8.1 (so in particular, ψ0 and τ0

are as in the Generic Case of 9.2.5). We first note that

ED(w) =

∞∑
n=1

a(n)e(nw),

a(n) = χ̄pξ
′
p(n)

∑
d|n1

(`,d)=1 ∀`∈Σ

χ̄ξ′(d)(n1/d)κ−3, n = pmn1, p - n1.
(11.9.1.a)

Here χ̄ξ′ is being viewed as a Dirichlet character modulo pupMD. This formula for
the Fourier coefficients of ED(w) follows from the computations of the local Fourier
coefficients of ED(g) = E(FD, zκ; g) in 11.4.

Let a ∈ GL2(Af ) be defined by a` =
(

−1
M2
DDK

)
if ` ∈ Σ\{p} and a` = 1 otherwise.

For m ≥ 0 let bm ∈ GL2(Af ) be defined by bm,p =
( −1
pm

)
and bm,` = 1 if ` 6= p. Let
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α ∈ GL+
2 (Q) ∩ U ′(prpM2

DDK)a and ρm ∈ GL2(Q)+ ∩ U ′(prpM2
DDK)bm. We have

ED|κ−2α(w) = BD,1j(α,w)2−κ det(α)κ/2−1ED(α(w))

= BD,1j(γ∞, i)
κ−2ED(αγ∞)

= BD,1j(γ∞, i)
κ−2E(F ′D, zκ; γ∞),

where F ′D(z, g) := FD(z, gα−1
f ) ∈ I1(τ0/λ). It follows that F ′D(z, g) is supported on

B1(A)ηK+
1,∞NB1(Ẑ)αf = B1(A)K+

1,∞K1(pupM2
DDK) and that for g = bk∞kf in the

support we have

F ′D(z, g) = (M2
DDK)κ/2−1τ0λ̄(dbdkf )|ab/db|

z+1/2
A J1(k∞, i)

2−κ.

If g ∈ SL2(R)K1(pupM2
DDK) then F ′D(zκ, g) = (M2

DDK)κ/2−1τ0λ̄(dgf )J1(g∞, i)
2−κ, and

so

ED|κ−2α(w) = BD,1(M2
DDK)κ/2−1j(γ∞, i)

κ−2
∑

γ∈Γ∞\Γ0(pupM2
DDK)

χξ̄′(dγ)j(γγ∞, i)
2−κ

= BD,1(M2
DDK)κ/2−1

∑
γ∈Γ∞\Γ0(pupM2

DDK)

χξ̄′(dγ)j(γ,w)2−κ,

(11.9.1.b)

where Γ∞ := NB′(Z). Put
E ′D := ED|κ−2α.

We also have

f c|κ
(

−1
prpM2

DDK

)
α(w) = j(γ∞, i)

κf cA(γ∞α
−1
f

(
p−rpM−2

D D−1
K

−1

)
f
)

= j(γ∞)κf cA(γ∞ρ
−1
rp,f

)χp(−p−rp)(−1)κ

= (−1)κχp(−1)χp(p)
rpf c|κρrp(w),

(11.9.1.c)

∑
a∈Z/prp−up

f c|κρrp
(

1
apupM2

DDK 1

)
(w) =

∑
a∈Z/prp−up

f c|κ
(

1 −apup−rpM2
DDK

1

)
ρrp(w)

=
∑

a∈Z/prp−up
j(ρrp , i)

−κ det ρκ/2rp f
c(ρrp(w) + aM2

DDK/p
rp−up)

= (p1−κ/2χp(p)a(p, f))rp−upf c|κρup(w),

(11.9.1.d)

and

f c|κρup(w) = p(up−r)κ/2f c|κρr(pup−rw)

= c(f)p(up−r)κ/2f1(pup−rw),
(11.9.1.e)

where f1 is the newform associated with f c|κρr; since f c is new of level prM it follows
that f c|κρr = c(f)f1 for some non-zero constant c(f) (note that π(f1,A) = π(f cA) ⊗
χ/χ0 = π(fA)⊗χ−1

0 ). The constant c(f) can be expressed in terms of root numbers and
characters, but we will have no need of this.
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Let h ∈M2(pupM2
DDK, χ

−2
0 ξ′). Then by (11.9.1.b), (11.9.1.c), (11.9.1.d), and the usual

unfolding

< ED · h|2α−1, f c|κ
(

−1
prpM2

DDK

)
>Γ0(prpM2

DDK)

= (−1)κχp(−1)χp(p)
−rp < ED|κ−2α · h, f c|κρrp >Γ0(prpM2

DDK)

= (−1)κχp(−1)χp(p)
−up(p1−κ/2a(p, f))rp−up

× < E ′D · h, f c|κρup >Γ0(pupM2
DDK)

= (−1)κχp(−1)BD,1(M2
DDK)κ/2−1(4π)1−κ(κ− 2)!χp(p)

−up(p1−κ/2a(p, f))rp−up

×D(f c|κρup , h;κ− 1),

where

D(f c|κρup , h; s) =

∞∑
n=1

a(n, f c|κρup)a(n, h)n−s.

If h is a normalized eigenform (so a(1, h) = 1) then

D(f c|κρup , h;κ− 1) = c(f)p−(up−r)(κ/2−1)a(p, h)up−rLΣ(κ− 2, χ̄ξ′)−1L(f c1 × h, κ− 1),

where L(f c1 ×h, s) is the usual product L-function associated with two eigenforms. This
proves the following lemma.

Lemma 11.9.2. Suppose D satisfies (11.8.1.a). If h ∈ M2(pupM2
DDK, χ

−2
0 ξ′) is a nor-

malized eigenform (so a(1, h) = 1) then

< ED · h|2α−1, f c|κ
(

−1
prpM2

DDK

)
>Γ0(prpM2

DDK
= BD,3L(f c1 × h, κ− 1)

where

BD,3 :=
c(f)(−1)κχp(−p−up)BD,1(M2

DDK)κ/2−1(κ− 2)!p(rp−r)(1−κ/2)a(p, f)rp−upa(p, h)up−r

(4π)κ−1LΣ(κ− 2, χ̄ξ′)

and f1 is the newform such that π(f1,A) = π(fA)⊗χ−1
0 . In particular, if a(p, h) 6= 0 and

κ ≥ 3 then this Petersson-product is non-zero.

The non-vanishing of the Rankin-Selberg product when κ ≥ 3 is a simple consequence of
the Ramanujan bounds on the eigenvalues of the eigenforms f1 and h. The non-vanishing
of the remaining factors when κ ≥ 3 is clear from inspection.

Remark. Our subsequent use of this lemma will only invoke the non-vanishing. The
expression for the constant BD,3 can be rewritten in a form more clearly related to
the interpolating factors that appear in the various p-adic interpolation formulas for
Rankin-Selberg products, but we have no need of this.

11.9.3. Identifying sums of ΘD,β(h,w;u)’s. For simplicity we will assume

• χ`, ψ`, and ξ` are unramified if ` 6= p;

• ξ = ξ1ξ2 with each ξi unramified at all v - p, ξi,∞(z) = 1,

and ξ1|O×p = (ξp,1, 1) and ξ2|O×p = (1, ξp,2).

(11.9.3.a)
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Let γ0 ∈ GL2(AK,f ) be such that γ0,p = (1, η) and γ0,` = 1 if ` 6= p. For i ≤ i, j ≤ hK

we let βij :=

(
q−1
j

qiq
−1
j

)
and uij := γ0

(
aj

a−1
i aj

)
. Then β = βij and u = uij satisfy

(11.8.1.d).

Recall that

(11.9.3.b) ΦD,βij ,uij = Φβij ,∞Φβij ,ξcp,xp,γ0,p

∏
`∈Σ\{p}

Φβij ,1,MD,1

∏
`∈Q

Φ0,uij,`

∏
` 6∈Σ∪Q

Φ0.

Let x := t(x1, x2) ∈ V (so x1, x2 ∈ K). We observe that if g∞ ∈ SL2(R) is such that
g∞(i) = DKw then

ωβij (g∞)Φβij ,∞(x) = e(
Nm(x1)

qj
DKw)e(

Nm(x2)qi
qj

DKw)j(g∞, i)
−2.

By part (i) of Lemma 10.2.6 (with θ = ξc, θ1 = ξp,2, and θ2 = ξ1,p)

Φβij ,ξcp,xp,γ0,p(x) =


ξ̄p,2(q−1

j x′′1)g(ξp,2)ξ̄p,1(qiq
−1
j x′2)g(ξp,1) x1 = (x′1, x

′′
1) ∈ Zp × Z×p ,

x2 = (x′2, x
′′
2) ∈ Z×p × Zp

0 otherwise.

By Lemma 10.2.5, if ` ∈ Σ\{p} does not split in K then

Φβij ,1,MD,1(x) = D−1
` |M

2
D|−1
`


1− 1/q` x1 ∈ MD

δK
O`, x2 ∈ 1

δK
O`

−1/q` x1 ∈ MD
δK$`
O×` , x2 ∈ 1

δK
O`

0 otherwise,

where $` is a uniformizer at ` and q` is the order of the residue field O/$`O. Similarly,
if ` ∈ Σ\{p} and ` splits in K then

Φβij ,1,MD,1(x) = D−1
` |M

2
D|−1
`



(1− 1/`)2 x1 ∈MDO`, x2 ∈ O`
−1/`(1− 1/`) x2 ∈ O`, x1 ∈ MD

` Z×` × Z×`
−1/`(1− 1/`) x2 ∈ O`, x1 ∈ Z×` ×

MD
` Z×`

1/`2 x2 ∈ O`, x1 ∈ MD
` Z×` ×

MD
` Z×`

0 otherwise.

If ` 6∈ Σ but ` 6= qi, qj then

Φ0,uij,`(x) = Φ0(x) =

{
1 x1, x2 ∈ O`
0 otherwise,

and if ` = qi or qj then

Φ0,uij,`(x) =

{
1 x1 ∈ ajO`, x2 ∈ aja−1

i O`
0 otherwise.
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Let ΣK be the set of places of K dividing the primes in Σ\{p}. For v ∈ ΣK let $v be
a uniformizer of Ov and let qv := #(Ov/$vOv). For g ∈ U1(R) and x ∈ K let

Φj(g, x) =
∑
S⊆ΣK

Φj,S(g, x),

where

Φj,S(g, x) = j(g, i)−1e(
Nm(x)

qj
w)M2

DD
−1
K ξ̄p,2(x)g(ξp,2)

∏
v∈S

(−1/qv)

×
∏

v∈ΣK,v 6∈S
(1− 1/qv)×



1 x ∈ ajMD
δK
∏
v∈S $v

Ô
x ∈ Zp × Z×p
x ∈ δ−1

K $−1
v O×v , v ∈ S

x ∈ Ov, v ∈ ΣK/S
0 otherwise.

Let

Φij(g, x) = j(g, i)−1e(
Nm(x)qi

qj
w)ξ̄p,1(x)g(ξp,1)

{
1 x ∈ aj

aiδK
Ô, x ∈ Z×p × Zp

0 otherwise.

Putting everything together, we find that for x = t(x1, x2) ∈ V

ξp,1(qi)ξ1(ai)ξ̄p(qj)ξ̄(aj)ωβij (g∞)ΦD,βij ,uij (x) = ξ̄2(aj)Φj(g∞,MDx1)ξ̄1(aj/ai)Φij(g∞, x2).

Let

(11.9.3.c) βi :=
(

1
qi

)
and ui := γ0

(
1
a−1
i

)
.

Let ΘD,βi(w) := ΘD,βi(1, w;ui). Then it follows that

hK∑
i=1

ξp,1(qi)ξ1(ai)ΘD,βi(w)

=

hK∑
i=1

ξp,1(qi)ξ1(ai)

hK∑
j=1

ξ̄p(qj)ξ̄(aj)ΘD,βij ,uij (1, DKw)

=

hK∑
j=1

ξ̄2(aj)j(g∞, i)
∑
x1∈K

Φj(g∞, x1)

hK∑
i=1

ξ̄1(aj/ai)j(g∞, i)
∑
x2∈K

Φij(g∞, x2).

(11.9.3.d)
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We have

hK∑
i=1

ξ̄1(aj/ai)j(g∞, i)
∑
x∈K

Φij(g∞, x)

= g(ξp,1)

hK∑
i=1

∑
x∈K∩

aj
aiδK

Ô,x∈Z×p ×Zp

ξ̄p,1(x)e(
Nm(x)qi

qj
DKw)

= g(ξp,1)ξp,1(δK)

hK∑
i=1

ξ1(ai/aj)
∑

x∈K∩
aj
ai
Ô,x∈Z×p ×Zp

ξ̄p,1(x)e(
Nm(x)qi

qj
w)

= g(ξp,1)ξp,1(δK)gξ1(w),

where gξ1 is the usual newform associated with the idele class character ξ1. Then the
last line of (11.9.3.d) equals

(11.9.3.e) g(ξp,1)ξp,1(δK)gξ1(w)

hK∑
j=1

ξ̄2(aj)j(g∞, i)
∑
x∈K

Φj(g∞, x).

For S ⊆ ΣK let MS :=
∏
v∈S qv, QS := M−1

S
∏
v∈ΣK/S(1 − 1/qv) and $S := ($v)v ∈∏

v∈S Kv ⊂ AK. Let Xj,S := {x ∈ K ∩ aj
$S
Ô : x ∈ Zp × Z×p } and Yj,S := {x ∈ Xj,S :

x ∈ 1
$v
O×v , v ∈ S}. Then

hK∑
j=1

ξ̄2(aj)j(g∞, i)
∑
x∈K

Φj(g∞, x)

= g(ξp,2)M2
DD
−1
K

∑
S⊆ΣK

(−1)#SQS

hK∑
j=1

ξ̄2(aj)
∑

x∈MD
δK

Yj,S

ξ̄p,2(x)e(
Nm(x)

qj
DKw)

= g(ξp,2)ξp,2(δK/MD)M2
DD
−1
K

∑
S⊆ΣK

(−1)#SQS

hK∑
j=1

ξ̄2(aj)
∑
x∈Yj,S

ξ̄p,2(x)e(
Nm(x)

qj
M2
Dw),
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and
hK∑
j=1

ξ̄2(aj)
∑
x∈Yj,S

ξ̄p,2(x)e(
Nm(x)

qj
M2
Dw)

=

hK∑
j=1

ξ̄2(aj)
∑
S′⊆S

(−1)#S/S′
∑

x∈Xj,S′

ξ̄p,2(x)e(
Nm(x)

qj
M2
Dw)

=
∑
S′⊆S

(−1)#S/S′ξ2($S′)

hK∑
j=1

ξ̄2(aj$S′)
∑

x∈Xj,S′

ξ̄2(x)e(
M2
DNm(x)

qj
w)

=
∑
S′⊆S

(−1)#S/S′ξ2($S′)gξ2(
M2
D

MS′
w),

where gξ2 is the newform associated with the idele class character ξ2. It follows that

hK∑
j=1

ξ̄2(aj)j(g∞, i)
∑
x∈K

Φj(g∞, x)

= g(ξp,2)ξp,2(δK/MD)M2
DD
−1
K

∑
S⊆ΣK

(−1)#SQS
∑
S′⊆S

(−1)#S/S′ξ2($S′)gξ2(
M2
D

MS′
w).

Comparing this with (11.9.3.e) and (11.9.3.d) yields

hK∑
i=1

ξp,1(qi)ξ1(ai)ΘD,βi(w)

= g(ξp,1)g(ξp,2)ξp(δK)ξp,2(MD)M2
DD
−1
K

× gξ1(w)
∑
S⊆ΣK

QS
∑
S′⊆S

(−1)#S′ξ2($S′)gξ2(
M2
D

MS′
w).

Since ΘD,βi(1, w;ui) = BD,2ΘD,βi(w) we therefore have
(11.9.3.f)
hK∑
i=1

ξp,1(qi)ξ1(ai)ΘD,βi(1, w;ui) = BD,4

∑
S⊆ΣK

QS
∑
S′⊆S

(−1)#S′ξ1($S′)gξ1(w)gξ2(
M2
D

MS′
w),

where
BD,4 := 23i−1D

−1/2
K (DKMDM1)κ/2χp(MD)2M2−2κ

D ξp(δK).

As gξi ∈ S1(prp , χKξ
′
i), the following lemma is a consequence of (11.9.3.f).

Lemma 11.9.4. If h ∈ S2(prpM2
DDK, ξ

′) is new at all `|M2
DDK then

<

hK∑
i=1

ξp,1(qi)ξ1(ai)ΘD,βi(1,−;ui), h >Γ0(prpM2
DDK)

= BD,4 < gξ1(−)gξ2(M2
D(−)), h >Γ0(prpM2

DDK) .
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12. p-adic interpolations

In this section we combine the explicit formulas from 11.9 with general constructions
involving p-adic families of modular forms to construct the p-adic L-functions and the
p-adic Eisenstein series used in the proof of Theorem 3.6.1 and the other results in 3.6.

12.1. p-adic families of Eisenstein data. Recall (see 6.5) that a p-adic Eisenstein
datum is a 6-tuple D = (A, I, f , ψ, ξ,Σ) consisting of

• the ring of integers A of a finite extension of Qp;
• a domain I that is a finite integral extension of ΛW,A;
• an ordinary I-adic newform f of some tame level M with associated A-valued

Dirichlet character χf ;
• a finite order A-valued idele class character ψ of A×K/K× such that ψ|A× = χf ;

• a finite order A-valued idele class character ξ of A×K/K×;
• a finite set Σ of primes containing those that divide MpDK as well as those `

such that ψ` or ξ` is ramified.

Recall also that ΛD := I[[Γ−K × ΓK]] = IK[[Γ−K]]. Let X aD ⊂ XΛD,A comprise those φ such

that φ|IK ∈ X aIK,A (see 3.4.5) and φ|Γ−K is a finite character. Following our conventions

for X aIK,A, we let κφ be the weight of φ|I, which we also call the weight of φ, and let
tφ := tφ|I and χφ := χφ|I. We also write gφ for gφ|I for any I-adic form g. Note that our
conventions for φ and φ|IK are compatible.

In 6.5 we defined homomorphisms

α : A[[ΓK]]→ I[[Γ−K]], α(γ+) = (1 + p)(1 +W )1/2, α(γ−) = (1 + p)(1 +W )1/2γ−,

β : A[[ΓK]]→ I[[ΓK]], β(γ+) = (1 +W )−1γ+, β(γ−) = γ−.

These define a homomorphism

α⊗ β : A[[ΓK × ΓK]]→ I[[Γ−K]]⊗̂II[[ΓK]] = ΛD.

Let

ψ := α ◦ ω−1ψΨ−1
K and ξ := β ◦ χf ξΨK.

For φ ∈ X aD we define idele class characters of A×K by

ψφ(x) := x
−κφ
∞ x

κφ
v0 (φ ◦ψ)(x) and ξφ := φ ◦ ξ.

Then ξφ is a finite idele class character, and ψφ has infinity type z−κφ and satisfies

ψφ|A× = χfφ | · |
−κφ
Q .

For each φ ∈ X aD we let

Dφ := (fφ, ψφ, ξφ,Σ).

This is a classical datum in the sense of 9.4. In this way the elements of X aD correspond
to certain classical Eisenstein data.



194 CHRISTOPHER SKINNER AND ERIC URBAN

For reasons having to do with the hypotheses in force in the formulas in 11.7 and 11.9,
we distinguish three subsets X genD ⊆ X ′′D ⊆ X ′D ⊆ X aD. These are defined as

X ′D := {φ ∈ X aD : p|fχ̄fφ
ξφ , p

tφ |Nm(fξφ), fξcφOp ⊆ fψφOp},

X ′′D := {φ ∈ X ′D : κφ > 6}, and by defining X genD to comprise those φ ∈ X ′′D such that
tφ ≥ 2 and such that the Eisenstein datum associated with Dφ has p-constituents as in
the Generic Case of 9.2.5. It is readily checked that X genD , and hence X ′′D, X ′D, and X aD,

are Zariski-dense subsets of Spec ΛD(Qp).

For a p-adic datum D we choose MD as in 11.5 for any Eisenstein datum D associated
with some Dφ, φ ∈ X aD; we let MD := MD.

12.2. Key facts, lemmas, and interpolations. Here we collect the key ingredients
that make our interpolations possible.

12.2.1. Ordinary eigenforms and projectors. Let R ⊂ Qp be a finite extension of Zp
and let Sord

κ (Mpr, χ;R) and Mord
κ (Mpr, χ;R) the the submodules of ordinary forms in

Sκ(Mpr, χ;R) andMκ(Mpr, χ;R), respectively. Let Tord
κ (Mpr, χ;R) be theR-subalgebra

of EndR(Mord
κ (Mpr, χ;R)) generated by the Hecke operators T`, ` a prime. In what fol-

lows we always assume κ ≥ 2. Suppose f ∈ Sord
κ (Mpr, χ;R) is a p-stabilized eigenform;

either f is new or r = 1 and f is old at p but new at M . Let F be the field of fractions
of R. Then Tord

κ (Mpr, χ;R)⊗RF'T′×F where projection onto the second factor sends
a Hecke operator to the eigenvalue of its action on f . We let 1f ∈ Tord

κ (Mpr, χ;R)⊗R F
be the idempotent associated with the second factor. We let e denote Hida’s ordinary
projector (projecting modular forms onto the ordinary subspace). If g ∈Mκ(Mpt, χ;F ),
t ≥ r, then eg ∈Mord

κ (Mpr, χ;F ), so 1feg = cf for some c ∈ F ; in particular, Hida has
shown [Hi85, Prop. 4.5] that

(12.2.1.a) 1feg =
< g, f c|κ

(
−1

ptM

)
>Γ0(ptM)

< f, f cκ

(
−1

ptM

)
>Γ0(ptM)

f.

Let m = mf be the maximal ideal of Tord
κ (N,χ;R) associated with f . If R is integrally

closed or Tord
κ (N,χ;R)m is a Gorenstein R-algebra (a finite R-algebra T is a Goren-

stein R-algebra if HomR(T,R) is a free T -module of rank one) then the intersection
Tord(N,χ;R) ∩ (0× F ) in T′ × F is a free R-module of rank one. In this case we let `f
be an R-generator (this is well-defined only up to an element of R×). Then `f = ηf1f
for some ηf ∈ R, and if g ∈Mord

κ (Mpr, χ;R) then `fg = cf for some c ∈ R.

Lemma 12.2.2. Let R be a finite integral extension of Zp and f ∈Mord
κ (Mpr, χ;R) be

a p-stabilized newform. If ρ̄f satisfies (irred) and (dist) then Tord(Mpr, χ;R)mf is a
Gorenstein R-algebra and

ηf = uf
2−3(2i)κ+1S(f) < f, f c|κ

(
−1

prM

)
>Γ0(prM)

Ω+
f Ω−f

, uf ∈ R×,
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where S(f) is as in (11.7.3.b).

This is [Hi88c, Thm. 0.1] (combined with (4.6a,b) and (4.7) of loc. cit.

Let I be a domain that is a finite integral extension of ΛW,Zp[χ], χ a Dirichlet character

modulo some integer Mp with p - M . We define M(M,χ; I) and Mord(M,χ; I) to be
the I-modules of I-adic modular forms and ordinary I-adic modular forms, respectively.
Recall that the Hecke operators T` also act onMord(M,χ; I) in a manner that commutes
with specialization (this action can be defined through the usual actions on q-expansions).
Let Tord(M,χ; I) be the I-subalgebra of EndI(Mord(M,χ; I)) generated by the Hecke
operators T`.

Suppose f ∈Mord(M,χ; I) is an ordinary I-adic cuspidal newform. Then Tord(M,χ; I)⊗
FI ∼= T′ × FI, FI being the fraction field of I, where projection onto the second factor
gives the eigenvalues for the actions on f . Let 1f be the idempotent corresponding to
the second factor. Then for any g ∈Mord(M,χ; I)⊗I FI, 1fg = cf for some c ∈ FI.

An element c ∈ FI defines a rational function on XI = Spec I(Q̄p); we denote the
value of c at a φ where c is finite by φ(c) (the notation is consistent if c ∈ I). As
Hida has demonstrated (cf. [Hi88a]), for any g ∈ Mord(M,χ; I) the rational function
a(1, 1fg) ∈ FI (the first Fourier coefficient of 1fg) is finite at each φ ∈ X aI,Zp[χ] and

satisfies

φ(a(1, 1fg)) = a(1, 1fφgφ).

Let mf be the maximal ideal of Tord(M,χ; I) associated with f . If (irred)f and (dist)f
hold for f (equivalently, (irred) and (dist) hold for ρ̄fφ for one, and so all, φ ∈ XI,Zp[χ])
then Tord(M,χf ; I)mf

is a Gorenstein I-algebra (this follows from [Wi95, Cor. 2, p. 482])
and so Tord(M,χf ; I) ∩ (0 × FI) is a rank one I-module. We let `f be a generator; so
`f = ηf1f for some ηf ∈ I. Since the assumption on f implies the same properties of each
ρ̄fφ for any φ ∈ X aI,Zp[χ], for such φ both `fφ and ηfφ are defined and may be chosen so

that

`fφgφ = (`fg)φ and ηfφ = φ(ηf ).

Henceforth we will always assume that such choices have been made.

12.2.3. ΛD-adic forms. Let X ⊂ X aD be a Zariski-dense subset of Spec ΛD(Qp). Let B
be any integer coprime to p and let θ be an A-valued Dirichlet character modulo Bp. For
technical reasons having to do with the hypotheses in the results from 11.7, we introduce
the ΛD-modulesMX (B, θ; ΛD) comprising those formal q-expansions g =

∑∞
n=0 c(n)qn,

c(n) ∈ ΛD, such that for each φ ∈ X

gφ :=
∞∑
n=0

φ(c(n))qn ∈Mκφ(Bprφ(g), θωκφ−2χφ;φ(ΛD)),

where rφ(g) > 0 depends on φ and g. An important example of such a formal q-expansion
is given in proof of Proposition 12.2.5 below.
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Lemma 12.2.4. There exists an idempotent e ∈ EndΛD
(MX (B, θ; ΛD)) such that

(i) for any g ∈ MX (B, θ; ΛD), (eg)φ = egφ ∈ Mord
κφ

(Bptφ , θωκφ−2χφ;φ(ΛD)) for all

φ ∈ X ;
(ii) eMX (B, θ; ΛD) =Mord(B, θ; I)⊗I ΛD.

Proof. Let X1 ⊂ X2 ⊂ · · · be a filtration of X by finite sets (so X = ∪∞n=1Xn). Let
Kn := ∩φ∈Xn kerφ.

Let g =
∑∞

n=0 c(n)qn ∈ MX (B, θ; ΛD). For φ ∈ X the sequence {φ(c(prn))}0≤r<∞
has a unique limit (equal to the nth coefficient of egφ). Therefore for each m = 1, 2, ...,

the sequence {c(prn)}0≤r<∞ has a unique limit, say a(m)(n), in the finite A-module

ΛD/Km and
∑∞

n=0 φ(a(m)(n))qn = egφ for φ ∈ Xm. By uniqueness, the a(m)(n)’s are
compatible via the projections ΛD/Km → ΛD/Km′ , m ≥ m′. So {c(prn)}0≤r≤∞ has a
unique limit a(n) in ΛD. We define e by eg =

∑∞
n=0 a(n)qn; this is independent of the

chosen filtration and clearly has the desired properties. This proves part (i).

The proof of part (ii) is fairly standard. Let ΛD[[qZ≥0 ]] denote the ring of formal
q-expansions

∑∞
n=0 c(n)qn, c(n) ∈ ΛD. A standard argument from Hida theory (essen-

tially appealing to the mod p q-expansion principle) shows that the cokernel of the in-
clusionMord(B, θ; I)⊗I ΛD ↪→ ΛD[[qZ≥0 ]] is ΛD-torsion-free. On the other hand, another
standard argument (cf. [Ur04, Prop. 2.4.22]) shows that the cokernel of the inclusion
Mord(B, θ; I)⊗I ΛD ↪→ eMX (B, θ; ΛD) is ΛD-torsion. Combining these two facts yields
part (ii).

Proposition 12.2.5. Let D = (A, I, f , ψ, ξ,Σ) be a p-adic Eisenstein datum. Let m = 1

or 2 and let y := diag(u, ū−1), u ∈ GL2(AΣ
K,f ). Suppose A contains i, D

1/2
K , and the

following local Gauss sums for each ` ∈ Σ\{p}:

• g(ξc` , a`δK), (a`) = cond(ξc`),
• g(χ̄f ,`ξ

c
` , b`δK), (b`) = cond(χ̄f ,`ξ

c
`),

• g(χf ,`ξ̄
′
`).

Then for β ∈ Sm(Q), β ≥ 0, there exists f
(m)
D,β,y ∈M

ord(MD, χf ; I)⊗I ΛD such that

f
(m)
D,β,y,φ = f

(m)
Dφ,β,y

, φ ∈ X ′D,

where f
(m)
Dφ,β,y

is as in 11.7.

Proof. Let a1, ..., ahK ∈ A×K,f be representatives for the class group of K as in 11.6 and

11.7. Let vi and L
(m)
vi (β, n) be as in Lemma 11.7.3. Let β ∈ Sm(Q), β ≥ 0, and n ∈ Z,
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n ≥ 0. Let T ∈ L(m)
vi (β, n) and define R

(m)
D,T ∈ ΛD by

R
(m)
D,T := (detT |detT |p)−m−1ξ−cp (T ∗p )

∏
`6=p
ξ−1
` ψ`(detT )

× ψ(−1)(χ−1
f Ψ+

W ξ)p(M
−1
D )

×
∏

`∈Σ\{p}

|x`|K


ξc`(T

∗
` )−1g(χf ,`ξ

c
` , x`δK) (x`) 6= O`, T ∗` ∈ O

×
`

0 (x`) 6= O`, T ∗` 6∈ O
×
`

1 (x`) = O`
×

∏
`∈Σ\{p}

Ψ−1
W,`χfξ

−c
` (y`δK)g(ξc` , y`δK)

× χ−1
f ,0ξ

−1ψ(ami detu)|ami detu|m+1
K

∏
`6∈Σ

h`,qiū`Tu`(ψ
−1
` ξ`(`))

×


∏
`∈Σ{p}

Φ−1
W,`(`

e` )

χ̄f ,`ξ
′
`(`

e` )g(χf ,`ξ̄
′
`)

m = 2

1 m = 1.

Here x` := cond(χf ,`ξ
c
`), y` := cond(ξc`), and (`e`) := cond(χf ,`ξ

′
`). It is easily checked

that for φ ∈ X ′D,

φ(R
(m)
D,T ) = R

(m)
Dφ,T

where the right-hand side is as in Lemma 11.7.3. We leave this simple verification to the
reader.

Let

r
(m)
D,β(n, y) := −i2m(m+1)−1D

−m(m+1)/4
K M−1

×
hK∑
i=1

ψ−mp ξm−1
p (qi)χf ,0ψ

−mξm−1(ai)
∑

T∈L(m)
vi

(β,M2
Dn/M)

R
(m)
D,T ∈ ΛD.

Then for φ ∈ X ′D, φ(r
(m)
D,β(n, y)) = ρ

(m)
Dφ,β

(n, y) where again the right-hand side is as in

Lemma 11.7.3. It then follows from this same lemma that g :=
∑∞

n=0 r
(m)
D,β(n, y)qn is

such that for φ ∈ X ′D, gφ = f
(m)
Dφ,β,y

. So g ∈MX ′D(M,χf ; ΛD). By Lemma 12.2.4 we may

then take f
(m)
D,β,y := eg.

12.2.6. The key interpolation lemmas. The following lemmas are our main tools for con-
structing three- and two-variable p-adic L-functions and interpolating the Eisenstein
series ED.

Lemma 12.2.7. Let f ∈Mord(M,χf ; I) be an ordinary newform. Let R be any integral
extension of I. Let g ∈Mord(M,χ; I)⊗I R.
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(i) There exists Ig ∈ FI ⊗I R that is finite at each φ ∈ XR,Zp[χf ] for which φ|I is
arithmetic with κφ|I ≥ 2, and for such φ

φ(Ig) = a(1, 1fφgφ),

where if g =
∑

gi ⊗ ci then gφ :=
∑
φ(ci)gi,φ|I. Furthermore, if a ∈ I is such

that a1f ∈ Tord(M,χf ; I) then aIg ∈ ΛD.
(ii) If (irred)f and (dist)f hold, then there exists an element Ng ∈ R such that for

any φ ∈ XR,Zp[χf ] for which φ|I is arithmetic with κφ|I ≥ 2,

φ(Ng) = a(1, `fφgφ),

with gφ as in part (i).

Any element c ∈ FI ⊗I R defines a rational function on SpecR and hence a notion of c
being finite at φ; we denote the value of c at such a φ by φ(c).

Proof. Write g =
∑

gi ⊗ ci, gi ∈ Mord(M,χ; I) and ci ∈ ΛD. We may then take
Ig := a(1,

∑
ci1fgi) for part (i) and Ng := a(1,

∑
ci`fgi) for part (ii).

Lemma 12.2.8. Let f ∈ Mord
κ (N,χ;A), κ ≥ 2 and A ⊂ Qp a finite integral ex-

tension of Zp, be a p-stabilized newform. Let R be an integral extension of A. Let

g ∈Mord
κ (N,χ;A)⊗A R.

(i) There exists Ig ∈ FA⊗AR, FA the field of fractions of A, such that for φ ∈ XR,A
φ(Ig) = a(1, 1fgφ),

where φ(Ig) is the image of Ig under the canonical extension of φ to FA ⊗A R
and gφ ∈Mord

κ (N,χ; Qp) is the image of g under id⊗φ : Mord
κ (N,χ;A)⊗AR→

Mord
κ (N,χ;A)⊗A Qp = Mord

κ (N,χ; Qp).
(ii) If (irred) and (dist) hold for ρ̄f then there exists Ng ∈ R such that for φ ∈ XR,A

φ(Ng) = a(1, `fgφ),

with gφ as in part (i).

The proof is the same as for the preceding lemma.

12.3. Application I: p-adic L-functions. As our first application of the key interpo-
lation lemmas we construct the three- and two-variable p-adic L-functions that feature
in our main theorems.

Let A, I, f , ξ and Σ be such that

• A is the ring of integers of a finite extension of Qp;
• I is a domain and a finite ΛW,A-algebra;

• f ∈Mord(M,χf , I) is an ordinary newform with χf taking values in A;
• ξ is a finite A-valued idele class character of K;
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• Σ is a finite set of primes containing all primes `|MpDK and all primes ` such
that ξ` is ramified.

Let

XIK,A(f , ψ, ξ) := {φ ∈ X aIK,A : p|fχ̄fφ
ξφ , p

tφ |Nm(fξφ), fξcφOp ⊆ fψOp}.

Theorem 12.3.1. Let A, I, f , ξ, and Σ be as above. Suppose that A satisfies the hy-
potheses of Proposition 12.2.5 and that there exists a finite A-valued idele class character
ψ of A×K such that ψ|A× = χf and ψ is unramified outside Σ.

(i) There exists L̃Σ
f ,K,ξ ∈ FI⊗I IK such that for any φ ∈ XIK,A(f , ψ, ξ), L̃Σ

f ,K,ξ is finite
at φ and

φ(L̃Σ
f ,K,ξ) = a(p, fφ)

−ordp(Nm(χ̄fφ
fξφ )) ((κφ − 2)!)2g(χ̄fφξφ)Nm(fξφd)κφ−2LΣ

K(fφ, χ̄fφξφ, κφ − 1)

(−2πi)2κφ−22−3(2i)κφ+1S(fφ) < fφ, f
c
φ|κφ

(
−1

Nφ

)
>Γ0(Nφ)

.

(ii) If (irred)f and (dist)f hold, then there exists LΣ
f ,K,ξ ∈ IK such that for φ ∈

XIK,A(f , ψ, ξ),

φ(LΣ
f ,K,ξ) = ufφa(p, fφ)

−ordp(Nm(fχ̄fφ
ξφ

)) ((κφ − 2)!)2g(χ̄fφξφ)Nm(fξφd)κφ−2LΣ
K(fφ, χ̄fφξφ, κφ − 1)

(−2πi)2κφ−2Ω+
fφ

Ω−fφ

where ufφ is a p-adic unit depending only on fφ.

Remark. It is very easy to add conditions that ensure the existence of a ψ as in the
theorem; this is not necessary for our application.

Proof. The hypotheses ensure that D := (A, I, f , ψ, ξ,Σ) is a p-adic Eisenstein datum.

Let g := f
(1)
D,1/M,1 be as in Proposition 12.2.5. Then applying Lemma 12.2.7 to g with

R = ΛD yields Ig ∈ FI ⊗I ΛD such that for φ ∈ X ′D

φ(Ig) = a(1, 1fφef
(1)
Dφ,1/M,1) =

< f
(1)
Dφ,1/M,1, f

c
φ|κ
(

−1
p
rφM

)
>ΓDφ

< fφ, f
c
φ|κ
(

−1
p
rφM

)
>ΓDφ

,

where rφ is such that ΓDφ = Γ0(Mprφ). Let L̃Σ
f ,K,ξ := Ig. It then follows from Corollary

11.7.5 that if φ ∈ X ′D, then φ(L̃Σ
f ,K,ξ) equals the expression in part (i). Since X ′D is Zariski

dense in Spec ΛD(Qp) and since these values are independent of φ|Γ−K, L̃Σ
f ,K,ξ belongs to

the subring FI ⊗I IK of FI ⊗I ΛD = FI ⊗I IK[[Γ−K]]. Part (i) follows upon noting that any
φ ∈ XIK,A(f , ψ, ξ) is the restriction to IK of some element of X ′D. For part (ii), take

LΣ
f ,K,ξ := Ng, with Ng as in part (ii) of Lemma 12.2.7.
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The next theorem is a two-variable version of the preceding theorem. Let A, ξ and Σ
be as before and let f ∈ Sord

κ (Mpt, χ;A) with κ ≥ 2 be a p-stabilized newform. Write
χ = χ1χ2 with χ1 a character modulo Mp and χ2 a character modulo pt of p-power
order. Let AK := A[[ΓK]].

Theorem 12.3.2. Suppose that A satisfies the hypotheses of Proposition 12.2.5 (but
with χf replaced by χ1ω

2−κ) and that there exists a finite A-valued idele class character
ψ of A×K such that ψ|A× = χ1ω

2−κ and ψ is unramified outside Σ.

(i) There exists LΣ
f,K,ξ ∈ FA ⊗A AK such that for any φ ∈ XAK,A with φ(γ+) =

ζ+(1+p)κ−2, ζ+ a p-power root of unity, φ|Γ−K of finite order, p|fχ̄ξφ, pt|Nm(fξcφ),

and fξcφOp ⊆ fψOp,

φ(LΣ
f,K,ξ) = a(p, f)

−ordp(Nm(fχ̄ξφ )) ((κ− 2)!)2g(χ̄ξφ)Nm(fξφd)κ−2LΣ
K(f, χ̄ξφ, κ− 1)

(−2πi)2κ−2Ω+
f Ω−f

,

where for x ∈ FA ⊗A AK, φ(x) is the image of x under the canonical extension
of φ to FA ⊗A AK.

(ii) If (irred) and (dist) hold for ρ̄f , then LΣ
f,K,ξ ∈ AK. Furthermore, if f = fφ0 for

some ordinary newform f ∈ Mord(M,χ1ω
2−κ; I), φ0(I) ⊆ A, then LΣ

f,K,ξ is the

product of a unit in A and the image of LΣ
f ,K,ξ under the projection IK → AK

induced by φ0.

Here by ξφ we mean φ ◦ ξ with ξ as before except with χf replaced with χ1ω
2−κ.

Proof. It is easy to see that there exists an ordinary newform f ∈ Mord(M,χ1ω
2−κ; I),

I a domain and a finite integral extension of ΛW,A, and an arithmetic prime φ0 ∈ XI,A
such that f = fφ0 and A = φ0(I). Let D := (A, I, f , ψ, χ2ξ,Σ); this is a p-adic datum.
Let g be as in the proof of Theorem 12.3.1. Let g be the image of g under the map
Mord(M,χ1ω

2−κ; I)⊗I ΛD →Mord
κ (Mpt, χ;A)⊗A A[[ΓK × Γ−K]] induced by φ0. Then let

LΣ
f,K,ξ :=

2−3(2i)κ+1S(f) < f, f c|
(

−1
Mpt

)
>Γ0(Mpt)

Ω+
f Ω−f

Ig,

where Ig is as in Lemma 12.2.8. That the factor in front of Ig in the displayed equation
belongs to FA follows from [Hi81], and by Lemma 12.2.2 it equals ηf up to a unit if
(irred) and (dist) hold for ρ̄f . The arguments proving Theorem 12.3.1 are now easily
adapted to prove this theorem.

12.3.3. Connections with cyclotomic p-adic L-functions. Let f ∈ Sord
κ (Mpr, χ;A) be an

ordinary p-stabilized newform, A being the ring of integers of some finite extension of
Qp. Given a primitive A-valued Dirichlet character ψ of conductor C prime to p and
any finite set Σ of primes, let LΣ

f,ψ ∈ ΛQ,A be the p-adic L-function constructed by

Amice-Vélu [AV75] and Vishik [Vi76] (see also [MTT86]) and recalled in 3.4.4.
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Let α : ΛK,A → ΛQ,A be induced by the canonical projection ΓK → ΓQ. The following
is an immediate consequence of Theorem 12.3.2 and the specialization properties of
LΣ
f,K,χω2−κ .

Proposition 12.3.4. Suppose the hypotheses of Theorem 12.3.2 hold with ξ = χω2−κ.
Let Σ be a set of primes containing all those that divide MpDK. Then

α(LΣ
f,K,χω2−κ) ∼ LΣ

f LΣ
f,χK
∼ LΣ

f LΣ
f⊗χK .

Here ‘∼’ denotes equality up to a unit in ΛQ,A.

12.3.5. Connections with anticyclotomic p-adic L-functions. Let β : ΛK,A → Λ−K,A be

the homomorphism induced by the canonical projection ΓK → Γ−K. For A reduced, β of

course extends to FA ⊗A ΛK,A → FA ⊗A Λ−K,A, FA the ring of fractions of A.

If A, f ∈ Sord
2 (Mpt, χ;A), and ξ are as in Theorem 12.3.2 and assuming the hypotheses

of this theorem hold, then LΣ,−
f,K,ξ := β(LΣ

f,K,ξ) ∈ FA ⊗A Λ−K,A is an anticyclotomic L-

function in the sense that if φ ∈ XΛ−K,A,A
is such that ξφ = ξφ◦β is a finite character such

that p|nφ, nφ := cond(ωκ−2ξφ, then

φ(LΣ,−
f,K,ξ) = a(p, f)

−ordp(Nm(fχ̄ξφ )) g(χ̄ξφ)LΣ
K(f, χ̄ξφ, 1)

(−2πi)2Ω+
f Ω−f

(so interpolates values of an L-function twisted by characters of Γ−K, the Galois group of

the anticyclotomic Zp-extension of K). If (irred) and (dist) hold for ρ̄f then LΣ,−
f,K,ξ ∈

Λ−K,A.

Suppose that

• (M,DK) = 1, ξ = ξ̄c, cond(ξ)|(p);
• χ = 1;

• M = M+M− with M+ divisible only by primes that split in K
and M− is divisible only by primes that are inert in K and that

M− is square-free with an odd number of prime factors.

(12.3.5.a)

Then as explained in [Va03], Perrin-Riou [PR88] and Bertolini and Darmon [BD96] have
independently constructed11 a p-adic L-function L(f, ξ, γ−−1) ∈ Λ−K,A closely connected

with LΣ,−
f,K,ξ (we are essentially following the notation in [Va03] where γ− − 1 is denoted

by T ). When (irred) and (dist) hold for ρ̄f , comparing the interpolation formulae for
these p-adic L-functions shows that

(12.3.5.b) LΣ,−
f,K,ξ = L(f, ξ, γ− − 1)

∏
`∈Σ\{p}

∏
w|`

det
(

1− `−1trace(ρf ⊗ σξ−(frobw))Iw
)
,

11The construction in [PR88] is a specialization of one of the measures constructed by Hida in [Hi88a].
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where w is a place of K, ρf is the p-adic Galois representation associated with ρ, ξ− :=
β ◦ ξ, σξ− := β ◦ εK, and the superscript Iw denotes restriction to the subspace fixed by
Iw. It follows that the Iwasawa-theoretic µ-invariants of the left and right-hand sides of
(12.3.5.b) are the same. If we further assume that

(12.3.5.c) • if `|M− then ρ̄f is ramified at `,

then by Theorem 1.1 of [Va03] these µ-invariants are zero. This allows us to deduce the
following proposition about the LΣ

f ,K,ξ’s.

Proposition 12.3.6. Let A, I, f , ξ, and Σ be as in Theorem 12.3.1 and assume that
the hypotheses of Theorem 12.3.1 hold and that (irred)f and (dist)f hold. Assume also
that

• χf = 1;
• ξ = ξ̄c, cond(ξ)|(p);
• (M,DK) = 1;
• M = M+M− with M+ divisible only by primes that split in K and M− divisible

only by primes that are inert in K and that M− is square-free with an odd number
of prime divisors;
• if `|M− then ρ̄f is ramified at `.

Then LΣ
f ,K,ξ is not contained in any prime of I[[ΓK]] of the form QI[[ΓK]] for some height

one prime Q ⊂ I[[Γ+
K]].

Proof. We have

LΣ
f ,K,ξ = a0 + a1(γ− − 1) + a2(γ− − 1)2 + · · · , ai ∈ I[[Γ+

K]],

and the condition that LΣ
f ,K,ξ ∈ QI[[ΓK]] for some height one primeQ ⊂ I[[Γ+

K]] is equivalent
to each ai being an element of Q.

Let φ ∈ XI,A be an arithmetic weight 2 prime such that f = fφ. Let φ ∈ XI[[Γ+
K]],A be

the extension of φ such that φ(γ+) = 1. Then for some u ∈ A×

uLΣ,−
f,K,ξ = φ(a0) + φ(a1)(γ− − 1) + φ(a2)(γ− − 1)2 + · · · .

The hypotheses of the proposition ensure that (12.3.5.a) and (12.3.5.c) hold, so, as noted

above, the µ-invariant of LΣ,−
f,K,ξ is zero. That is, some φ(ai) ∈ A×. However, if Q is a

prime of I[[ΓK]] then φ(Q) is contained in the maximal ideal of A, hence not every ai can
belong to Q.

12.4. Application II: p-adic Eisenstein series. Our second application of the inter-
polation lemmas is the construction of the Eisenstein series used in the proof of Theorem
6.5.4.

Theorem 12.4.1. Let D = (A, I, f , ψ, ξ,Σ) be a p-adic Eisenstein datum. Suppose that
(irred)f and (dist)f hold. Suppose also that A satisfies the hypotheses of Proposition
12.2.5. Then for each x = diag(u, tū−1) ∈ G(AΣ

f ) there exists a formal q-expansion
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ED(x) :=
∑

β∈S(Q),β≥0 cD(β, x)qβ, cD(β, z) ∈ ΛD, with the property that for each φ ∈
X ′′D and Z ∈ H

ED,φ(Z, x) :=
∑

β∈S(Q),β≥0

φ(cD(β, x))e(TrβZ) = uφ
GDφ(Z, x)

Ω+
fφ

Ω−fφ
, |uφ|p = 1,

with GDφ(Z, x) being as in (11.7.5.a).

Proof. Let g := f
(2)
D,β,x ∈ M

ord(M,χf ; I) ⊗I ΛD be as in Proposition 12.2.5, and let

cD(β, x) := Ng, where Ng is as in part (ii) of Lemma 12.2.7. Then for φ ∈ X ′D

φ(cD(β, x)) = a(1, `fφgφ) = ηfφa(1, 1fφef
(2)
Dφ,β,x

)

= ηfφ

< f
(2)
D,β,x, f

c|κ
(

−1
prpM

)
>ΓD

< f, f c|κ
(

−1
prpM

)
>ΓD

, ΓD = Γ0(prpM)

= uφ
CDφ(β, x)

Ω+
fφ

Ω−fφ
, |uφ|p = 1.

The last equality follows from Corollary 11.7.6. The theorem then follows from the
definition of the CDφ(β, x)’s.

Let Kp
D :=

∏
6̀=pKDφ,` and νD :=

∏
`6=p νDφ,` for any φ ∈ X aD (these are defined

with respect to the fixed choice MDφ := MD and are independent of the choice of φ).

Let K ′D := ker νD. For each φ ∈ X aD let νφ,p : T (Qp) → Q
×
p be the character defined

by by νφ,p(diag(a, b, c, d)) = χ̄f ,0ψφ(cd)ξ̄φ(d). We view this as a character of (Z×p )4 via
the identification of the latter with the diagonal torus of GL4(Zp) = U(Zp). We let
a ∈ (Z/(p− 1)Z)4 be such that for each φ ∈ X aD the restriction of νφ,p to µ4

p−1 ⊂ (Z×p )4

is ωa−κφ , where κφ = (0, 0, κφ, κφ) and ωb is as in 6.3.

Theorem 12.4.2. Let D = (A, I, f , ψ, ξ,Σ) be a p-adic Eisenstein datum such that

(12.4.2.a) cond(ψp), cond(ξp)|p.

Suppose that (irred)f and (dist)f hold and that A satisfies the hypotheses of Proposition
12.2.5. Let K ′ ⊆ K ′D be an open compact subgroup such that K ′Kp is neat.

(i) There exists ED ∈Ma,ord(K ′; ΛD) such that for all φ ∈ X ′′D

ED,φ = uφ
GDφ

Ω+
fφ

Ω−fφ
, |uφ|p = 1.

(ii) For x ∈ G(Af ), xp ∈ Q(Zp), let
∑

β∈S(Q),β≥0 cD(β, x)qβ be the q-expansion of

ED at x. If detβ = 0 then

cD(β, x) ∈ LΣ
f ,K,ξLΣ

χ̄f χ̄′
∈ ΛD.
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Proof. We first note that each GDφ is ordinary by Proposition 9.6.2, so the claim of part

(i) makes sense. Let a1, ..., ahK ∈ AΣ,×
K, be representatives for the class group of K and

let ti := diag(1, ai, 1, ā
−1
i ). Then

G(Af ) = thKi=1G(Q)tiK
′
DKp.

It then follows from (12.4.2.a) and Lemma 6.3.7 that it suffices to exhibit a formal q-
expansion ED(x) =

∑
β∈S(Q),β≥0 c(β, x)qβ for each x = tik, k ∈ Kp

D that specializes to

uφGDφ(Z, x)/Ω+
fφ

Ω−fφ at each φ ∈ X ′′D. Theorem 12.4.1 provides such a ED(ti) for each

i = 1, ..., hK, and for a general x = tik we take ED(x) := νD(k)ED(ti). This proves part
(i).

We now prove part (ii). We note that by part (i), for φ ∈ X ′′D we have φ(cD(β, x)) =

uφCDφ(β, x)/Ω+
fφ

Ω−fφ . Let β ∈ S(Q), β ≥ 0 and detβ = 0. Since xp ∈ Q(Zp), cD(β, x) =

0 unless β ∈ M2(Op) (this can be deduced from the same property of each CDφ(β, x)).
We assume then that β ∈M2(Op). It follows that there exists ζ ∈ SL2(K), ζ ∈ SL2(Op),
such that β = tζ̄ ( n 0

0 0 ) ζ, n ≥ 0. Then cD(β, x) = cD(( n 0
0 0 ) ,diag(ζ, tζ̄−1)x) (this too

can be deduced from the corresponding equality for the CDφ(β, x)’s). We may therefore

assume β = ( n 0
0 0 ). As X genD ⊆ X ′′D is also Zariski dense in Spec ΛD(Qp), we deduce from

parts (i) and (ii) of Lemma 9.4.1 that cD(β, x) = 0 unless xp ∈ P (Ap
K,f )w(M)Kp

D and

(since xp is assumed to be in Q(Zp)) xp ∈ B(Zp){
(

1 ∗
1

1
∗ 1

)
∈ MQ(Zp)}. For such an

x the inclusion claimed in part (ii) is an easy consequence of part (iii) of Lemma 9.4.1,
the interpolation property of the Kubota-Leopoldt p-adic L-functions, and parts (ii) and
(iii) of Proposition 11.7.4. The key point is the existence of an I-adic form fD such that
fD,φ = fDφ ; this follows easily from (9.4.1.a). The existence of fD provides for each

A ∈ GL2(Ap
f ) a q-expansion

∑
n>0 aD(n,A)qn such that φ(aD(n,A)) = a(n, fDφ(−, A)).

Remark. Note that while ED depends on MD it does not, in fact, depend on K ′. If K ′

and K ′′ both satisfy the hypotheses of the theorem, then the corresponding ΛD-forms
are the same in Ma,ord(K ′ ∩K ′′; ΛD).

Suppose K ′ as in the preceding theorem satisfies K ′ = K ′ΣK
Σ with KΣ =

∏
`6∈ΣK`.

Since each GDφ is an eigenform for the ut-operators and for the local Hecke algebras H′K`
at primes away from Σ (see 9.6), the form ED from the preceding theorem is an eigenform
for the universal ordinary Hecke algebra hD(K ′) := hΣ,2(K ′; ΛD) (see 6.4; by definition
this is the ΛD-algebra generated by the image of the abstract Hecke algebra Up ⊗HΣ in
EndΛD

(Ma,ord(K ′; ΛD))). In particular, there is a ΛD-homomorphism λD,K′ : hD → ΛD

such that for h ∈ hD, h.ED = λD,K′(h)ED. This, of course, extends to a homomorphism
of polynomial rings hD[X] → ΛD[X], which we also denote by λD,K′ . The following
proposition follows from Propositions 9.6.1 and 9.6.2.
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Proposition 12.4.3. Let D = (A, I, f , ψ, ξ,Σ) be a p-adic Eisenstein datum as in The-
orem 12.4.2. Suppose K ′ ⊆ K ′D is such that K ′Kp is neat and K ′ = K ′ΣK

Σ with

KΣ =
∏
6̀∈ΣK`. Under the hypotheses of Theorem 12.4.2

(i) for t = diag(pa1 , pa2 , pa4 , pa3) with a1 ≥ a2 ≥ a3 ≥ a4,

λD,K′(ut) =
4∏
i=1

βaii ,

where

(β1,β2,β3,β4) = (a(p, f)ψ−1($c), χf ,0ψ
−1ξ−1($c), χ−1

f ,0ψξ($), a(p, f)−1ψ($))

with χf ,0 the Dirichlet character constructed from χf as in 9.4 and $ ∈ Kv0 (resp.
$c ∈ Kv̄0) the uniformizer identified with p via the identification Kv0 = Qp (resp.
Kv̄0 = Qp);

(ii) for v a finite place of K not dividing a prime in Σ and for any φ ∈ X aD
(φ ◦ λD,K′)(Qv) = det(1−XρDφ(frobv))

where

ρDφ := σχ̄f ,0ψ
c
φ
ε−3 ⊕ (ρfφ ⊗ σχ̄f ,0ξ̄

c
φψ

c
φ
ε−2)⊕ σχ̄f ,0ψ

c
φξ̄
′
φ
ε−1 det ρf ;

(iii) for ` 6∈ Σ
λD,K′(Z`,0) = χ−2

f ,0,`ψ
2
`ξ
−1
` (`),

and if ` splits in K then λD,K′(Z
(i)
`,0) = χ−1

f ,0,`ψ`,iξ
−1
`,i (`).

In part (iii), Z`,0 and Z
(i)
`,0 are the images of the Hecke operators in H′K` denoted Z0 and

Z
(i)
0 in 9.5.2.

Proof. Part (i) is immediate from Proposition 9.6.2 and the Zariski-density of X ′′D. Fur-
thermore, if φ ∈ X ′′D then φ ◦ λD,K′ |HΣ = λDφ , so part (ii) follows from 9.6.1 and the

Zariski-density of X ′′D. Part (iii) is obvious.

13. p-adic properties of Fourier coefficients of ED

In this section we prove (under certain hypotheses) that for a p-adic Eisenstein datum
D = (A, I, f , ψ, ξ,Σ), given any height one prime divisor P of the the p-adic L-function
LΣ
f ,K,ξ, there is a q-expansion coefficient of ED that is not divisible by P . This is a key

input into the proof of Theorem 6.5.4 which establishes that the length at such a P of the
quotient by the Eisenstein ideal is at least the order at P of the p-adic L-function. Our
proof of this indivisibility result involves identifying various combinations of q-expansion
coefficients as interpolating Rankin-Selberg convolutions of the fφ’s with theta-lifts of
forms from definite unitary groups. This makes use of the explicit formulas from 11.9. It
also involves some small input from the theory of automorphic forms on definite unitary
groups (developed ad hoc here).
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13.1. Automorphic forms on some definite unitary groups.

13.1.1. Generalities. Let β ∈ S2(Q), β > 0. As explained in 10.1, β defines a definite
Hermitian K-pairing on the two-dimensional K-space V of column vectors: (x, y)β =
tx̄βy. We let Hβ denote the unitary group of this pairing (an algebraic group over Q),
writing H for Hβ when β is unimportant or understood.

For an open compact subgroup U ⊂ H(Af ) and any Z-algebra R we let

AH(U ;R) := {f : H(A)→ R : f(γhku) = f(h), γ ∈ H(Q), k ∈ H(R), u ∈ U}.
By restriction to H(Af ), AH(U ;R) is identified with the set of functions f : H(Af )→ R
such that f(γhu) = f(h) for all γ ∈ H(Q) and u ∈ U . For any subgroup K ⊂ H(Af )
We let

AH(K;R) := lim
→

U⊇K

AH(U ;R),

where the transition map for U ′ ⊆ U is the inclusion AH(U ;R) ⊆ AH(U ′;R). When
R = C we may drop it from our notation as we do the K when K = {1} (so AH =
AH({1}; C)).

Examples.

(a) Let Φ = Φβ,∞ ⊗`-∞ Φ` ∈ S(V ⊗ A). For each g ∈ U1(A), as a function of h ∈
Hβ(A) the theta function Θβ(h, g; Φ) belongs to AHβ . Therefore, so does Θβ(h,w; Φ) :=

j(g∞, i)
2Θβ(w, g∞; Φ), g∞ ∈ U1(R) such that w = g∞(i).

(b) Let D = (Σ, ϕ, ψ, τ) be an Eisenstein datum. For any x ∈ G(Af ) it follows from
(9.3.4.c) that the function cD(β, x;−) : Hβ(Af )→ C defined by

cD(β, x;h) := τ̄(deth)cD(β,diag(h, th̄−1)x)

belongs to AHβ .

(c) Let D be a classical datum and let D = (Σ, ϕ, ψ0, τ0) be its associated Eisenstein
datum. Let CD(β, x;h) := τ̄0(deth)CD(β,diag(h, th̄−1)x), where CD(β, y) is the β-
Fourier coefficient of GD(Z, y), the latter being as in (11.7.5.a). It follows from (b)
that CD(β, x;−) ∈ AHβ .

13.1.2. Hecke operators. Let U,U ′ ⊂ H(Af ) be open compact subgroups and let h ∈
H(Af ). We define a Hecke operator [U ′hU ] : AH(U ;R)→ AH(U ′;R) by

[U ′hU ]f(x) =
∑

f(xhi), U ′hU = tihiU.

These operators are clearly functorial in R.

We will be concerned with two special cases.

The unramified case. Suppose ` splits in K. The identification GL2(K`) = GL2(Q`) ×
GL2(Q`) identifies H(Q`) with GL2(Q`) via projection onto the first factor: H(Q`) =
{(A, β−1tA−1β) ∈ GL2(K`)}. We let H` ⊂ H(Q`) be the subgroup identified with
GL2(Z`).
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For U = H`U
′, U ′ ⊂ H(A`

f ), we write TH` for the Hecke operator [Uh`U ], h` :=
(
`

1

)
∈

GL2(Q`) = H(Q`). Clearly the action of TH` respects variation in U ′: if f ∈ AH(U ;R)

and U ′′ ⊆ U ′ then [Uh`U ]f = [U1h`U1]f , U1 = H` × U ′′. The TH` ’s commute with each
other.

Hecke operators at p. For a positive integer n we let In ⊂ Hp be the subgroup identified
with the set of g ∈ GL2(Zp) such that g modulo pn belongs to NB′(Z/p

nZp). For

U = InU
′, U ′ ⊂ H(A

{p}
f ), we write UHp for the Hecke operator [UhpU ]. This operator

respects variation in n and U ′ and commutes with the TH` ’s for ` 6= p.

13.1.3. The (nearly) ordinary projector. Let R be either a p-adic ring or of the form

R = R0 ⊗Zp Qp with R0 a p-adic ring. Then for U = InU
′, U ′ ⊂ H(A

{p}
f ),

eH := lim−→
m

(UHp )m! ∈ EndR(AH(U ;R))

exists and is an idempotent. The idempotent eH clearly respects variation in n and
U ′. Furthermore, since we have fixed an isomorphism Cp

∼= C, eH is defined on A′H :=
limn→∞AH(In).

13.2. Applications to Fourier coefficients.

13.2.1. Forms on H × U1. If ` splits in K then we view representations of H(Q`) and
U1(Q`) as representations of GL2(Q`) via the respective identifications of these groups
with GL2(Q`) (projection onto the first factor of GL2(K`) = GL2(Q`)×GL2(Q`)).

Let λ be a character of A×K/K× such that λ∞(z) = (z/|z|)−2 and λ|A× = 1. Let
(π,V), V ⊆ AH , be an irreducible representation of H(Af ) and let (σ,W), W ⊆ A(U1),
be an irreducible representation of U1(Af ). Let χπ and χσ be their respective central
characters. We assume that

• χσ = λχ−1
π ;

• if ` splits in K then σ`'π̃` ⊗ λ`,1 as representations of GL2(Q`).
(13.2.1.a)

We also assume that we are given

• a finite set S of primes outside of which λ is unramified;

• a finite order character θ of A×K/K
× extending χ−1

π

and unramified outside S

(13.2.1.b)

Let ϕ ∈ V ⊗W. We assume that

• if ` 6∈ S then ϕ(hu, g) = ϕ(h, g) for u ∈ H`;

• there exists an integer N divisible only by primes in S such that

ϕ(h, gk) = λθ(dk)ϕ(h, g) for all k ∈ U1(Ẑ) satisfying N |ck.
(13.2.1.c)

For w ∈ h we let
ϕ(h,w) := j(g∞, i)

2ϕ(h, g∞)
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for some g∞ ∈ SL2(R) such that g∞(i) = w. We will assume that ϕ(h,w) does not
depend on the choice of g∞ and that

(13.2.1.d) ϕ(h,w) ∈M2(N, θ′).

Lemma 13.2.2. If (13.2.1.a)-(13.2.1.d) hold, then for any ` 6∈ S that splits in K
θ`,1(`)TH` ϕ(h,w) = T`ϕ(h,w),

where θ` = (θ`,1, θ`,2) as a character of K×` = Q×` ×Q×` .

Proof. By (13.2.1.c) π` is unramified, say π` ∼= π(µ1, µ2) with µ1 and µ2 unramified, and
ϕ(h,w) is the newvector for π`. Hence

(13.2.2.a) TH` ϕ(h,w) = `1/2(µ1(`) + µ2(`))ϕ(h,w).

Noting that G1(A) = G1(Q)U1(A)A×KK1(N), for a fixed h ∈ H(A) we extend ϕ(h, g)
to a function ϕ̃(h, g) on G1(A) by setting ϕ̃(h, g) := θ(a)θ(dk)ϕ(h, g′) for g = γg′ak,
γ ∈ G1(Q), g′ ∈ U1(A), a ∈ A×K, k ∈ K1(N). Clearly ϕ̃(h, g) is the form on G1(A)
defined by the pair ϕ(h,w)A and θ. Then ϕ̃(h,w) := j(g∞, i)

2ϕ̃(h, g∞) = ϕ(g, w). Let σ′

be an irreducible constituent of the GL2(A)-representation generated by ϕ̃(h, g). Then
σ′`
∼= π(µ1, µ2)⊗ θ`,1. It follows that

T`ϕ(h,w) = T`ϕ̃(h,w) = θ`,1(`)`1/2(µ1(`) + µ2(`))ϕ̃(h,w)

= θ`,1(`)`1/2(µ1(`) + µ2(`))ϕ(h,w).

Comparing this with (13.2.2.a) yields the lemma.

Suppose additionally that

• λp is unramified;

• cond(θp,1) = (pr), cond(θp,2) = (ps), r > s;

• pr||N ;

• ϕ(hk, g) = θ−1
p,1(ak1)θp,2(ak1)ϕ(h, g) for k = (k1, k2) ∈ Hp, p

r|ck1 .

(13.2.2.b)

Note that this implies ϕ ∈ VIr ⊗W.

Lemma 13.2.3. Assume (13.2.1.a)-(13.2.1.d) and (13.2.2.b) hold. Then

eHϕ(h,w) = eϕ(h,w).

Here, e is the usual ordinary idempotent acting on ϕ(h,−) ∈M2(N, θ′).

Proof. Since cond(θ1θ2) = cond(θ1), the vector v := ϕ(−, g) ∈ VIr corresponds to the
new vector for π ⊗ θ1. It follows that UHp v 6= 0 if and only if π ∼= π(µ1, µ2) with µ1θ1

unramified and µ2θ1 ramified with cond(µ2θ1) = (pr), in which case UHp v = p1/2µ1(p).

So eHv 6= 0 if and only if p1/2µ1(p) is a p-adic unit, in which case eHv = v.

Let v = ϕ̃(h,−) ∈ π ⊗ θ1 be as in the proof of Lemma 13.2.2. Then v is the new
vector of π ⊗ θ1 and arguing as above shows that Upv 6= 0 if and only if π ∼= π(µ1, µ2)
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with µ1 ⊗ θ1 unramfied and µ2 ⊗ θ1 ramified with cond(µ2 ⊗ θ1) = (pr), in which case

Upv = p1/2µ1θ1(p). It follows that eϕ(h,w) 6= 0 if and only if p1/2µ1θ1(p) is a p-adic

unit, which happens if and only if p1/2µ1(p) is a p-adic unit since θ1 has finite order, in
which case eϕ(h,w) = ϕ(h,w). Combining this with the preceding observations about
eHϕ(h,w) yields the lemma.

13.2.4. Consequences for Fourier coefficients. We return to the notation and setup of
11.8.1 and 11.9. In particular, D = (f, ψ, ξ,Σ) is a classical datum with associated
Eisenstein datum D = (ϕ,ψ0, τ0,Σ) such that (11.8.1.a) holds and MD is as in 11.8.1.

We assume that (11.9.3.a) holds. Recall that for 1 ≤ i, j ≤ hK, βij =

(
q−1
j

qiq
−1
j

)
, so for

fixed i the unitary groups Hβij are independent of j; we denote Hβij by Hi.

Let Θij(h, g) := Θβij (h, g
(
δK

δ̄−1
K

)
f

; ΦD,βij ,uij ). From the definition of ΦD,βij ,uij (see

(11.9.3.b)) and Lemmas 10.2.4, 10.2.5, and 10.2.6 it follows that

• if ` 6∈ Σ ∪Q then Θij(hu, gk) = Θij(h, g)

for u ∈ Hi,` and k ∈ U1(Z`);

• if ` ∈ Σ ∪Q, ` 6= p then Θij(h, gk) = λ(dk)Θij(h, g)

for k ∈ K1,`(M
2
DDK

∏
q∈Q

q);

• Θij(hu, gk) = ξ−1
p,2(au1)ξp,1(du1)λξc(dk)Θij(h, g)

for u = (u1, u2) ∈ Hi,p with pup |cu1 and k ∈ U1(Zp)

with pup |ck (recall that (pup) := (xp) ∩ Zp).

(13.2.4.a)

Here λ is the character fixed for the definition of the Weil representations used to define
the theta functions.

For w ∈ h let Θij(h,w) := j(g∞)2Θij(h, g∞) for any g∞ ∈ SL2(R) such that g∞(i) = w.

Note that Θij(h,w) = δ̄−2
K ΘD,βi/qj ,uiaj (h,DKw). We decompose each Θij(h, g) with

respect to irreducible automorphic representations πH of Hi(Af ):

Θij(h, g) =
∑
πH

ϕ(ij)
πH

(h, g).

(For each g ∈ U1(A), ϕ(ij)(−, g) generaters πH .) The hypotheses ensure that each
Θij(h, g) is orthogonal to all finite-dimensional representations of Hi(Af ). Hence we
may assume that the preceding decomposition of Θij(h, g) is over infinite-dimensional
representations of Hi(Af ). It is then a general consequence of the theta correspondence
(in the split case) that the irreducible constituents σ of the representation of U1(A)

generated by φ
(ij)
πH satisfy

(13.2.4.b) σ`'πH,` ⊗ λ`,1 as representations of GL2(Q`) for all ` split in K.
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We may then decompose Θij(h, g) as

Θij(h, g) =
∑

(πH ,σ)

ϕ
(ij)
(πH ,σ)(h, g), ϕ

(ij)
(πH ,σ) ∈ πH ⊗ σ.

with each pair (πH , σ) consisting of an irreducible automorphic representation πH of
Hi(Af ) and an irreducible automorphic representation σ of U1(A) satisfying (13.2.4.b)
and such that πH is orthogonal to all finite-dimensional representations of Hi(Af ).

Suppose that the central character χπH of πH satisfies χπH = ξ(= ψ0/τ0). Then by

(13.2.4.a) and (13.2.4.b), each ϕ
(ij)
(πH ,σ)(h, g) satisfies (13.2.1.a)-(13.2.1.d) and (13.2.2.b)

for S = Σ ∪ Q, θ = ξc, and N = pupM2
DDK

∏
q∈Q q. So Lemmas 13.2.2 and 13.2.3 hold

for the ϕ
(ij)
(πH ,σ)(h,w)’s.

For i = 1, ..., hK let

CD,i(h) := τ̄0(deth)CD(βi, diag(ui,
tū−1
i );h) ∈ AHi ,

(notation as in Example (c) of 13.1.1).

Proposition 13.2.5. Let L = {`1, ..., `m} be a set of primes that split in K and do not

belong to Σ ∪ Q. Let P ∈ C[X1, ..., Xm]. Let PHi := P (ξ`1,1(`1)THi`1
, ..., ξ`m,1(`m)THi`m

)

and P1 := P (T`1 , ..., T`m). Then

eHiPHiCD,i(h)

2−3(2i)κ+1S(f) < f, f c|κ
( −1
N

)
>Γ0(N)

= τ̄0(deth)BD(βi, h, ui)

×
< ED · eP1ΘD,βi(h,−;ui), f

c|κ
(

−1
prpM2

DDK

)
>Γ0(prpM2

DDK)

< f, f c|κ
(

−1
prpM

)
>ΓD

,

where BD(βi, h, ui) is as in Proposition 11.8.2.
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Proof. Recall that ΘD,βi(−,−;ui) is a linear combination of the Θij ’s, say ΘD,βi(h,w;ui) =∑hK
j=1 cijΘij(h,w). Then by Proposition 11.8.2

τ0(deth)eHiPHiCD,i(h)

2−3(2i)κ+1S(f) < f, f c|κ
( −1
N

)
>Γ0(N)

= BD(βi, h, ui)
< ED · eHiPHiΘD,βi(h,−;ui), f

c|κ
(

−1
prpM2

DDK

)
>Γ0(prpM2

DDK)

< f, f c|κ
(

−1
prpM

)
>ΓD

= BD(βi, h, ui)

hK∑
j=1

cij
< ED · eHiPHiΘij , f

c|κ
(

−1
prpM2

DDK

)
>Γ0(prpM2

DDK)

< f, f c|κ
(

−1
prpM

)
>ΓD

= BD(βi, h, ui)

hK∑
j=1

cij
∑

(πH ,σ)

< ED · eHiPHiϕ
(ij)
(πH ,σ), f

c|κ
(

−1
prpM2

DDK

)
>Γ0(prpM2

DDK)

< f, f c|κ
(

−1
prpM

)
>ΓD

.

Since CD,i(ha) = ξ(a)CD,i(h) for a ∈ A×Kf ∩ H(Af ), it follows that the inner-product

in the last line is zero unless χπH = ξ. For such πH , as earlier noted, Lemmas 13.2.2

and 13.2.3 hold for ϕ
(ij)
(πH ,σ). In particular, eHiPHiϕ

(ij)
(π,σ)(h,w) = eP1ϕ

(ij)
(π,σ)(h,w). The

proposition follows.

13.3. p-adic properties of the cD(β, x)’s. Let D = (A, I, f , ψ, ξ,Σ) be p-adic Eisen-
stein datum as in §12. We assume that (12.4.2.a) holds and that (irred)f and (dist)f
hold. We let ED ∈ Ma,ord(K ′D; ΛD) be as in Theorem 12.4.2 (the definition of ED

depends on a choice of MD). For x ∈ G(Af ) with xp ∈ Q(Zp) we let cD(β, x) ∈ ΛD

be the β-Fourier coefficient of ED at x. So for φ ∈ X aD, cD,φ(β, x) := φ(cD(β, x)) is
the β-coefficient of the Fourier expansion at x of a holomorphic Hermitian modular form
ED,φ(Z, x). For any x ∈ G(Af ) we define cD,φ(β, x) to be the β-coefficient of the Fourier

expansion of ED,φ(Z, x). Note that if φ ∈ X ′D then ED,φ(Z, x) = uφGDφ(Z, x)/Ω+
fφ

Ω−fφ
and cD,φ(β, x) = uφCDφ(β, x)/Ω+

fφ
Ω−fφ .

Since cD,φ(β, x) is the β-Fourier coefficient of ED,φ(Z, x), the φ(ΛD)-valued function
on GL2(AK,f ) defined by

ϕD,β,x,φ(h) := χfχf ,0ψ
−1
φ ξφ(deth)cD,φ(β,

(
h
th̄−1

)
x)

belongs to AHβ (φ(ΛD)) when restricted to Hβ(Af ) (see Example (c) of 13.1.1).

13.3.1. Interpolating Hecke operators. For i = 1, ..., hK recall that βi =
(

1
qi

)
and ui =

γ0

(
1
a−1
i

)
(see 11.9, especially for the definition of γ0). For h ∈ GL2(AK,f ) with hp ∈

GL2(Op) let

ϕD,i := χfχf ,0ψ
−1ξ−1(deth)cD(βi,

(
hui

th̄−1tūi

)
) ∈ ΛD.
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Similary, for φ ∈ X aD and h ∈ GL2(AK,f ) let

ϕD,i,φ(h) := ϕ
D,βi,

(
ui

tū−1
i

)
,φ

(h).

If hp ∈ GL2(Op), then φ(ϕD,i(h)) = ϕD,i,φ(h).

Let Hi := Hβi and note that Hi,p ⊂ GL2(Op). There exists an open compact subgroup

Ui =
∏
6̀=p Ui,` ⊂ Hi(A

{p}
f ), Ui,` ⊆ Hi,` if ` 6∈ Σ ∪ Q, such that for φ ∈ XD there exists

nφ > 0 so that ϕD,i,φ ∈ AHi(InφUi;φ(ΛD)).

Lemma 13.3.2. Let L = {`1, ...`m} be a finite set of primes that split in K and do not
belong to Σ ∪ Q. Let P ∈ ΛD[X1, ..., Xm]. For h ∈ Hi(Af ) with hp ∈ Hi,p, there exists
ϕD,i(L, P ;h) ∈ ΛD such that

(a) for all φ ∈ X aD,

φ(ϕD,i(L, P ;h)) = Pφ(ξφ,`1,2(`1)THi`1
, ..., ξφ,`m,2(`m)THi`m

)eHiϕD,i,φ(h),

where Pφ is the polynomial obtained by applying φ to the coefficients of P ;
(b) if M ⊆ ΛD is a closed ΛD-submodule and ϕD,i(h) ∈M for all h with hp ∈ Hi,p,

then ϕD,i(L, P ;h) ∈M .

Proof. Let X1 ⊂ X2 ⊂ · · · , X aD = ∪∞i=1Xi, be a filtration of X aD by finite subsets. Let nr :=

max{nφ : φ ∈ Xr}. Let Inrh
nr!
p Inr = thrjInr . Write hhrj = γrjkrjxrjurj with γrj ∈

Hi(Q), krj ∈ Hi(R), xrj ∈ Hi(A
p
f ), and urj ∈ InrUi. Put ϕ

(r)
D,i(h) :=

∑
j ϕD,i(xrj) ∈M .

Then φ(ϕ
(r)
D,i(h)) = Unr!p ϕD,i,φ(h) for φ ∈ Xr. Let ϕ̃D,i(h) := limr→∞ ϕ

(r)
D,i ∈M (the limit

belongs to M as M is closed in ΛD). Then φ(ϕ̃D,i(h)) = eHiϕD,i,φ(h) for all φ ∈ X aD,
proving the lemma for P a constant polynomial.

For 1 ≤ i1, ..., im ≤ m (not necessarily distinct) we let

ϕD,i(L, Xi1 · · ·Xim ;h) :=
m∏
a=1

ξ`ia ,1(`ia)
∑
j1

· · ·
∑
jm

ϕ̃D,i(hhj1 · · ·hjm) ∈M,

H`ia
h`iaH`ia

= tjahjaH`ia
.

Then for any φ ∈ X aD
φ(ϕD,i(L, Xi1 · · ·Xim ;h)) = THi`i1

· · ·THi`im
eHiϕD,i,φ(h).

This proves the lemma for P a monomial; the general case follows by linear extension.

13.3.3. Another interpolation formula. Suppose

• MD satisfies (11.5.0.c);

• χf = 1;

• ψ and ξ satisfy (11.9.3.a).

(13.3.3.a)
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These assumptions ensure that χfφ , ξφ, and ψφ also satisfy (11.9.3.a) for all φ ∈ X aD.
The assumption χf = 1, while essential to later arguments, is only made at this point to
simplify subsequent formulas.

Let p1 := p and p2 := p̄, so pO = p1p2. Write ΓK = Γ
(1)
K × Γ

(2)
K where Γ

(i)
K is the

unique rank one Zp-summand containing ΨK(O×pi). Let Ψ
(i)
K be composition of ΨK with

the canonical projection ΓK → Γ
(i)
K . Then Ψ

(i)
K is ramified at pi and unramified at p̄i,

and ΨK = Ψ
(1)
K Ψ

(2)
K . Let

ξi := β ◦ ξiΦ(i)
K .

Then ξi is ramified at pi and unramified at p̄i, and

ξ = ξ1ξ2.

Furthermore, for φ ∈ X aD, ξφ and ξi,φ := φ ◦ ξi satisfy (11.9.3.a).

Let R+ := I[[Γ+
K]] ⊂ ΛD. We give R+ a new ΛW,A-algebra structure via (1 + W ) 7→

(1 + W )−1γ+. Then for any φ ∈ X aD, φ|R+ is an arithmetic homomorphism of weight
2 (in the sense that its pullback to ΛW,A under the new structure map is arithmetic of

weight 2). Let g ∈Mord(M2
DDK, ξ

′; ΛW,A) be an ordinary cuspidal newform such that

• g ⊗ χK = g, where g ⊗ χK is the ordinary newform

associated with the twist of g by χK.
(13.3.3.b)

(So (g⊗ χK)φ = gφ ⊗ χK for an arithmetic φ ∈ XR+,A.) We consider g as an element of

Mord(M2
DDK, ξ;R

+). Thus for any φ ∈ X aD, gφ is a weight 2 ordinary (p-stabilized) new-
form. Assume (irred)g and (dist)g hold. The hypothesis (13.3.3.b) ensures that there
exists a finite set L = {`1, ..., `m} of primes that split in K and are disjoint from Σ∪Q and
a polynomial P ∈ R+[X1, ..., Xm] such that Pg := P (T`1 , ..., T`m) ∈ Tord(M2

DDK, ξ
′;R+)

is a non-zero R+-multiple of `g, say Pg = ag`g with 0 6= ag ∈ R+.

Proposition 13.3.4. Under the above hypotheses,

hK∑
i=1

ξ−1ξ1(ai)ξ1,p(qi)ϕD,i(L, Pg; 1) = AD,gBD,g

with AD,g ∈ I[[Γ+
K]] and BD,g ∈ I[[ΓK]] such that for φ ∈ X ′D

φ(AD,g) = φ(ag)ηfφBDφ,4

< EDφgφ, f cφ|κφ
(

−1
p
rφM2

DDK

)
>Γ0(p

rφM2
DDK)

< f , f cφ|κφ
(

−1
p
rφM

)
>ΓDφ

,

where BDφ,4 is as in Lemma 11.9.4, and for φ ∈ X aD

φ(BD,g) = ηgφ

< gξ1,φ(−)gξ2,φ(M2
D(−)),gcφ|2

(
−1

p
rφM2

DDK

)
>Γ0(p

rφM2
DDK)

< gφ,g
c
φ|2
(

−1
p
rφM2

DDK

)
>Γ0(p

rφM2
DDK)

.

Furthermore, AD,g 6= 0.
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Proof. Let φ ∈ X aD. Then by Lemma 13.3.2

φ(

hK∑
i=1

ξ1ξ
−1(ai)ξ1,p(qi)ϕD,i(Pg; 1))

=

hK∑
i=1

ξ−1
φ ξ1,φ(ai)ξ1,φ,p(qi)Pg,Hi,φeHiϕD,i,φ(1),

(13.3.4.a)

with Pg,Hi,φ := Pg,φ(ξ`1,1(`1)THi`1
, ..., ξ`m,1(`m)THi`m

).

If φ ∈ X ′D then ϕD,i,φ(h) = uφCDφ,i(h)/Ω+
fφ

Ω−fφ , where CDφ,i is as in Proposition 13.2.5

and uφ is the p-adic unit from Theorem 12.4.2 (so uφ = ufφ with ufφ as in Lemma 12.2.2).
It then follows from Proposition 13.2.5 and Lemma 12.2.2 that the right-hand side of
(13.3.4.a) equals

hK∑
i=1

ξ−1
φ ξ1,φ(ai)ξ1,φ,p(qi)ηfφBDφ(βi, 1, ui)φ(ag)

×
< EDφ · `gφ(ΘDφ,βi(1,−;ui)), f

c
φ|κφ

(
−1

p
rφM2

DDK

)
>Γ0(p

rφM2
DDK)

< f , f cφ|κφ
(

−1
p
rφM

)
>ΓDφ

.

(13.3.4.b)

By our hypotheses on χf , ψ, and ξ, BDφ(βi, 1, ui) = ξφ(ai) so

hK∑
i=1

ξ−1
φ ξ1,φ(ai)ξ1,φ,p(qi)BDφ(βi, 1, ui)`gφ(ΘDφ,βi(1,−;ui))

=

hK∑
i=1

ξ1,φ(ai)ξ1,φ,p(qi)`gφ(ΘDφ,βi(1,−;ui))

= ηgφ

<
∑hK

i=1 ξ1,φ(ai)ξ1,φ,p(qi)ΘDφ,βi(1,−;ui),g
c
φ|2
(

−1
p
rφM2

DDK

)
>Γ0(p

rφM2
DDK)

< gφ,g
c
φ|2
(

−1
p
rφM2

DDK

)
>Γ0(p

rφM2
DDK)

= ηgφBDφ,4

< gξ1,φ(−)gξ2,φ(M2
D(−)),gcφ|2

(
−1

p
rφM2

DDK

)
>Γ0(p

rφM2
DDK)

< gφ,g
c
φ|2
(

−1
p
rφM2

DDK

)
>Γ0(p

rφM2
DDK)

,

the last equality following from Lemma 11.9.4. It follows that (13.3.4.b) equals

φ(ag)ηfφBDφ,4

< EDφgφ, f cφ|κφ
(

−1
p
rφM2

DDK

)
>Γ0(p

rφM2
DDK)

< f , f cφ|κφ
(

−1
p
rφM

)
>ΓDφ

× ηgφ
< gξ1,φ(−)gξ2,φ(M2

D(−)),gcφ|2
(

−1
p
rφM2

DDK

)
>Γ0(p

rφM2
DDK)

< gφ,g
c
φ|2
(

−1
p
rφM2

DDK

)
>Γ0(p

rφM2
DDK)

.
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By the Zariski density of X ′D in Spec ΛD(Qp), it follows that to complete the proof of

the proposition it suffices to prove the existence of AD,g ∈ I[[Γ+
K]] and BD,g ∈ I[[ΓK]] with

the specialization properties as in the statement of the proposition; the non-vanishing of
AD,g is a consequence of Lemma 11.9.2.

We first construct AD,g. Note that

< EDφgφ, f
c
φ|κφ

(
−1

p
rφM2

DDK

)
>Γ0(p

rφM2
DDK)

= (MDM1DK)−κφ/2 <
∑

a∈Z/MDM1DK

EDφgφ(
w + a

MDM1DK
), f cφ|κφ

(
−1

p
rφM

)
>Γ0(p

rφM) .

Therefore

φ(ag)ηfφBDφ,4 < EDφgφ, f
c
φ|κφ

(
−1

p
rφM2

DDK

)
>Γ0(p

rφM2
DDK)

= 23i−1ξφ,p(δK)D
−1/2
K ω

κφ−2
p χφ,p(MD)2M

2−2κφ
D φ(ag)ηfφ

× <
∑

a∈Z/MDM1DK

EDφgφ(
w + a

MDM1DK
), f cφ|κφ

(
−1

p
rφM

)
>Γ0(p

rφM)

(13.3.4.c)

Let h0,φ(w) := EDφgφ(w) and hφ(w) :=
∑

a∈Z/MDM1DK
EDφgφ( w+a

MDM1DK
). Write EDφ(w) =∑∞

n=1 aφ(n)qn and gφ(w) =
∑∞

n=1 bφ(n)qn. Then h0,φ(w) =
∑∞

n=1 c0,φ(n) where

c0,φ(n) :=
∑

m1+m2=n
m1,m2>0

aφ(m1)bφ(m2),

and hφ(w) =
∑∞

n=1 cφ(n)qn with

cφ(n) := MDM1DKc0,φ(nMDM1DK).

Let
a(n) :=

∑
d|n,p-d

(`,d)=1∀`∈Σ\{p}

d−1ΦW,pξp(d) ∈ I[[Γ+
K]].

Then for φ ∈ X ′D it follows from (11.9.1.a) and the hypothesis that ξ is unramified at

` 6= p that φ(a(n)) = aφ(n). Let g =
∑∞

n=1 b(n)qn, b(n) ∈ A[[Γ+
K]], be the q-expansion

of g. Put

c0(n) :=
∑

m1+m2=n
m1,m2>0

a(m1)b(m2) and c(n) := MDM1DKc0(nMDM1DK).

Then for φ ∈ X ′D we have φ(c0(n)) = c0,φ(n) and φ(c(n)) = cφ(n). Let h :=
∑∞

n=1 c(n)qn.
Then for φ ∈ X ′D,

hφ(w) =
∞∑
n=1

φ(c(n))qn =
∞∑
n=1

cφ(n)qn = hφ(w).

As {φ|I[[Γ+
K]] : φ ∈ X ′D} is Zariski dense in Spec I[[Γ+

K]](Qp), the proof of Lemma 12.2.4 is

easily adapted to show that there exists k ∈Mord(M,1; I)⊗I I[[Γ+
K]] such that kφ = ehφ
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for all φ ∈ X ′D (replace ΛD with I[[Γ+
K]] in the proof of Lemma 12.2.4 and take X :=

{φ|I[[Γ+
K]] : φ ∈ X ′D}). Write k =

∑
aiki with ai ∈ I[[Γ+

K]] and ki ∈Mord(M,1; I). Let

A0
D,g :=

∑
aia(1, `f (ki)) ∈ I[[Γ+

K]].

Then for φ ∈ X ′D,

φ(A0
D,g) =

∑
φ(ai)a(1, `fφki,φ) = a(1, `fφehφ)

= ηfφ

< hφ, f
c
φ|κφ

(
−1

p
rφM

)
>Γ0(p

rφM)

< fφ, f
c
φ|κφ

(
−1

p
rφM

)
>Γ0(p

rφM)

,
(13.3.4.d)

the last equality following from (12.2.1.a). Putting

AD,g := 23i−1D
−1/2
K M2

Dξp(δK)Φ−1
W,p(M

2
D)agA0

D,g

and comparing (13.3.4.d) with (13.3.4.c) shows thatAD,g has the sought-for interpolation
properties.

Let a1(n),a2(n) ∈ A[[ΓK]] be defined by

∞∑
n=1

a1(n)qn =
∞∑
j=1

ξ−1
1 (aj)

∑
x∈K∩ajÔ

x∈Z×p ×Zp

ξ−1
1,p(x)qNm(x)/qj

and
∞∑
n=1

a2(n)qn =

∞∑
j=1

ξ−1
2 (aj)

∑
x∈K∩ajÔ

x∈Zp×Z×p

ξ−1
2,p(x)qM

2
DNm(x)/qj .

Then for all φ ∈ X aD, hi :=
∑∞

n=1 ai(n)qn satisfies

hi,φ =

∞∑
n=1

φ(ai(n))qn =

{
gξ1,φ(w) i = 1

gξ2,φ(M2
Dw) i = 2.

Note that

(13.3.4.e) hi,φ =

{
E′(w) i = 1

E′(M2
Dw) i = 2.

, if φ|ΓK = 1,

E′(w) = E(χK;w)− E(χK; pw),

where E(χK;w) is the Eisenstein series of weight 1 with L-function ζ(s)L(s, χK).

Let h :=
∑∞

n=1 c(n)qn with

c(n) :=
∑

m1+m2=n
m1,m2>0

a1(n)a2(n),
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so hφ = h1,φh2,φ for all φ ∈ XD. As in the construction of AD,g, the proof of Lemma

12.2.4 is easily adapted to prove the existence of k ∈ Mord(M,1;R+) ⊗R+ I[[ΓK]] such
that kφ = ehφ for φ ∈ X aD. Put

BD,g := a(1, `gk) ∈ I[[ΓK]].

For φ ∈ X aD we then have

φ(BD,g) = a(1, `gφkφ) = a(1, `gφ(gξ1,φ(w)gξ2,φ(M2
Dw)))

= ηgφ

< gξ1,φ(−)gξ2,φ(M2
D(−)),gcφ|2

(
−1

p
rφM2

DDK

)
>Γ0(p

rφM2
DDK)

< gφ,g
c
φ|2
(

−1
p
rφM2

DDK

)
>Γ0(p

rφM2
DDK)

,

again by (12.2.1.a).

13.4. Independence of constant terms and non-singular Fourier coefficients.
Proposition 13.4.1 below is the key ingredient in deducing the main result - Theorem 3.6.1
- from Theorem 6.5.4. It establishes the existence of certain suitable p-adic Eisenstein
data D such that given a prime divisor of the p-adic L-function LΣ

f ,K showing up in
the singular Fourier coefficients of the p-adic Eisenstein series ED, there is some non-
singular Fourier coefficient cD(βi, x), for some βi as in (11.9.3.c), that is not divisible by
this prime. This is essentially done by showing that a suitable ΛD-combination of the
cD(βi, x)’s - the combination in Proposition 13.3.4 for a good choice of g - is not divisible
by the given prime. While it follows from this that some cD(βi, x) is not divisible by the
given prime divisor of the p-adic L-function, this does determine one such coefficient.

Proposition 13.4.1. Let A be the ring of integers of a finite extension of Qp, I a domain

and a finite ΛW,A-algebra, and f ∈ Mord(M,1; I) an I-adic newform such that (irred)f
and (dist)f hold. Suppose A satisfies the hypotheses of Proposition 12.2.5. Let Σ0 be
any finite set of primes containing those that divide pMDK. Then there exists a finite
set of primes Σ ⊃ Σ0 such that for the p-adic Eisenstein datum D = (A, I, f , 1, 1,Σ)
there is an associated ΛD-adic Eisenstein series ED with the following holding for the
set CD = {cD(βi, x) : i = 1, ..., hK, x ∈ G(Af ) ∩Q(Zp)} of Fourier coefficients of ED.

(i) If R ⊆ ΛD is any height-one prime containing CD, then R = PΛD for some
height-one prime P ⊂ I[[Γ+

K]].
(ii) If M = M+M− with M+ divisible only by primes that split in K and M− divisible

only by primes that are inert in K, M− is square-free and has an odd number
of prime divisors, and ρ̄f is ramified at all `|M−, then there are no height-one
primes of ΛD containing LΣ

f ,K,1 and CD.

Recall that for a given D we make a choice12 of MD in the definition of ED.

12This is mostly a technical point. This choice has no effect on the properties of the Fourier coefficients
we are interested in.
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Proof. Part (ii) follows from part (i) and Proposition 12.3.6, so we need only prove part
(i).

Clearly, to prove part (i) we may assume A is sufficiently large; replacing A with the
integer ring A′ of a larger extension of Qp and I with any irreducible component I′ of
I ⊗A A′ does not change ED, and if the conclusions of (i) hold in ΛD ⊗I I′ then they
hold in ΛD. Suppose then we can find Σ ⊃ Σ0 and MD so that there exists an R+-adic
newform g ∈ Mord(M2

DDK,1;R+) satisfying (13.3.3.b) (recall that R+ = I[[ΓK]]). Let
R ⊂ ΛD be a height-one prime containing CD. By Lemma 13.3.2, if R contains CD then
R also contains each ϕD,i(L, Pg; 1), where L and Pg are as in Proposition 13.3.4. Then it
also follows from Proposition 13.3.4 that R contains AD,gBD,g, with AD,g and BD,g as
in Proposition 13.3.4. If BD,g is a unit in I[[ΓK]] (and hence in ΛD) then R must contain

AD,g. As AD,g ∈ I[[Γ+
K]], it follows that R = PΛD for some height one prime P ⊆ I[[Γ+

K]].
Hence to complete the proof of the proposition it suffices to show the existence of Σ ⊃ Σ0

and an MD for which there exists a g as above with BD,g a unit.

Our first step in finding Σ, MD, and g is to choose an idele class character θ of A×K
such that

• θ∞(z) = z−1;
• θc = | · |Kθ−1;
• Nm(fθ) = M2

θ for some integer Mθ prime to p and such that DKM |Mθ and `|Mθ

for all ` ∈ Σ0;
• for some q|DK, θ|O×q has order divisible by q;

• Ω−1
∞ L(1, θ) is a p-adic unit, where Ω∞ is the CM-period defined in [Fi06];

• θp,2(p)− 1 is a p-adic unit.

The existence of such a θ is a simple exercise in light of the main results of [Fi06].
Let θ1 be any idele class character of A×K such that θ1,∞(z) = z−1, θc1 = | · |Kθ−1

1 ,
and θ1 is unramified at places above p. Let Σ1 be the set of primes at which θ1 is
ramified. For each ` ∈ Σ0 ∪Σ1, ` 6= p, let ψ(`) be a finite order anticyclotomic idele class
character of A×K of conductor and order a power of ` and such that Nm(fψ(`)) = `2a`

with a` > ord`(MDKNm(fθ1)). Let θ2 := θ1
∏
`∈Σ0∪Σ1,` 6=p ψ

(`). Then θ2 has the first
four of the six sought-for properties. If the root number of θ2 is +1, then we can appeal
to the main result of [Fi06] to obtain a character with all six. Let `0 6∈ Σ0 ∪ Σ1 be a
prime that splits completely in K. By Theorem 1.1 of [Fi06], for all but finitely many
anticyclotomic characters ψ of conductor and order a power of `0, Ω−1

∞ L(1, θ2ψ) is a
p-adic unit (the result in loc. cit. applies to Ω−1

∞ L(0, (θ2ψ)−1), but L(0, (θ2ψ)−1) =
L(1, (θ2ψ)c) = L(1, θ2ψ)). We may therefore choose ψ so that that θ := θ2ψ also has the
last two of the six sought-for properties (for the last property we note that ψp,2(p) can
be an `-power root of unity of arbitrarily high order). We also take Σ := Σ0 ∪Σ1 ∪ {`0}
and MD := Mθ.

If the root number of θ2 is −1, then we can choose a quadratic extension L/Q with
absolute discriminant DL prime to Nm(fθ2) and associated quadratic character χL of
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A× such that the root number of θ2 · χL ◦Nm is +1 (this root number is just χL(−DK)
times the root number of θ2). In this case we then choose `0 to also be prime to DL and
take θ to be a suitable twist of θ2 ·χL ◦Nm by a finite order anticyclotomic character of
conductor a power of `0, as above, and we let Σ := Σ0 ∪ Σ1 ∪ {`|`0DL} and MD := Mθ.

Let gθ be the CM newform associated with θ; gθ has weight 2, level M2
θDK , and trivial

character. The p-adic Galois representation ρgθ is isomorphic to Ind
GQ

GK
σθ. The fourth

listed property of θ (regarding θ|O×q at the prime q|DK) ensures that the reduction of

Ind
GQ

GK
σθ is irreducible, hence (irred) holds for ρ̄gθ . As p splits in K, the restriction

of Ind
GQ

GK
σθ to Gp is just σθ|Gp ⊕ σθc |Gp . As θ is unramified at all primes above p and

θ∞(z) = z−1, θp,2(p) is a p-adic unit (so gθ is ordinary at p) and σθc |Gp is the unramified

character sending frobp to θp,2(p). As σθ|Gp = εσ−1
θc |Gp , it follows that (dist) holds for

ρ̄gθ .

As noted above, we may assume that A is sufficiently large. In particular, we may
assume that it contains the values of θ. We will show that we can find g as in Proposition
13.3.4 such that BD,g is a unit.

As in 13.3.3, let R+ := I[[Γ+
K]] with a new ΛW,A-algebra structure via 1 + W 7→ (1 +

W )−1γ+. Let g ∈Mord(M2
θDK,1;R+) be the ordinary CM newform associated with θ.

This has the property that if φ ∈ XR+,A is such that φ(γ+) = 1 = φ(1 +W ), then gφ is
the ordinary p-stabilization g of gθ: gφ(w) = g(w) := gθ(w)− θp,1(p)gθ(pw). We have

• g ⊗ χK = g;
• (irred)g and (dist)g hold.

The first property follows from g being a family of CM forms, and the second follows
from ρmg

∼= ρ̄gθ and the previously observed fact that (irred) and (dist) hold for ρ̄gθ .

Let BD,g ∈ I[[ΓK]] be as in Proposition 13.3.4. Let φ ∈ X aD be such that φ|ΓK = 1 and
φ(1 +W ) = 1. Then gφ = g (g being the ordinary p-stabilization of gθ, as above) and

(13.4.1.a) φ(BD,g) = ηg
< E′(−)E′(M2

D(−)), gc|2
(

−1
pM2

DDK

)
>Γ

< g, gc|2
(

−1
pM2

DDK

)
>Γ

,

where E′(w) = E(χK, w)−E(χK; pw) as in (13.3.4.e) and Γ := Γ0(pM2
DDK); this follows

from Proposition 13.3.4 and (13.3.4.e). We will show that the right-hand side of (13.4.1.a)
is a p-adic unit and thus that BD,g is a unit.

Let h(w) := E′(w)E′(M2
Dw). Our next step is to identify < h, gc|2

(
−1

pM2
DDK

)
>Γ

with a Rankin-Selberg convolution integral. We begin by noting that

E(χK;w)|1
( −1
DK

)
= ±E(χK;w).

Here and in what follows ‘±’ will signify a quantity up to undetermined sign; the exact
value of the sign will not matter but may vary from one usage to the next. It follows
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that

E′(w)|1
(

−1
pDK

)
= ±p−1/2(E(χK;w)− pE(χK; pw)

and so that

h|2
(

−1
pM2

DDK

)
= p−1E′′(w)E′′(M2

Dw), E′′(w) = E(χK;w)− pE(χK; pw).

Therefore

(13.4.1.b) < h, gc|2
(

−1
pDK

)
>Γ= p−1M−2

D < E′′(−)E′′(M2
D(−)), gc >Γ .

For s ∈ C let fs : GL2(A)→ C be the function defined by

fs(g) =

{
χK(d)|a/d|s+1/2j(k, i)−1 g =

(
a b
d

)
uk, u ∈ U1(DK), k ∈ K ′∞

0 otherwise.

Let

c(s) :=
L(2s+ 1, χK)DK
−2πiG(χK)

and F (s, g) := c(s)
∑

γ∈B′(Q)\GL2(Q) fs(γg). If g ∈ GL+
2 (R) and w = g(i) we put

F (s, w) := det g−1/2j(g, i)F (s, g) (this depends only on w). Then

F (s, w) = c(s)Im(w)s
∑

γ∈Γ∞\Γ0(DK)

χK(dγ)j(γ,w)−1|j(γ,w)|−2s,

where Γ∞ := {γ ∈ Γ0(DK) ; cγ = 0}. It is a classical result that F (s, w) converges for
Re(s) > 1/2 and is holomorphic in such s and has a meromorphic continuation to all
s ∈ C that is holomorphic at s = 0 and even that F (0, w) = E(χK, w) (cf. [Mi89]; for
the last equality compare Lemma 7.2.19(3) and (7.2.62) and (7.2.60) of loc. cit., with
χ = χK in the latter).

Let hs : GL2(A) → C be defined just as fs was but with U1(DK) replaced with
U1(pM2

DDK). Define H(s, g) and H(s, w) as F (s, g) and F (s, w) but with hs replacing
fs, so

H(s, w) = c(s)Im(w)s
∑

γ∈Γ∞\Γ

χK(dγ)j(γ,w)−1|j(γ,w)|−2s.

We can relate fs to hs as follows. Let S := {`|pMD : ` - DK}. Let N0 :=
∏
`∈S ` and

N1 := pM2
D/N0. Let

h′s(g) :=
∏
`∈S

(1− χK,`(`)`2s+1)−1 ×
∑
T⊆S

(−1)#T (
∏
`∈T

χK,`(`)`
s+1/2)fs(g

∏
`∈T

(
`−1

1

)
`
).
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It is easily checked that h′s is supported on B′(A)U1(N0)K ′∞ and that h′s(
(
a b
d

)
uk) =

χK(d)|a/d|s+1/2j(k, i)−1. Therefore,

hs(g) = N
−s−1/2
1 h′s(g)

(
N−1

1
1

)
f
)

=
∏
`∈S

(1− εK,``2s+1)−1 ×
∑
T⊆S

(−1)#T (
∏
`∈T

χK,`(`)`
s+1/2)N

−s−1/2
1

× fs(g
∏
`∈T

(
`−1

1

)
`

(
N−1

1
1

)
f
).

It then follows that

H(0, w) =
∏
`∈S

(1− εK,``2s+1)−1 ×
∑
T⊆S

(−1)#T (
∏
`∈T

χK,`(`)`)E(χK;N1dTw), dT =
∏
`∈T

`.

Therefore

E′′(M2
Dw) = ±pN−1

0

(∏
`∈S

(1− χK,`(`))

)
H(0, w) +H ′(w)

with H ′(w) a sum of forms that are old at some prime dividing MD. Hence
(13.4.1.c)

< E′′(−)E′′(M2
D(−)), gc >Γ= ±pN−1

0

(∏
`∈S

(1− χK,`(`))

)
< E′′H(0,−), g >Γ .

Let I(s) :=< E′′H(s,−), g >Γ; this is meromorphic as a function of s. By the

usual unfolding argument, if Re(s) is sufficiently large then I(s) = c(s)(2π)−(s+1)Γ(s +
1)D(E′′, g; s+1), where D(E′′, g; s+1) :=

∑∞
n=1 a(n)b(n)n−s−1 if E′′(w) =

∑∞
n=1 a(n)qn

and g(w) =
∑∞

n=1 b(n)qn. Recalling that E′′(w) = E(χK;w) − pE(χK;w) and g(w) =
gθ(w)− θp,1(p)gθ(pw), we find that

D(E′′, g; s+ 1) =
L{p}(gθ, s+ 1)L{p}(gθ, χK, s+ 1)(1− θp,2(p)p−s)

LΣ(2s+ 1;χK)(1− θp,2(p)p−s−1)2
.

Since L(gθ, χ, s) = L(gθ, s) = L(θ, s), it follows from uniqueness of meromorphic contin-
uation that

I(0) =
L(θ, 1)2(1− θp,2(p))(1− θp,1(p)p−1)2

(2π)c(0)LΣ(1, χK)
.
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Combining this with (13.4.1.c) and (13.4.1.b) we find that

< h, gc|2
(

−1
pM2

DDK

)
>Γ = ±N−1

0 I(0)
∏
`∈S

(1− εK,`(`)`)

= ±I(0)
∏
`∈S

(1− εK,`(`)`−1)

= ±c(0)
L(1, χK)L(1, θ)2(1− θp,2(p))(1− θp,1(p)p−1)2

(2π)θp,2(p)

= ±DKL(1, θ)2(1− θp,2(p))(1− θp,1(p)p−1)2

i(−2πi)2g(χK)θp,2(p)2
.

By Lemma 12.2.2

ηg = u
< g, gc|2

(
−1

pM2
DDK

)
>Γ

Ω+
g Ω−g

with u a p-adic unit. Therefore, if φ|ΓK = 1 and φ(1 +W ) = 1,

φ(BD,g) = ±u±DKL(1, θ)2(1− θp,2(p))(1− θp,1(p)p−1)2

G(χK)iθp,2(p)2(2π)2Ω+
g Ω−g

.

By the choice of θ, both θp,2(p) and 1− θp,2(p) = θp,2(p)(1− θp,1(p)p−1) are p-adic units,
hence φ(BD,g) is a p-adic unit if L(1, θ)/2πiΩ±g is. We claim that 2πiΩ±g is a p-adic unit

multiple of Ω∞. From the choice of θ it then follows that L(1, θ)/2πiΩ±g is a p-adic unit,
completing the proof of the proposition.

To prove the claim we first note that Ω±g is a p-adic unit multiple of Ω±gθ . Also, Ω−gθ is

a p-adic unit multiple of Ω+
gθ

since gθ ⊗ χK = gθ and p - DK. So it suffices to show that

2πiΩ+
gθ

is a p-adic unit multiple of Ω∞. We certainly have that 2πiΩ+
gθ

= aΩ∞ for some

a ∈ Qp. We also have that for any even Dirichlet character λ of conductor prime to pMD,

L(gθ, λ, 1)/2πiΩ+
gθ

and L(1, θλ)/Ω∞ are p-adic integers. It follows that a−1L(1, θλ)/Ω∞
is also a p-adic integer. By our choice of θ, L(1, θ)/Ω∞ is a p-adic unit, and so it follows
that a−1 is a p-adic integer. On the other hand, by [St82, Thm. 2.1] there exists λ such
that L(g, λ, 1)/2πiΩ+

g is a p-adic unit, so a must also be a p-adic integer. Therefore a is
a p-adic unit.
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[SU06] C. Skinner and E. Urban, Sur les déformations p-adiques de certaines représentations automor-

phes, Journal of the Inst. of Math. Jussieu 5 (2006), no. 4, 629-698.
[SW99] C. Skinner and A. Wiles, Residually reducible representations and modular forms, Inst. Hautes
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