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Abstract

This paper reviews the topics covered in the 2001 Summer Number
Theory Seminar. All definitions and theorems will receive attention, but
most proofs will be excluded or abbreviated. Examples will be given
where the authors think necessary or interesting. This paper will focus on
algebraic and transcendental number theory, but many detours into other
areas of math will be made.

1 Unique Factorization

We begin by defining prime numbers.

Definition 1.1. The prime numbers are those numbers m which are different
from 0 and ±1 and which possess no factors other than ±1 and ±m.

With this definition, we can now state our goal for this section: establish
that every integer can be factored in one and only one way, apart from order
and sign, as the product of prime numbers (i.e., the Fundamental Theorem of
Arithmetic). In the following discussion, we will assume that every collection,
finite or infinite, of non-negative integers contains a smallest element.

Theorem 1.2. If a, b ∈ Z, b > 0, then ∃ integers q and r such that

a = bq + r 0 ≤ r < b.

The integers q and r are unique.

The proof follows from choosing q such that q ≤ a

b
and q + 1 >

a

b
. The

result is shown to be unique by assuming two different solutions, which leads
to a contradiction of our choice of r. For instance, if a = 12 and b = 5, then we
would choose q = 2, which gives r = 2.

12 = 5 · 2 + 2

Definition 1.3. Two integers a and b are relatively prime if they share no
factors except ±1. We express this as (a, b) = 1.

For example, (12, 5) = 1.

Theorem 1.4. If (a, b) = 1, then ∃ s, t ∈ Z for which as + bt = 1.

Continuing with the same values of a and b, we can satisfy the above theorem
with s = −2 and t = 5:

12 · −2 + 5 · 5 = 1.

We get the same result for s = 7 and t = 17, so the theorem clearly does not
claim a unique result. The proof follows from a creative use of the divisibility
theorem and the assumption about the existence of a smallest integer in a set
of non-negative integers.
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Definition 1.5. An integer m divides an integer n, written m | n, if there exists
an integer q such that n = qm. Equivalently, m is a factor of n. Otherwise, m
does not divide and is not a factor of n, written m - n.

Theorem 1.6. If p is a prime number and p | ab, then p | a or p | b.
Proof. We choose to include the proof because it shows an interesting use of
Theorem 1.4. If p | a, we are done, so consider instead that p - a ⇒ (p, a) = 1.
Thus, we can apply the previous theorem using integers l and m.

lp + ma = 1
lbp + mab = b

p | ab ⇒ ab = pq

lbp + mpq = b

p(lb + mq) = b

p | b.

For instance, if a = 12 and b = 5, ab = 60. The primes 2, 3, 5 | 60, and each
one also divides a or b. A repeated application of this theorem gives a useful
corollary.

Corollary 1.7. If a prime number p divides a product a1a2 · · · an of integers,
then it divides at least one ai.

We will provide a formal definition of units in Section 20. For now, by a
unit we mean an element that divides 1; for the rational integers, the units are
±1. Finally, we arrive at our goal:

Theorem 1.8 (Fundamental Theorem of Arithmetic). Each integer not
zero or a unit can be factored into the product of primes which are uniquely
determined to within order and multiplication by units.

We will provide a brief sketch of the proof because this theorem is rather
significant. If our integer is prime, we are done. If it is not prime, we must be
able to factor it into two integers, not units. If these factors are primes, we are
done. Otherwise, continue the process. This process must terminate because a
finite integer cannot be the product of an arbitrarily large number of integers
all greater than one. If there are two such factorizations, we can conclude that
each factor must appear in each factorization to within multiplication by units
because the factors are prime.

2 Gaussian Integers

We now define a new class of integers and ask the same questions we have asked
about integers. Consider the class G of Gaussian integers defined as:

G = {α = a + bi | a, b ∈ Z}.
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For this class of numbers, we say that α divides β if there is a number γ ∈ G
such that β = αγ. An element of G is a unit if it divides 1, and therefore every
element of G. A number π in G is prime if it is not zero or a unit and if every
factorization π = αβ means that α or β is a unit.

With this terminology we can ask, do Gaussian integers have a unique fac-
torization? To answer this question, we must first define the norm:

Definition 2.1. The norm N(α) of a Gaussian integer α = a+ bi is defined as:

Nα = αα = |α|2 = a2 + b2

We identify five important properties of the norm:

1. If α is in Z as well as in G, then Nα = α2

2. N(αβ) = Nα Nβ

3. Nα = 1 if and only if α is a unit.

4.

Nα =





0 if α = 0,
1 if α = ±1 or ±i,
> 1 otherwise.

5. If Nα is prime in Z, then α is prime in G.

Theorem 2.2. If α and β are Gaussian integers, β 6= 0, then ∃ integers π and
ρ such that

α = πβ + ρ, Nρ < Nβ

In proving this theorem we choose integers s and t such that

|A− s| ≤ 1
2
, |B − t| ≤ 1

2
where α/β = A + Bi

Then π = s + ti, ρ = α− πβ satisfies the theorem.

Theorem 2.3. If π is a prime and π|αβ, then π|α or π|β.

To prove this theorem we can proceed much as in the case of rational in-
tegers. By the same analog, the Gaussian version of the fundamental theorem
of arithmetic follows from this theorem. In other words, Gaussian integers do
have a unique factorization, within order and units.

3 Groups, Rings, and Fields

Before we address the topic of algebraic numbers, it will be useful to define the
terms group, ring, and field.
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Definition 3.1. A group is an ordered pair 〈G, ◦〉 where G is a non-empty set
and ◦ is a binary operation on G satisfying the following axioms for a, b, c ∈ G:

(a ◦ b) ◦ c = a ◦ (b ◦ c) (Associativity) (1)
∃ e ∈ G such that ∀ a ∈ G, a ◦ e = a (Existence of a Right Identity) (2)
∀ a ∈ G ∃ a′ ∈ G such that a ◦ a′ = e (Existence of a Right Inverse) (3)

For formal purposes, we will define a binary operation.

Definition 3.2. Let A be a non-empty set. A mapping ρ : A×A → A is called
a binary operation on A.

Although a group is not necessarily commutative, we can show that the right
identity and the right inverse are commutative. We refer to a commutative
identity element as simply an identity element or a neutral element. Similarly,
we refer to a commutative inverse element as simply an inverse.

Theorem 3.3. Each right identity element of a group G is an identity element.
Furthermore, this identity element is unique.

Proof. We are given that a ◦ e = a, and we must show e ◦ a = a ∀ a ∈ G. We
also know that a has a right inverse, say b. This right inverse is also in G, so it
too must have a right inverse.

a ◦ b = e

b ◦ c = e

e ◦ a = (e ◦ a) ◦ e (Axiom 2)
= e ◦ (a ◦ e) (Axiom 1)

= e ◦ (
a ◦ (b ◦ c)

)
(Axiom 3)

= e ◦ (
(a ◦ b) ◦ c

)
(Axiom 1)

= e ◦ (e ◦ c) (Axiom 3)
= (e ◦ e) ◦ c (Axiom 1)
= e ◦ c (Axiom 2)
= (a ◦ b) ◦ c (Axiom 3)
= a ◦ (b ◦ c) (Axiom 1)
= a ◦ e (Axiom 3)
= a (Axiom 2)

Now we must show that e is unique. Suppose there exists another identity
element f ∈ G. Then clearly f = f ◦ e = e.

Theorem 3.4. Each right inverse b of an element a ∈ G is an inverse of a.
Furthermore, each element a ∈ G has one and only one inverse.
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Proof. We know that a ◦ b = e; we must show that b ◦ a = e. We know that b
also has a right inverse, call it c.

b ◦ a = (b ◦ a) ◦ e (Axiom 2)
= (b ◦ a) ◦ (b ◦ c) (Axiom 3)

=
(
b ◦ (a ◦ b)

) ◦ c (Axiom 1)
= (b ◦ e) ◦ c (Axiom 3)
= b ◦ c (Axiom 2)
= e (Axiom 3)

To show uniqueness, we suppose d ∈ G is another right inverse of a.

d = e ◦ d = (b ◦ a) ◦ d = b ◦ (a ◦ d) = b ◦ e = b.

Now we proceed with our other definitions.

Definition 3.5. Let R be any non-empty set with binary operations + and ·. A
ring is an ordered triple 〈R, +, ·〉 satisfying the following axioms for a, b, c ∈ R:

a + b = b + a (Commutativity under Addition) (4)
(a + b) + c = a + (b + c) (Associativity under Addition) (5)
∃ z ∈ R 3 z + a = a + z = a (Existence of an Additive Identity) (6)
∀ a ∈ R ∃ a∗ 3 a + a∗ = a∗ + a = z (Existence of an Additive Inverse) (7)
(a · b) · c = a · (b · c) (Associativity under Multiplication)

(8)

a · (b + c) = a · b + a · c (Distributivity) (9)

The operations + and · are not necessarily addition and multiplication as
conventional notation might suggest, but we have provided names for the axioms
assuming those operations. Next we look at a specific type of ring.

Definition 3.6. A field is a ring 〈F, +, ·〉 satisfying these additional axioms for
a, b ∈ F and z the additive identity element defined in Definition 3.5:

a · b = z =⇒ a = z or b = z (Zero Divisor Law) (10)
a · b = b · a (Commutativity under Multiplication)

(11)

∃ e ∈ F 3 e · a = a · e = a (Existence of a Multiplicative Identity)
(12)

∀ a 6= z, ∃ a′ ∈ F 3 a · a′ = a′ · a = e (Existence of a Multiplicative Inverse)
(13)

As examples, the integers form a ring, and the rational numbers form a field.
We shall soon discover other groups, rings, and fields.
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4 Rational and Gaussian Primes

It is a simple proof that there are an infinite number of rational primes. Suppose
there is a finite number of primes p1, ..., pn. The number N = 1+p1 · · · pn is not
divisible by any of the pi. Then any prime factor of N would be different from
any of the pi. This shows that, given any finite set of primes, we can generate
infinitely many new primes. Therefore, as long as there is at least one prime
integer, we can show that there is an infinite number of primes. Since 2 is prime
in Z, there are an infinite number of rational primes.

A similar proof will show that there are an infinite number of primes in G
(the set of Gaussian primes), since G has at least one prime (3 is prime in G).

5 Congruences

Here we deal only with rational integers. Let m be a non-zero integer.
Two integers are said to be congruent modulo m:

a ≡ b(modm) or a ≡ b(m),

if m|(a− b). Two integers are congruent modulo m if and only if they leave
the same remainder on division by |m|.

Here are a few important properties of congruences:

1. If a ≡ b(m), then b ≡ a(m)

2. If a ≡ b(m) and b ≡ c(m), then a ≡ c(m)

3. If k ∈ Z and a ≡ b(m), then ka ≡ kb(m)

4. If ai ≡ bi(m) for i = 1, 2, ..., n, then

a1 + a2 + · · ·+ an ≡ b1 + b2 + · · ·+ bn(m),

a1b1 · · · an ≡ b1b2 · · · bn(m)

5. If ka ≡ kb(m), then a ≡ b(m/d) where d = (k, m)

Definition 5.1. A complete residue system modulo m is any set of integers
such that every integer is congruent to exactly one element in the set modulo
m.

Consequently, any set of m integers is a complete residue system modulo m
if no two of the integers are congruent to each other modulo m.

Theorem 5.2. If a1, a2, ..., am form a complete residue system modulo m, and
if (a,m) = 1, then aa1, aa2, ..., aam also form such a system.

Theorem 5.3 (Fermat). If p is a prime and (a, p) = 1, then ap−1 ≡ 1(p).
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Corollary 5.4. If p is a prime and (a, p) = 1, then ap ≡ a(p).

Theorem 5.5 (Wilson). If p is a prime, then (p− 1)! ≡ −1(p).

Theorem 5.6. If p is a prime of the form 4m + 1, then p | (n2 + 1), where
n = (2m)!.

Theorem 5.7. If p is a prime and a and b are integers, then

ap + bp ≡ (a + b)p (mod p)

6 Polynomials Over a Field

Definition 6.1. A polynomial of degree n, n ≥ 0, over a field F is an expression
of the form

p(x) = a0 + a1x + · · ·+ an − 1xn−1 + anxn

where ai ∈ F and an 6= 0.

By convention, 0 is a polynomial of no degree (also called identically zero),
while a constant not zero is a polynomial with n = 0. The set of polynomials is
denoted by F [x]. The sum or product of two polynomials is also a polynomial.
A polynomial p(x) | q(x) in F [x] if ∃ r(x) ∈ F [x] such that q(x) = p(x)r(x).

Theorem 6.2 (Fundamental Theorem of Algebra). Every polynomial p(x)
of degree n ≥ 1 can be factored uniquely into the form

p(x) = an(x− r1)(x− r2) · · · (x− rn) ri ∈ C
This theorem is proved in analysis. The values r1, ..., rn are called the roots

of p(x). Two polynomials are said to be relatively prime if they share no common
factors. A polynomial is monic if the leading coefficient an is 1. The leading
coefficient plays the part of the unit and does not affect factorization.

Definition 6.3. A polynomial p(x) is said to be irreducible if it cannot be
factored into the product of two or more polynomials, each of which have degree
less than p(x) and are themselves polynomials over F.

The following three theorems closely parallel Theorems 1.2, 1.4 and 1.6
for rational integers.

Theorem 6.4. Let f(x) and g(x) 6= 0 be polynomials over F. Then there are
polynomials q(x) and r(x) over F such that

f(x) = q(x)g(x) + r(x)

where r(x) = 0 or r(x) has degree less than g(x).

Theorem 6.5. Let f(x) and g(x) be non-zero, relatively prime polynomials over
F. Then,

∃ s(x), t(x) ∈ F [x] 3 1 = s(x)f(x) + t(x)g(x)
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Note that this theorem is a special case of Hilbert’s Nullstellensatz, which
deals with a sum of arbitrarily many product pairs.

Theorem 6.6. Let p(x), f(x), g(x) be polynomials over F, p(x) irreducible,
p(x) | f(x)g(x) over F, then p(x) divides f(x) or g(x).

7 The Eisenstein Irreducibility Criterion

Definition 7.1. A polynomial p(x) ∈ Z[x] is primitive if the coefficients have
no common factors beside ±1.

Theorem 7.2 (Gauss’ Lemma). The product of primitive polynomials is
primitive.

Note that any polynomial f(x) 6= 0 can be uniquely written in the form
cff∗(x) where f∗ is primitive and cf is a positive rational number.

Theorem 7.3. If a polynomial p(x) ∈ Z[x] can be factored over Q, it can be
factored into polynomials in Z[x].

Theorem 7.4 (Eisenstein’s irreducibility criterion). Let p be a prime and
f(x) =

∑n
i=0 aix

i ∈ Z[x] such that

p - an, p2 - a0; p | ai, i = 0, 1, ..., n− 1

Then f(x) is irreducible over R.

Let p be a prime. A polynomial of the form

xp − 1
x− 1

= xp−1 + xp−2 + · · ·+ 1

is called cyclotomic. Substituting x+1 for x, we can show that this polynomial
is irreducible by the Eisenstein criterion. The same technique can be used to
show that

xp2 − 1
xp − 1

= xp(p−1) + xp(p−2) + · · ·+ xp + 1

is irreducible.

8 Symmetric Polynomials

Consider the independent variables x1, x2, . . . , xn. A polynomial in x1, x2, . . . , xn

over the field F is a finite sum of the form

g(x1, x2, . . . , xn) =
∑

i1,i2,...,in

ai1,i2,...,inxi1
1 xi2

2 . . . xin
n

where ai1,i2,...,in ∈ F and the ij ’s are positive integers.
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Definition 8.1. A polynomial is symmetric if it is unchanged by any permu-
tation of the variables.

For example, the following polynomials are symmetric:

x2
1 + x2

2 + x1x2

x2
1x

2
2 + x2

1x
2
3 + x2

2x
2
3 + 6x1x2x3.

A very useful polynomial when dealing with symmetric polynomials is the fol-
lowing function of one variable z:

f(z) = (z − x1)(z − x2) · · · (z − xn)

= zn − σ1z
n−1 + σ2z

n−2 − · · · (−1)nσn

σ1 = x1 + x2 + · · ·+ xn

σ2 = x1x2 + x1x3 + · · ·+ x1xn + x2x3 + x2x4 + · · ·+ xn−1xn

...
σn = x1x2 · · ·xn

The σi are called the elementary symmetric functions in x1, x2, . . . , xn.

Theorem 8.2. Every symmetric polynomial in x1, x2, . . . , xn over a field F
can be written as a polynomial over F in the elementary symmetric functions
σ1, σ2, . . . , σn. The result holds for polynomials with integer coefficients as well.

The theorem holds for integer coefficients because the proof only uses prop-
erties of rings. The proof begins by separating the polynomial into homogeneous
polynomials and then defining a method for ordering the terms of the polyno-
mial. For the highest term of the polynomial, there is a specific term of the
elementary symmetric polynomials which will cancel the highest term in the
original polynomial, leaving a ”lower” degree polynomial. The process repeats
itself, and we get the desired result.

Theorem 8.3. Let f(x) be a polynomial of degree n over F with roots r1, r2, . . . , rn.
Let p(x1, x2, . . . , xn) be a symmetric polynomial over F . Then p(r1, r2, . . . , rn)
is an element of F.

Factoring f(x) into monic, first degree polynomials reveals that the elemen-
tary symmetric functions evaluated at r1, r2, . . . , rn must be in F . Thus, the
conclusion follows from the application of Theorem 8.2.

Corollary 8.4. Let f(x) and g(x) be polynomials over a field F , and let α1, α2, . . . , αn

and β1, β2, . . . , βk be their respective roots. Then the products

h1(x) =
k∏

j=1

n∏

i=1

(x− αi − βj)

h2(x) =
k∏

j=1

n∏

i=1

(x− αiβj)
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are polynomials in x with coefficients in F .

The corollary follows directly from the preceding theorems and the product∏k
j=1 f(x−βj). This corollary will have significant effects in some later sections.

9 Numbers Algebraic over a Field

Definition 9.1. A number θ is said to be algebraic over a field F if it satisfies
a polynomial in F [x]. θ is not necessarily in F.

Definition 9.2. The minimal polynomial for θ is the monic polynomial of least
degree that is still satisfied by θ. Consequently a minimal polynomial is also
irreducible.

Here are some important facts about minimal polynomials:

1. If θ is algebraic over F, it has a unique minimal polynomial.

2. Any polynomial satisfied by θ over F contains the minimal polynomial of
θ as a factor.

3. If f(x) and g(x) are relatively prime over F they have no roots in common.

4. An irreducible polynomial of degree n over F has n distinct roots.

The concept of minimal polynomials together with Corollary 8.4 can be used
to prove the following theorem:

Theorem 9.3. The totality of numbers algebraic over a field F forms a field. In
other words, the sum, product, difference and quotient of two algebraic numbers
is also algebraic.

10 Extensions of a Field

Definition 10.1. Any field K containing another field F, is called an extension
of F. If θ is algebraic over F, then K = F (θ) is defined as the smallest field
containing F and θ. K is called a simple algebraic extension of F.

Note that K would have to consist of all possible fractions f(θ)/g(θ) where
f(θ), g(θ) ∈ F [θ]. Any other expression in θ can be simplified into such a
quotient. However, the next theorem states a stronger result:

Theorem 10.2. Every element α of F (θ) can be written uniquely in the form

α = a0 + a1θ + · · ·+ an−1θ
n−1 = r(θ)

where ai ∈ F and n is the degree of θ over F.

Definition 10.3. A multiple algebraic extension is the smallest field containing
F and α1, ..., αn, a set of n algebraic numbers over F.
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Theorem 10.4. A multiple algebraic extension of F is a simple algebraic ex-
tension.

Theorem 10.5. If θ is algebraic over F, so is every element α of F (θ). Also
degα ≤ degθ.

This theorem can be proved using symmetric polynomials or using a result
from linear algebra to show that α satisfies a polynomial over F.

11 Algebraic and Transcendental Numbers

Finally, we can define what we mean by an algebraic number. We denote the
set of algebraic numbers by Q.

Definition 11.1. A number is an algebraic number if it is algebraic over the
field Q.

Now that we have defined an algebraic number, we want to show that our
definition has meaning. That is to say, we want to show that not all numbers
are algebraic. This other class of numbers we call transcendental. We will use
a construction by Liouville to show that transcendental numbers exist, but first
we need a lemma.

Lemma 11.2. Let θ be a real algebraic number of degree n > 1 over Q. ∃ M >

1, which depends on θ, 3
∣∣∣∣θ −

p

q

∣∣∣∣ ≥
M

qn
, ∀ p

q
∈ Q with q > 0.

The proof of the lemma defines a function f(x) as the primitive of lowest
degree satisfied by θ. Then, it defines M ′ as the maximum of |f ′(x)| on the
interval [θ − 1, θ + 1]. M is defined as min

(
1, 1

M ′
)
. The proof then splits into

two cases:
∣∣∣∣θ −

p

q

∣∣∣∣ ≥ 1, which is pretty straight forward, and
∣∣∣∣θ −

p

q

∣∣∣∣ < 1, which

looks at
∣∣∣∣f(θ)− f

(
p

q

)∣∣∣∣ to get the appropriate result. Now we are equipped to

show that transcendental numbers exist.

Theorem 11.3 (Liouville). ∃ ξ 6∈ Q.

Proof. We include this proof because this seminar hinges on the existence of
transcendental numbers. Let ξ =

∑∞
m=1(−1)m2−m! and denote by

ξk =
pk

qk
=

pk

2k!

the sum of the first k terms of the series for ξ. Then,
∣∣∣∣ξ −

pk

qk

∣∣∣∣ = 2−(k+1)! − 2−(k+2)! · · · < 2−(k+1)! < 2−k·k! = q−k
k .
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First we suppose ξ is algebraic of degree n > 1 over Q. By the preceding

inequalities, qn
k

∣∣∣∣ξ −
pk

qk

∣∣∣∣ ≤ qn−k
k . Letting k →∞, we find that

lim
k→∞

qn
k

∣∣∣∣ξ −
pk

qk

∣∣∣∣ = 0.

But by Lemma 11.2, ∃ M > 0 3
∣∣∣∣ξ −

pk

qk

∣∣∣∣ ≥
M

qn
k

.

So

qn
k

∣∣∣∣ξ −
pk

qk

∣∣∣∣ ≥ M > 0

for all k, contrary to the limit 0.
Next we suppose ξ ∈ Q (i.e., ξ is an algebraic number of degree 1). Thus,

ξ =
p

q
. Choose an odd k 3 2k+1 > q. Define

η = 2k!ξq − 2k!q

k∑
m=1

(−1)m2−m! = 2k!q

∞∑

m=k+1

(−1)m2−m!.

This construction clears all denominators, so η ∈ N. But by our choice of k,

η < 2k!q
1

2(k+1)!
=

q

2k+1
< 1,

a contradiction. Thus, ξ is transcendental.

This transcendental number may seem a little contrived, but it proves what
we want to prove. Later we will discover that there are many transcendental
numbers that are not so contrived.

12 The Real Numbers are not Countable

Definition 12.1. The mapping f : A → B is 1-1 if f(x1) 6= f(x2) whenever
x1 6= x2, for x1, x2 ∈ A.

Definition 12.2. The mapping f : A → B maps A onto B if f(A) = B.

Definition 12.3. If ∃ a 1-1 mapping of A onto B, then A ∼ B, and

1. A ∼ A

2. If A ∼ B, then B ∼ A.

3. If A ∼ B and B ∼ C, then A ∼ C.
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Definition 12.4. For n ∈ N, let Jn be the integers 1, 2, . . . , n; J is the set of
all positive integers. For any set A,

1. A is finite if A ∼ Jn for some n including ∅.
2. A is countable if A ∼ J .

3. A is uncountable if A is neither finite nor countable.

We assume that all real numbers have a unique binary representation. Our
desired result will follow as a corollary from this theorem.

Theorem 12.5. Let A be the set of all sequences whose elements are the digits
0 and 1. A is uncountable.

Proof. Let E be a countable subset of A, and let E consist of the sequences
s1, s2, s3, . . . . We construct another sequence s by the following process: if the
nth digit of sn is 1, then the nth digit of s is 0, and vice versa. Thus, the
sequence s differs from every sequence in E by at least one place. Therefore,
s 6∈ E, yet s 6∈ A. Therefore, E is a proper subset of A. Because E was an
arbitrary countable subset of A, we conclude that all countable subsets of A are
proper subsets of A. If A were countable, then it would be a countable subset
of itself. We have just shown that this would imply that A is a proper subset
of itself, an obvious contradiction.

Corollary 12.6. The real numbers are not countable.

Using the binary sequence a1, a2, a3, . . . with ai = 0 or 1, we express a
unique real number for each sequence:

a1 · (10−1) + a2 · (10−2) + a3 · (10−3) + · · ·
Thus, we have defined a function taking the binary sequences to a set of real
numbers. By Theorem 12.5, this set of real numbers in uncountable, and thus
the real numbers are uncountable.

13 The Sufficiency of Q
We have defined

Q = {α | p(α) = 0 for some p(x) ∈ Z[x]}.
Why don’t we introduce an extension of the algebraic numbers

Q = {β | p(β) = 0 for some p(x) ∈ Q[x]}?
We do not talk of such a set because it does not introduce any new elements.

Theorem 13.1. Q = Q
The proof constructs h(x) ∈ Z[x] by taking a product of fi(x) ∈ Q[x] where

each fi(x) has a unique permutation of the conjugates of the coefficients of
f1(x). We reach our conclusion about h(x) using symmetry arguments on its
coefficients.
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14 Decimal Expansions

Here we present a few theorems that can be used to analyze numbers by looking
at their decimal expansions.

Theorem 14.1. Let a1, a2, ... be a sequence of positive integers, all greater than
1. Then, any real number α is uniquely expressible in the form

α = c0 +
∞∑

i=1

ci

a1a2 · · · ai

with integers ci satisfying the inequalities 0 ≤ ci ≤ ai − 1 for all i ≥ 1, and
ci < ai − 1 for infinitely many i.

Now we can present the next theorem for irrationality based on decimal
expansions.

Theorem 14.2. Let ai be as in the previous theorem, and let ci satisfy the
result. Assume that infinitely many of the ci 6= 0, and that each prime number
divides infinitely many of the ai. Then α (as described in the previous theorem)
is irrational.

15 Simple Irrationalities

We now turn our attention to some theorems that prove certain types of expres-
sions yield irrational numbers.

Theorem 15.1. If the real number x satisfies an equation

xn + c1x
n−1 + · · ·+ cn = 0

with each ci ∈ Z, then x is either an integer or an irrational number.

Proof. Suppose x ∈ Q, then x =
a

b
with a, b ∈ Z, b > 0, and (a, b) = 1. Then

xn = −c1x
n−1 − c2x

n−2 − · · · − cn

an

bn
=

−1
bn−1

(c1a
n−1 + c2a

n−2b + · · ·+ cnbn−1)

an = −b(c1a
n−1 + c2a

n−2b + · · ·+ cnbn−1).

If b > 1, then any prime divisor p of b would divide an =⇒ p | a and p | b, a
contradiction of (a, b) = 1 =⇒ b = 1. So if x ∈ Q, then x ∈ Z. Otherwise, x
must be irrational.

We can construct some familiar irrational numbers from this theorem. For
example,

√
2 and

√
3 satisfy x2 − 2 = 0 and x2 − 3 = 0, respectively. By the

theorem, these numbers are irrational. As a simple corollary, we provide the
following:
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Corollary 15.2. If m is a positive integer which is not the nth power of an
integer, then n

√
m is irrational.

Now we want to show that trigonometric functions taken at rational values
give irrational values. The methodology of this proof is repeated throughout
this section, so we will provide the proof for the first theorem. Before we get to
that, we must provide two lemmas.

Lemma 15.3. If

h(x) =
xng(x)

n!

where g(x) ∈ Z[x], then h(j)(0) ∈ Z for j = 0, 1, 2, . . . . Moreover, with the
possible exception of j = n, (n + 1) | h(j)(0). The possible exception for j = n
is unnecessary if g(0) = 0.

The proof follows by looking at the explicit expression of h(j)(0).

Lemma 15.4. If f(x) is a polynomial in (r−x)2, then f (j)(r) = 0 for any odd
integer j.

Again, the proof follows from explicitly writing f (j)(r) = 0.

Theorem 15.5. For any non-zero r ∈ Q, cos r 6∈ Q.

Proof. Since cos−r = cos r, we will prove for r =
a

b
with a, b ∈ N and b > 0.

Let

f(x) =
xp−1(a− bx)2p(2a− bx)p−1

(p− 1)!
=

(r − x)2p{r2 − (r − x)2}p−1b3p−1

(p− 1)!

where p is an odd prime to be specified.
For 0 < x < r,

0 < f(x) <
r2p{r2}p−1b3p−1

(p− 1)!
=

r4p−2b3p−1

(p− 1)!
.

Let
F (x) = f(x)− f (2)(x) + f (4)(x)− f (6)(x) + · · · − f (4p−2)(x).

Thus,

d

dx
{F ′(x) sin x− F (x) cos x} = F (2)(x) sin x + F ′(x) cos x− [F ′(x) cos x− F (x) sin x]

= F (2)(x) sin x + F (x) sin x

= f(x) sin x.

Using the Fundamental Theorem of Calculus, we find that
∫ r

0

f(x) sin x dx = F ′(r) sin r − F (r) cos r + F (0).
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By Lemma 15.4, f(x) is a polynomial in (r−x)2 =⇒ F ′(r) = 0. By Lemma 15.3,
f(x) has the form of h(x) with n = p − 1 =⇒ p | f (j)(0) unless j = p − 1.
Examining the p− 1st derivative, we find that

f (p−1)(0) =
(p− 1)!a2p(2a)p−1

(p− 1)!
= a2p(2a)p−1.

Thus, choosing p > a =⇒ p - f (p−1)(0) and p | f (j)(0) for all other j. Therefore,
F (0) ∈ Z 3 p - F (0). Let F (0) = q; (p, q) = 1.

Now look at F (r).

f(r − x) =
x2p{r2 − x2}p−1b3p−1

(p− 1)!

=
x2p{a2 − b2x2}p−1bp+1

(p− 1)!

So f(r − x) has the form of h(x) from the lemma with n = p − 1 and g(x) =
xp+1{a2 − b2x2}p−1bp+1. Thus, every f (j)(r) ∈ Z is divisible by p because
g(0) = 0. For some m ∈ Z, F (r) = pm. Returning to the integral, we have

∫ r

0

f(x) sin x dx = −pm cos r + q.

Assume cos r ∈ Q; then cos r =
d

k
.

∫ r

0

f(x) sin x dx = −pm
d

k
+ q =⇒ k

∫ r

0

f(x) sin x dx = −pmd + kq

If we add another requirement to p: p > k =⇒ p - kq.

=⇒p - (−pmd + kq)
=⇒− pmd + kq 6= 0

But −pmd + kq ∈ Z.
∣∣∣∣k

∫ r

0

f(x) sin x dx

∣∣∣∣ < kr
r4p−2b3p−1

(p− 1)!

= kr3b2 {r4b3}p−1

(p− 1)!

=
c1c

p−1
2

(p− 1)!

where the constants c1 = kr3b2 and c2 = r4b3 are independent of p. Thus, as
p →∞,

c1c
p−1
2

(p− 1)!
→ 0.
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Therefore, we can choose p sufficiently large so that

−1 < k

∫ r

0

f(x) sin x dx < 1.

But
k

∫ r

0

f(x) sin x dx = −qmd + kq

is a non-zero integer. Thus, we have a contradiction.

Corollary 15.6. π is irrational.

Proof. If π ∈ Q, then cos π 6∈ Q, but cos π = −1.

Corollary 15.7. The trigonometric functions are irrational at non-zero ratio-
nal values of the arguments.

Proof. If sin r ∈ Q for r ∈ Q, r 6= 0, then 1 − 2 sin2 r = cos 2r ∈ Q. But this
conclusion contradicts the theorem since 2r ∈ Q.

If tan r ∈ Q for r ∈ Q, r 6= 0, then

cos 2r =
1− tan2 r

1 + tan2 r
∈ Q.

Again, we find a contradiction of the theorem.
For the same r, csc r, sec r, cot r 6∈ Q because they are reciprocals of irra-

tionals.

Corollary 15.8. Any non-zero value of an inverse trigonometric function is
irrational for rational arguments.

Proof. We will prove for arccos r because the other proofs are similar. For
r ∈ Q, assume arccos r = ρ ∈ Q. Then r = cos ρ is rational, contrary to the
theorem.

Theorem 15.9. The hyperbolic functions are irrational for non-zero rational
values of the arguments.

The proof of this theorem is almost identical to the proof of Theorem 15.5.
The function F (x) does not alternate sign in this proof, and the function to
which we apply the Fundamental Theorem of Calculus is slightly different. Once
the theorem is proven for cosh r, sinh r and tanh r follow by the same logic as
the above corollaries. We also get the same result for the inverse hyperbolic
functions.

Theorem 15.10. If r ∈ Q, r 6= 0, then er 6∈ Q. If r ∈ Q, r > 0 and r 6= 1,
then log r 6∈ Q.
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Proof. We could proceed in a similar fashion as the previous two theorems,
but instead we will use what we know about the hyperbolic functions. Since
r = log er, it suffices to prove for er. If er ∈ Q, then e−r ∈ Q, and so

cosh r =
er + e−r

2
∈ Q,

a contradiction.

Theorem 15.11. ∀ r ∈ Q, r > 0, logq r 6∈ Q unless r = qn for some n ∈ Z.

The proof follows from letting r =
a

b
, a fraction in lowest terms. Then,

assuming logqr =
c

d
, also a fraction in lowest terms, we get a contradiction by

showing that (c, d) 6= 1.

Theorem 15.12. e satisfies no relation of the form

amem + am−1e
m−1 + · · ·+ a1e + a0 = 0

for ai ∈ Z not all zero (i.e., e is transcendental).

We include this theorem in a section on irrationality because the method of
proof is similar to others in this section. We will not go through all the steps of
the proof, but in analogy to the other similar proofs, we have

f(x) =
xp−1(x− 1)p(x− 2)p · · · (x−m)p

(p− 1)!

F (x) = f(x) + f ′(x) + f (2) + · · ·+ f (mp+p−1)(x).

We differentiate e−xF (x) and apply the Fundamental Theorem of Calculus. The
rest of the proof proceeds as expected with a few small variations.

16 Bases, Finite Extensions, Conjugates and Dis-
criminants

Definition 16.1. K is an extension of F. A set of numbers in K, α1, α2, ..., αr

is linearly dependent (over F) if it is possible to find numbers c1, c2, ..., cr ∈ F ,
not all zero, such that

c1α1 + c2α2 + · · ·+ crαr = 0.

Otherwise the numbers αi are linearly independent.

Definition 16.2. A set of numbers β1, β2, ..., βs in K forms a basis for K over
F if for each β ∈ K, ∃ d1, d2, ..., ds ∈ F , unique numbers, such that

β = d1β1 + d2β2 + · · ·+ dsβs
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A basis is consequently linearly independent, for otherwise the numbers
would not be unique. Note that by Theorem 10.2, 1, θ, ..., θn−1 is a basis for
F (θ).

Theorem 16.3. All bases for K over F have the same number of elements.

The previous theorem suggests the following definition. K is a finite exten-
sion of degree n over F. We write n = (K/F ). Any n linearly independent
elements in K form a basis for K.

Theorem 16.4. If α1, α2, ..., αn is a basis for K over F and

βj =
n∑

i=1

aijαi , j = 1, 2, ..., n

where aij are in F, then β1, β2, ..., βn is also a basis if and only if det aij 6= 0.

Theorem 16.5. An extension K of F is finite if and only if it is a simple
algebraic extension.

The previous theorem equates the concepts of a finite extension and a simple
algebraic extension.

Theorem 16.6. If K is finite over F, and E over K, then E is finite over F.
Moreover

(E/F ) = (E/K) · (K/F )

Corollary 16.7. If K is a finite extension of degree n over F, then any element
α of K is algebraic over F. Additionally, the degree of α divides n.

Theorem 16.8. If α satisfies the equation

αnxn + αn−1x
n−1 + · · ·+ α0 = 0

where the αi are algebraic over F, then α is algebraic over F.

Let K = F (θ), n = (K/F ) and α ∈ K. The degree of α over F is m. We
can write α uniquely as

α =
n−1∑

i=0

ciθ
i = r(θ)

where ci ∈ F .

Definition 16.9. Denote the conjugates for θ as θ1, ..., θn. We can now define
the conjugates of α for F (θ):

αi = r(θi), i = 1, ..., n

Theorem 16.10. The conjugates of α for F (θ) are the conjugates over F (θ)
each repeated n/m times. Secondly, α is in F if and only if all conjugates for
F (θ) are the same. Lastly, F (α) = F (θ) if and only if all its conjugates for
F (θ) are distinct.
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Definition 16.11. Let α1, α2, ..., αn be a basis. Let α
(i)
j , i = 1, ..., n, be the

conjugates of αj for K. The discriminant for the basis is then:

4[α1, ..., αn] =
∣∣∣α(i)

j

∣∣∣
2

Theorem 16.12. The discriminant of any basis for F (θ) is in F and is never
zero. If F, θ and its conjugates are all real, then the discriminant of any basis
is positive.

17 Algebraic Integers and Integral Bases

This section seeks to define integers in algebraic number fields. These results
will prove useful in the proof of the Gelfond-Schneider Theorem.

We would like our definition of algebraic integers to fulfill the following
axioms based on the behavior of the rational integers and Gaussian integers:

1. They form a ring.

2. If α is an integer in Q(θ), and α ∈ Q, then α ∈ Z.

3. If α is an integer, the conjugates of α are also integers.

4. If γ ∈ Q(θ), then nγ is an algebraic integer for some non-zero n ∈ Z.

We find that the following definition fulfills the desired axioms:

Definition 17.1. An algebraic number is an algebraic integer if its minimal
polynomial is in Z[x].

By our definition of conjugates, Axiom 3 must be satisfied. Axiom 2 clearly
follows because the minimal polynomial of a rational number is of degree one,
and if the it fits the definition of algebraic integer, then the minimal polynomial
gives:

x + a0 = 0 =⇒ x = −a0 ∈ Z.

Now we want to show that the algebraic integers form a ring.

Lemma 17.2. If α satisfies any monic f(x) ∈ Z[x], then α ∈ I.
The proof follows by dividing f(x) by the minimal polynomial of α and

noticing that the minimal polynomial must be monic with integral coefficients.

Theorem 17.3 (Verification of Axiom 1). If Q(θ) is an algebraic number
field, then the integers in it form a ring.

Proof. We will prove that the algebraic integers are closed under addition; the
other properties are similarly verified. We provide this proof because it reveals
an important use of Corollary 8.4. Let α1, α2, . . . , αn and β1, β2, . . . , βk be the
conjugates over Q of the algebraic integers α = α1 and β = β1, respectively.
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By the conclusions in the Section 8, we know that the elementary symmet-
ric functions evaluated at β1, β2, . . . , βk are integers, and thus, any symmetric
polynomial in β1, β2, . . . , βk is an integer.

Let f(x) be the minimal polynomial for α. Define

h(x) =
k∏

j=1

f(x− βj).

The function f(x) has integral coefficients, so the coefficients of h(x) are sym-
metric polynomials in β1, β2, . . . , βk with integral coefficients. Therefore, h(x) ∈
Z[x]. Since f(x) is monic, so is h(x). Because f(α1) = 0, we get

h(α + β) = h(α1 + β1)

= f(α1 + β1 − β1)
k∏

j=2

f(α1 + β1 − βj)

= 0.

By Lemma 17.2, α+β ∈ I. Also, α+β is closed in Q(θ) because α, β ∈ Q(θ).

Corollary 17.4. The totality of algebraic integers forms a ring.

The proof is exactly as above except that we do not restrict α and β to the
same algebraic number field. Another conclusion that we can reach by similar
means is found in the next theorem.

Theorem 17.5. If α satisfies

f(x) = xn + γn−1x
n−1 + · · ·+ γ0 = 0

for γi ∈ I, then α ∈ I.
The proof defines

h(x) =
∏(

xn + γ
(in−1)
n−1 xn−1 + · · ·+ γ

(i0)
0

)

over all conjugates γ
(ij)
j . The rest mirrors the above proof.

Next, we prove that the fourth and final axiom follows from our definition
of algebraic integers.

Theorem 17.6 (Verification of Axiom 4). If θ is an algebraic number,
∃ r ∈ Z, r 6= 0, 3 rθ ∈ I.
Proof. We know that θ satisfies some

anxn + an−1x
n−1 + · · ·+ a0 = 0

for ai ∈ Z. Thus, anθ satisfies

xn + an−1x
n−1 + an−2anxn−2 + an−3a

2
nxn−3 + · · ·+ a0a

n−1
n = 0,

a monic polynomial with integer coefficients.
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Now we move on to define integral bases.

Definition 17.7. A set of algebraic integers α1, α2, . . . , αs is an integral basis
of Q(θ) if every algebraic integer α in Q(θ) can be uniquely expressed as

α = b1α1 + b2α2 + · · ·+ bsαs

with bi ∈ Z.

Lemma 17.8. An integral basis is a basis.

The proof follows from the definition of integral basis and the fact that
∀ β ∈ Q ∃ r ∈ N 3 rβ ∈ I. Note that if degQ(θ) = n, then s = n.

Lemma 17.9. If α1, α2, . . . , αn is a basis of Q(θ) over Q consisting only of
algebraic integers, then 4[α1, α2, . . . , αn] ∈ Z.

The proof follows directly from the axioms established at the beginning of
this section and Theorem 10.2.

Theorem 17.10. Every algebraic number field has at least one integral basis.

This proof considers all bases whose elements are algebraic integers. By
the lemma, the discriminants are integers, so we can choose the basis with
discriminant of minimum absolute value. If we suppose that such a basis is not
an integral basis, we can construct another basis with integer elements whose
discriminant has a smaller absolute value, contrary to our choice of basis.

Theorem 17.11. All integral bases for a field Q(θ) have the same discriminant.

The proof takes two arbitrary integral bases, and expresses each in terms of
the other. Taking the discriminants reveals that the discriminants must be the
same.

18 Liouville Inequality and Transcendental Sums

Definition 18.1. Let α be an algebraic number, and I is the set of algebraic
numbers. Then den(α) denotes the least positive integer d, such that dα ∈ I.
Definition 18.2. Let |α| denote the maximum of the absolute values of α and
its conjugates.

Theorem 18.3 (Liouville inequality). If α is a nonzero algebraic number
with deg(α) = n, then

log |α| ≥ −2nmax{log|α|, log den(α)}
This inequality can be used to prove the following two theorems:

Theorem 18.4. If α is an algebraic number with 0 < |α| < 1, then
∑∞

k=1 αk!

is transcendental.

Theorem 18.5. Let d be an integer greater than 1. If α is an algebraic number
with 0 < |α| < 1, then

∑∞
k=0 αdk

is transcendental.
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19 The Generalized Lindemann Theorem

In this section, we will outline the logic behind the Generalized Lindemann
Theorem, a very interesting result of transcendental number theory. Because
the theorem requires many preliminary lemmas, we will state the theorem now
so that the goal is clear from the beginning.

Theorem 19.1 (The Generalized Lindemann Theorem). Given any dis-
tinct algebraic numbers α1, α2, . . . , αm, the values eα1 , eα2 , . . . , eαm are linearly
independent over the field of algebraic numbers. Equivalently, the equation

m∑

j=1

aje
αj = 0

is impossible for a1, a2, . . . , am ∈ Q, not all zero.

Now we must provide the preliminary information. The proof requires many
results from symmetric polynomials and algebraic fields; we will not repeat
theorems which we have already proven.

Theorem 19.2. Let β1, β2, . . . , βn be roots of

f(x) = bxn + c1x
n−1 + · · ·+ cn = 0

in which b, ci ∈ Z. Let P (x1, x2, . . . , xn) be symmetric in x1, x2, . . . , xn with
rational coefficients. Then, P (β1, β2, . . . , βn) ∈ Q. If P has integer coefficients
and is of degree t, then btP (β1, β2, . . . , βn) ∈ Z.

Most of this theorem has been proven in the symmetric polynomial section.
The last statement follows from the fact that bβ1, bβ2, . . . , bβn are roots of

bn−1f(
x

b
) = xn + c1x

n−1 + bc2x
n−2 + · · ·+ bn−1cn = 0.

Lemma 19.3. Consider the q polynomials P1, P2, . . . , Pq in y1, y2, . . . , ym

Pj = f1(xj)y1 + f2(xj)y2 + · · ·+ fm(xj)ym

for j = 1, 2, . . . , q with coefficients fi(xj), where all the fi(x) ∈ F [x] for some
field F . The product

q∏

j=1

Pj

with the terms in y being collected has coefficients which are symmetric in
x1, x2, . . . , xq.

Any permutation of the product clearly leaves the sum of terms in yi’s un-
changed.

Now we must provide a new definition:
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Definition 19.4. Q(θ) is normal over Q if any polynomial irreducible over Q
that has one root in Q(θ) has all roots in Q(θ).

Theorem 19.5. Given any algebraic numbers α1, α2, . . . , αs, ∃ θ ∈ Q 3 Q(θ) ⊃
Q(α1, α2, . . . , αs) and Q(θ) is normal. That is to say, a multiple algebraic ex-
tension can always be contained in a normal, simple algebraic extension.

The proof has two parts. First, we know that ∃ γ 3 Q(γ) = Q(α1, α2, . . . , αs).
The conjugates of γ create a multiple algebraic extension that can be set equal
to a simple algebraic extension of θ. Second, we show that Q(θ) is normal. In
simple terms, this is done by writing any element ρ of Q(θ) as a polynomial
in the conjugates of gamma. Then, we create a new polynomial in x which
has rational coefficients because of its symmetry properties. Also, ρ satisfies its
minimal polynomial and the new construction, the minimal polynomial divides
the construction, and all roots of the construction are in Q(θ).

Lemma 19.6. Let Q(θ) be a normal algebraic extension of degree n over Q with
conjugates θ = θ(1), θ(2), . . . , θ(n). These conjugates regarded as polynomials in
θ, are merely permuted by the substitution of θ(i) for θ. More generally, if
F (x) ∈ Q[x], then the set

F (θ(1)), F (θ(2)), . . . , F (θ(n))

is permuted by the substitution of θ(i) for θ.

The proof of the lemma is more subtle than its statement may suggest. If
the minimal polynomial for θ is

xn + b1x
n−1 + bn = 0,

then we need to use the reduction rule

θn = −b1θ
n−1 − · · · − bn

on the conjugates of θ written as polynomials in θ. After some manipulation,
we reach a point where substitution of the conjugates creates a permutation or
θ satisfies a polynomial of degree n− 1. Since θ is of degree n, we can agree on
the former conclusion.

Lemma 19.7. Any element γ of Q(θ) and its conjugates over Q(θ) satisfy a
polynomial equation of degree n with integral coefficients.

The elementary symmetric polynomials in the conjugates of γ are symmetric
polynomials in the conjugates of θ. The elementary symmetric polynomials can
construct the minimal polynomial for γ with rational coefficients. Multiplying
by the least common denominator finishes the proof.

Lemma 19.8. Consider

f(x) =
m∑

j=1

ajx
αj g(x) =

t∑

j=1

bjx
βj
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with non-zero complex coefficients aj and bj and αj , βj ∈ Q. Assume all αj

are distinct and all βj are distinct. Taking the product f(x)g(x) and combining
terms with equal exponents guarantees at least one non-zero coefficient.

We find a simple, normal algebraic extension Q(θ) which contains all αj ’s
and all βj ’s. Then we write the αj ’s and βj ’s as polynomials in θ. After defining
a method for ordering our terms, we find that we are guaranteed that the first
term of the product has a unique exponent that will not cancel.

Now we can outline the proof of the Generalized Lindemann Theorem. First
we outline the proof of a modified version of the theorem, in which we only
prove linear independence over the rational numbers.

Theorem 19.9. Given any m distinct algebraic numbers α1, α2, . . . , αm, the
values eα1 , eα2 , . . . , eαm are linearly independent over Q.

Assume
m∑

j=1

aj exp (αj) = 0

for aj ∈ Q, not all zero. Throw out all terms with aj = 0 and multiply through
by a suitable integer to get aj ∈ Z. Use Theorem 19.5 to write all

αj =
n−1∑

i=0

rijθ
i.

Then we have conjugates

α
(k)
j =

n−1∑

i=0

rij(θ(k))i

for the n conjugates of θ, which will be distinct. The product

n∏

k=1

m∑

j=1

aj exp (α(k)
j ) =

r∑

j=0

cj exp (βj) = 0 (14)

with distinct βj by collecting terms. Note that aj ∈ Z =⇒ cj ∈ Z, and by
Lemma 19.8 the cj do not vanish. In Equation (14), substituting θ(i) permutes
the factors and makes βj → β

(i)
j .

⇒ 0 =
r∑

j=0

cj exp (β(1)
j ) =

r∑

j=0

cj exp (β(2)
j ) = · · · =

r∑

j=0

cj exp (β(n)
j ) (15)

Multiply the respective sums by exp {−β
(1)
0 }, exp {−β

(2)
0 }, . . . , exp {−β

(n)
0 }. Let

γ
(i)
j = β

(i)
j − β

(i)
0
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for j = 1, 2, . . . , r and all i. Note that all γ
(i)
j 6= 0 because the β

(i)
j are necessarily

distinct for fixed i. Equation (15) implies

0 = c0 +
r∑

j=1

cj exp (γ(1)
j ) = c0 +

r∑

j=1

cj exp (γ(2)
j ) = · · · = c0 +

r∑

j=1

cj exp (γ(n)
j ).

By Lemma 19.7, γ
(1)
j , γ

(2)
j , . . . , γ

(n)
j are roots of a polynomial with integer coef-

ficients

gj(z) = bjz
n + · · · = bj

n∏

i=1

{z − γ
(i)
j }

for all j.
Next, the proof makes use of the method found in the simple irrationality

section. We will provide the appropriate f(z) and F (z), but the details of this
section are excluded because we only intend to outline the proof.

f(z) =
(b1b2 · · · br)prnzp−1{∏r

j=1 gj(z)}p

(p− 1)!

F (z) = f(z) + f ′(z) + · · ·
We apply the Fundamental Theorem of Calculus to

{F (z) exp (−z)}′ = −f(z) exp (−z).

The only deviations from the established method is multiplication of the integral
by cj and exp (γ(i)

j ) and summing over all i and j. The limits of the integral are

0 and γ
(i)
j .

After carrying out the prescribed method, the modified theorem is proven.
Now we need to expand the proof to algebraic coefficients. We begin by assuming

m∑

j=0

aje
αj = 0 (16)

for aj , αj ∈ Q. Then we take conjugates of aj over some field Q(θ) containing
all aj . Then,

q∏

i=1

m∑

j=1

a
(i)
j exp (αj) = 0.

Lemma 19.3 =⇒ the product has coefficients symmetric in θ(1), θ(2), . . . , θ(q).
Then, Theorem 19.2 =⇒ the product has rational coefficients. And Lemma 19.8
=⇒ the product is not identically zero. Thus Equation (16) implies a contra-
diction of Theorem 19.9.

The Generalized Lindemann Theorem provides us with a simple way of prov-
ing the transcendence of some common expressions.

Theorem 19.10. The following numbers are transcendental:
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1. e and π

2. eα, sin α, cos α, tan α, sinhα, cosh α, and tanh α for every non-zero α ∈ Q.

3. log α, arcsin α, and the other inverses of functions in the second list.

Proof. The proof of this theorem has many redundancies, so we only provide a
few select proofs.
e: Let αj = j ∈ N ⊂ Q. Then e does not satisfy

m∑

j=0

aje
j = 0 aj ∈ Q.

eα: ∀ α ∈ Q, j ∈ N, αj ∈ Q

=⇒
m∑

j=0

aj(eα)j =
m∑

j=0

aje
αj 6= 0 aj ∈ Q.

π: Assume π ∈ Q. The algebraic numbers form a field =⇒ iπ ∈ Q =⇒ eiπ is
transcendental. This is a contradiction because eiπ = −1.
sin α: Assume sin α ∈ Q. Let sin α = a. Then

eiα − e−iα − 2iae0 = cos α + i sin α− cos α + i sin α− 2i sin α = 0

contrary to the linear independence of eiα, e−iα, and e0 over Q.
sinhα: If sinh α ∈ Q, then

eα − e−α

2
∈ Q,

a contradiction.
log α: Assume a = log α ∈ Q for α ∈ Q. Then ea = α ∈ Q. But a ∈ Q =⇒ ea =
α is transcendental, a contradiction.

Theorem 19.11. If α1, α2, . . . , αn are linearly independent over Q, then eα1 , eα2 , . . . , eαn

are algebraically independent over Q.

We must show that
∑

j1,j2,...,jn

cj1,j2,...,jn(eα1)j1(eα2)j2 · · · (eαn)jn 6= 0

for non-zero cj1,j2,...,jn ∈ Q. We can rewrite this expression as
∑

j1,j2,...,jn

cj1,j2,...,jn exp (α1j1 + α2j2 + · · ·+ αnjn) 6= 0.

As long as the ji’s are not all zero, we know that not all terms vanish. The sum
cannot be identically zero by the Generalized Lindemann Theorem.
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20 Units and Primes in Algebraic Number Fields

We now wish to extend our concepts of units, primes, and divisibility to algebraic
integers. Consider integers in a fixed algebraic number field K = Q(θ).

Definition 20.1. For α, β ∈ K, α divides β, written α | β, if
α

β
is an integer of

Q(θ).

Definition 20.2. ε is a unit if ε | 1.

Theorem 20.3. The units form a group under multiplication.

Proof. If we have two units a and b, then ∃ d and e 3

a · d = 1 b · e = 1.

Associativity holds because units are algebraic integers. We can show that,
therefore, the units are closed under multiplication:

(a · b) · (d · e) = (a · d) · (b · e) = 1 =⇒ a · b | 1.

The multiplicative identity axiom is fulfilled by the unit 1. The multiplicative
inverse axiom follows from that fact that for any unit a ∃ d 3 a · d = 1 =⇒ d is
a unit.

Definition 20.4. α is a prime if α 6= 0, α is not a unit, and any factorization
α = γβ =⇒ γ or β is a unit.

Definition 20.5. If α ∈ I of K and n = (K/Q), then α has n conjugates
α1, α2, . . . , αn forK. The norm of α, N(α) or Nα. is α1α2 · · ·αn.

Lemma 20.6. Nα ∈ Z
The norm of α is simply the constant term of α’s minimal polynomial raised

to some power, which is obviously an integer.

Lemma 20.7. N(αβ) = Nα ·Nβ

The lemma follows from the explicit expression of both sides of the equation.

Lemma 20.8. α is a unit ⇐⇒ Nα = ±1.

The lemma follows directly from the definition of unit, the definition of the
norm, and the previous lemma.

Theorem 20.9. If N(α) is a rational prime, α is prime in K.

The theorem follows from factoring α and taking the norm of the factor-
ization. The converse does not hold. For example, 3 is a prime in Q(i), but
N(3) = 9 in Q(i).
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Theorem 20.10. Every integer in K, not zero or a unit, can be factored into
a product of primes.

The proof is identical to the proof of the Fundamental Theorem of Arithmetic
except that one must take the norm of the factorization to guarantee that it
stops.

Corollary 20.11. There are infinite primes in an algebraic field.

The same argument that we used for rational integers works here.

21 Cauchy’s Theorem

We digress into complex variables because we require results from them to prove
the Gelfond-Schneider Theorem.

Definition 21.1. A subset A of C is disconnected if ∃ open sets U and V in C
that obey the following three conditions:

1. U and V are disjoint

2. A
⋂

U 6= ∅ and A
⋂

V 6= ∅

3. A ⊂ U
⋃

V

A set A is connected if it is not disconnected.

Definition 21.2. A non-empty set D in the complex plane that is both open
and connected is a domain in C.

Definition 21.3. A sequence 〈zn〉 in C has the complex number z0 as an
accumulation point if ∀ ε > 0, ∆(z0, ε) contains zn for infinitely many values of
n.

Definition 21.4. A subset A of the complex plane is compact if each sequence
in A has an accumulation point that belongs to A.

Theorem 21.5. Any pair of distinct points z0 and z1 in a plane domain D can
be made the endpoints of a polygonal arc lying in D.

Lemma 21.6. Suppose that U is an open set in the complex plane and that K
is a compact subset of U . ∃ a radius r > 0 3 ∀ z ∈ K, ∆(z, r) is contained in
U .

Theorem 21.7 (Cantor’s Theorem). Suppose that 〈Kn〉 is a sequence of
non-empty compact sets in C satisfying K1 ⊃ K2 ⊃ K3 · · · . Then

⋂∞
n=1 Kn is

not empty.
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Definition 21.8. A function f is analytic in U if U is a non-empty open subset
of the complex plane, f is a complex-valued function whose domain-set contains
U , and f is differentiable at every point in U .

Definition 21.9. A path γ in the complex plane is a continuous function of the
type γ : [a, b] → C, where [a, b] is a closed interval of real numbers. The range
of γ is called its trajectory, denoted by |γ|. The initial and terminal points are
γ(a) and γ(b), respectively. When these values coincide, γ is a closed path.

Definition 21.10. A path γ(t) = x(t) + iy(t) for a ≤ t ≤ b is smooth if its
derivative γ̇(t) with respect to the real parameter t, γ̇(t) = ẋ(t) + iẏ(t), exists
for each t in [a, b] and if the function γ̇ is continuous on the interval [a, b].

A path is piecewise smooth provided there is a partition P : a = t0 < t1 <
· · · < tn = b of the interval [a, b] with the property that the restriction of γ to
each of the intervals [tk−1, tk], 1 ≤ k ≤ n, is a smooth path.

Lemma 21.11. Let D be a domain in the complex plane, and let z0 and z1 be
points of D, not excluding the case z0 = z1. ∃ a piecewise smooth path in D
with initial point z0 and terminal point z1.

Lemma 21.12. Suppose that f : A → C and g : A → C are continuous
functions and that γ and β are piecewise smooth paths in A.

∫

γ

[f(z) + g(z)] dz =
∫

γ

f(z) dz +
∫

γ

g(z) dz; (i)
∫

γ

cf(z) dz = c

∫

γ

f(z) dz for any complex constant c; (ii)
∫

−γ

f(z) dz = −
∫

γ

f(z) dz; (iii)

if γ + β is defined, then
∫

γ+β

f(z) dz =
∫

γ

f(z) dz +
∫

β

f(z) dz; (iv)
∣∣∣∣
∫

γ

f(z) dz

∣∣∣∣ ≤
∫

γ

|f(z)| |dz| . (v)

Theorem 21.13. Suppose that a function f is continuous in an open set U and
that F is a primitive for f in U . If γ : [a, b] → U is a piecewise smooth path,
then ∫

γ

f(z) dz =
[
F (z)

]γ(b)

γ(a)

.

In particular, under the above hypotheses it is true that
∫

γ

f(z) dz = 0

for every closed, piecewise smooth path γ in U .
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Lemma 21.14. If a function f is analytic in an open set U , then
∫

∂R
f(z) dz =

0 for every closed rectangle R in U .

Lemma 21.15. If a function f is continuous in an open set U and analytic in
U ∼ {z0} for some points z0 ∈ U , then

∫

∂R

f(z) dz = 0

∀ closed rectangle R ∈ U .

Lemma 21.16. Let ∆ be an open disk on the complex plane, and let f be a
continuous function in ∆ with the property that

∫
∂R

f(z) dz for every closed
rectangle R in ∆ whose sides are parallel to coordinate axes. Then f has a
primitive in ∆. In particular,

∫
γ

f(z) dz = 0 for every closed, piecewise smooth
path γ in this disk.

Theorem 21.17 (Cauchy’s Theorem – Local Form). Suppose that ∆ is
an open disk in the complex plane and that f is a function which is analytic in
∆ (or, more generally, is continuous in ∆ and analytic in ∆ ∼ {z0} for some
point z0 ∈ ∆). Then

∫
γ

F (z) dz = 0 for every closed, piecewise smooth path
γ ∈ ∆.

This theorem follows from Lemma 21.15 and Lemma 21.16.

Lemma 21.18. Let γ be a piecewise smooth path in the complex plane, let h
be a function that is continuous on |γ|, and let k be a positive integer. The
function H defined in the open set U = C ∼ |γ| by

H(z) =
∫

γ

h(ζ) dζ

(ζ − z)k

is an analytic function whose derivative is given by

H ′(z) = k

∫

γ

h(ζ) dζ

(ζ − z)k+1
.

Definition 21.19. The winding number n(γ, z) of γ about z is defined by the
formula

n(γ, z) =
1

2πi

∫

γ

dζ

ζ − z
.

Theorem 21.20 (Cauchy’s Integral Formula – Local Form). For a func-
tion f analytic in an open disk ∆ and a closed piecewise smooth path γ in ∆,
we have

n(γ, z)f(z) =
1

2πi

∫

γ

f(ζ) dζ

ζ − z

∀ z ∈ ∆ ∼ |γ|.
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Proof. Fixing a point z ∈ ∆ ∼ |γ| and considering the function g : ∆ → C
defined as

g(ζ) =





[f(ζ)− f(z)
ζ − z

if ζ 6= z,

f ′(z) if ζ = z

we see that g is analytic in ∆ ∼ {z}. It is also at least continuous at z. Thus,
we can apply Theorem 21.17.

0 =
∫

γ

g(ζ) dζ

=
∫

γ

[f(ζ)− f(z)
ζ − z

dζ

=
∫

γ

f(ζ) dζ

ζ − z
− f(z)

∫

γ

dζ

ζ − z

=
∫

γ

f(ζ) dζ

ζ − z
− 2πin(γ, z)f(z),

which gives our result

n(γ, z)f(z) =
1

2πi

∫

γ

f(ζ) dζ

ζ − z
.

Definition 21.21. A cycle or a piecewise smooth cycle is a finite sequence of
closed piecewise smooth paths in the complex plane.

Definition 21.22. A cycle σ in an open set U is homologous to zero in U if
n(σ, 0) = 0 for every z in C ∼ U . Two cycles σ0 = (γ1, γ2, . . . , γp) and σ1 =
(β1, β2, . . . , βq) in U are homologous in U if the cycle σ = (γ1, γ2, . . . , γp, −β1,
−β2, . . . ,−βq) is homologous to zero in U . Two non-closed piecewise smooth
paths λ0 and λ1 in U are homologous in U if λ0 and λ1 share both the same
initial point and the same terminal point and if the closed path γ = λ0 − λ1 is
homologous to zero in U .

Theorem 21.23 (Cauchy’s Theorem). For a cycle σ in an open set U ,∫
σ

f(z) dz = 0 for every analytic function f in U ⇐⇒ σ is homologous to zero
in U .

Proof. Assume
∫

σ
f(z) dz = 0 for every analytic function f in U . If z ∈ C ∼ U ,

then f : U → C defined by f(ζ) = (ζ − z)−1 is clearly analytic. Therefore,

0 =
∫

σ

f(ζ) dζ =
∫

σ

dζ

ζ − z
= 2πin(σ, z).

That is to say, n(σ, z) = 0 for every z ∈ C ∼ U , and thus σ is homologous to
zero in U .
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Assuming that σ is homologous to zero in U has a more complicated proof,
which we will only outline. Consider the set V = {z ∈ C ∼ |σ| : n(σ, z) = 0}.
The set K = C ∼ V is compact, lies in U , and contains |σ|. Use Lemma 21.6 to
determine a δ > 0 3 ∀ z ∈ K, ∆(z, δ) lies inside U . Then, we can create a par-
tition of the complex plane of non-overlapping closed squares of side length δ/2.
K must be closed, so it can intersect only a finite number of these squares. The
disks ∆j of radius δ/2 concentric with the squares Q1, Q2, . . . , Qr intersecting
K must be contained by U and must contain the squares with which they are
concentric.

Consider an analytic function f in U . Fix a point z in the interior of a square
Qm. The local Cauchy integral formula on the disk ∆m gives

f(z) = n(∂Qm, z)f(z) =
1

2πi

∫

∂Qm

f(ζ) dζ

ζ − z
.

For j 6= m, n(∂Qj , z) = 0, so

0 = n(∂Qj , z)f(z) =
1

2πi

∫

∂Qj

f(ζ) dζ

ζ − z
.

For any z in the interior of any Qj ,

f(z) =
1

2πi

r∑

j=1

∫

∂Qj

f(ζ) dζ

ζ − z
.

If we look at the sides of the squares, we notice that integration along the side of
one square cancels the integration from another side. The only integrations that
do not cancel come from sides that are not shared and, thus, do not intersect
K. Call these sides λ1, λ2, . . . , λq:

f(z) =
1

2πi

q∑

k=1

∫

∂λk

f(ζ) dζ

ζ − z
. (17)

Use Lemma 21.18 to show that Equation 17 holds for all z of |σ|. Assume
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σ = (γ1, γ2, . . . , γp). Then use Equation 17 to get

∫

σ

f(z) dz =
∫

σ

{
1

2πi

q∑

k=1

∫

λk

f(ζ) dζ

ζ − z

}
dz

=
1

2πi

p∑

l=1

q∑

k=1

∫

γl

{∫

λk

f(ζ) dζ

ζ − z

}
dz

=
1

2πi

q∑

k=1

p∑

l=1

∫

λk

{∫

γl

f(ζ) dz

ζ − z

}
dζ

=
q∑

k=1

∫

λk

f(ζ)

{
p∑

l=1

1
2πi

∫

γl

dz

ζ − a

}
dζ

= −
q∑

k−1

∫

λk

f(ζ)
{

1
2πi

∫

σ

dz

z − ζ

}
dζ

= −
q∑

k=1

∫

λk

f(ζ)n(σ, ζ) dζ

= −
1∑

k=1

∫

λk

f(ζ) · 0 dζ = 0.

Theorem 21.24 (Cauchy’s Integral Formula). Suppose that a function f
is analytic in an open set U and that σ is a cycle in U which is homologous to
zero in this set. Then

n(σ, z)f(z) =
1

2πi

∫

σ

f(ζ) dζ

ζ − z

∀ z ∈ U ∼ |σ|.
The proof mirrors the local proof almost exactly.

Corollary 21.25. For a function f analytic in an open set U and cycles σ1

and σ2 in U that are homologous in this set,
∫

σ1

f(z) dz =
∫

σ2

f(z) dz.

Corollary 21.26. For a function f analytic in an open set U with non-closed
piecewise smooth paths λ0 and λ1 ∈ U that are homologous in this set,

∫

λ0

f(z) dz =
∫

λ1

f(z) dz.

Definition 21.27. A subset E of U is a discrete subset of U if E has no limit
point that belongs to U .

36



Definition 21.28. A function f has an isolated singularity at a point z0 of
the complex plane provided there exists an r > 0 with the property that f is
analytic in the punctured disk ∆∗(z0, r), yet not analytic in the full open disk
∆(z0, r).

Definition 21.29. A function f is analytic modulo isolated singularities in an
open set U under the following conditions: there is a discrete subset E of U ,
the singular set of f in U , with the feature that f is analytic in the open set
U ∼ E, but has a singularity at each point of E.

Using the notation from Definition 21.28, take for granted that f can be
represented in ∆∗ as f(z) =

∑∞
n=−∞ an(z − z0)n. Then, we have the following

definitions:

Definition 21.30. f has a removable singularity at z0 if an = 0 for every
negative index n.

Definition 21.31. S(z) =
∑∞

n=1 a−n(z − z0)−n is the singular part of f at z0.

Definition 21.32. The coefficient a−1 in the singular function S is called the
residue of f at z0, notated Res(z0, f).

Theorem 21.33 (Residue Theorem). For a function f analytic modulo iso-
lated singularities in an open set U , E the singular set of f in U , and a cycle
σ ∈ U ∼ E homologous to zero in U ,∫

σ

f(z) dz = 2πi
∑

z∈E

n(σ, z)Res(z, f).

Proof. We will only outline this proof. Using the properties of E and n(σ, z),
show that n(σ, z) 6= 0 for only finitely many points z ∈ E. Let these finitely
many points be ζ1, ζ2, . . . , ζp. Let V = (U ∼ E)

⋃{ζ1, ζ2, . . . , ζp}. Conclude
that n(σ, z) = 0 ∀ z ∈ C ∼ V (i.e., σ is homologous to 0 in V ).

Let Sk be the singular part of f at the point ζk. Sk is analytic in C ∼ {ζk};
f−Sk has a removable singularity at ζk. The function g = f−S1−S2−· · ·−Sp

is analytic in V except for removable singularities at ζ1, ζ2, . . . , ζp. Remove these
singularities to make g analytic in V . Use Cauchy’s Theorem to assert

0 =
∫

σ

g(z) dz =
∫

σ

f(z) dz −
p∑

k=1

∫

σ

Sk(z) dz

=⇒
∫

σ

f(z) dz =
p∑

k=1

∫

σ

Sk(z) dz.

Let S(z) =
∑∞

n=1 a−n(z − ζ0)−n for an arbitrary ζ0 ∈ E. S converges normally
in C ∼ {ζ0}, and converges uniformly on |σ|, which allows the computation

∫

σ

S(z) dz =
∫

σ

( ∞∑
n=1

a−n

(z − ζ0)n

)
dz =

∞∑
n=1

a−n

∫

σ

dz

(z − ζ0)n

= a−1

∫

σ

dz

z − ζ0
= 2πin(σ, ζ0)Res(ζ0, f).

37



Thus, we can conclude
∫

σ

f(z) dz = 2πi

p∑

k=1

n(σ, ζk)Res(ζk, f) = 2πi
∑

z∈E

n(σ, z)Res(z, f).

22 The Gelfond-Schneider Theorem

The Gelfond-Schneider Theorem gives the solution to Hilbert’s seventh problem,
which was published in the year 1900. The theorem was proved in 1934 by
Gelfond and independently in 1935 by Schneider.

The theorem can be stated in the following two equivalent ways:

Theorem 22.1. If α and β are algebraic numbers with α 6= 0, α 6= 1, and if
β 6∈ Q, then any value of αβ is transcendental.

Theorem 22.2. If α and γ are non-zero algebraic numbers, and if α 6= 1, then
(log γ)/(log α) is either rational or transcendental.

The second version of the theorem implies that, for example,

log10 r =
log r

log 10

is transcendental if r is not a power of 10.
The following lemmas are useful in proving the theorem.

Lemma 22.3 (Vandermonde determinant). Consider a determinant with
non-zero element ρa

j in the j-th row and the 1 + a-th column, with j = 1, 2, ..., t
and a = 0, 1, ..., t− 1. Then the determinant vanishes if and only if ρj = ρk for
some distinct pair of subscripts j, k.

Lemma 22.4. Consider m equations in n unknowns:

ak1x1 + · · ·+ aknxn = 0, k = 1, 2, · · · ,m,

with aij ∈ Z, and with 0 < m < n. Let the positive integer A be defined such that
A ≥ |aij | ,∀i, j. Then there is a non-trivial solution x1, x2, · · · , xn in rational
integers of our m equations such that

|xj | < 1 + (nA)m/(n−m), j = 1, 2, · · · , n

Lemma 22.5. Consider consider a field K of finite degree, a subset I of algebraic
integers in K and p equations in q unknowns:

αk1ξ1 + · · ·+ αknξn = 0, k = 1, 2, · · · , p,

with αij ∈ I, and with 0 < p < q. Let A ≥ 1 be an upper bound on the absolute
values of the coefficients and their conjugates , A ≥ ||αij || ,∀i, j. Then there is
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a positive constant c depending on the field K and not on p, q or the coefficients,
such that the equations have a non-trivial solution ξ1, ξ2, · · · , ξq in integers of
K such that

||ξk|| < c + c(cqA)p/(q−p), k = 1, 2, · · · , p

One application of the Gelfond-Schneider theorem is the following theorem,
the Gaussian version of Fermat’s last theorem.

Theorem 22.6. If a, b, c are strictly positive integers and n is a Gaussian
integer, then the an + bn = cn has a solution only when n = ±1 and ±2.

Proof. Let n = p + iq where p, q ∈ Z. Then we can write our equation and its
conjugate:

ap+iq + bp+iq = cp+iq

ap−iq + bp−iq = cp−iq

We multiply the two together:

a2p + b2p + (ab)p
(a

b

)iq

+ (ab)p

(
b

a

)iq

= c2p

Let z = a
b . Substituting z and multiplying by ziq we get:

(ab)pz2iq + (a2p + b2p − c2p)ziq + (ab)p = 0

Now ziq satisfies a polynomial with integer coefficients. However, we know
ziq must be transcendental by the Gelfond-Schneider theorem, unless of course
z = 1 or q = 0.

If q = 0, then we have Fermat’s Last Theorem, and we are done.
Otherwise, z = 1 and so a = b. Then we can take the norms of both sides

of our original equation, and solve for c:

2ap+iq = cp+iq

2ap = cp

c = a
p
√

2

Since c must be an integer, p = ±1. Then, dividing both sides of the first
equation by ap+iq, we get:

2 =
( c

a

)p+iq

so q must be zero, and we are done.
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23 The Riemann Zeta-Function

The zeta-function can be used to show that certain infinite sums yield transcen-
dental numbers.

Definition 23.1. The Riemann ζ-function is defined as a function of real num-
bers greater than 1 by

ζ(s) ≡
∞∑

n=1

1
ns

Definition 23.2. The kth Bernoulli number Bk is defined as k! times the kth
coefficient in the Taylor series for t

et−1

Theorem 23.3.

ζ(2k) = (−1)kπ2k 22k−1

(2k − 1)!

(
−B2k

2k

)
.

This gives rise to the following examples:

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
Note that the formula implies ζ(2k) is transcendental for all k.

24 Examples

This section demonstrates various conclusions from concepts developed in the
previous sections.
Example 1. 1 and i form an integral basis for Q(i). Furthermore, Q(i) and G,
the set of Gaussian integers, are the same set.

We already know that 1 and i are a basis for Q(i), so every integer α ∈ Q(i)
can be written α = a + bi for a, b ∈ Q. We must show that a, b ∈ Z. The
minimal polynomial for α is

(x− a− bi)(x− a + bi) = x2 − 2ax + a2 + b2 = 0.

Because α is an algebraic integer, 2a, (a2 + b2) ∈ Z. Suppose that a and b are
not integers. Then

2a ∈ Z =⇒ ∃ p 3 a =
p

2
in which p is odd.

b ∈ Q =⇒ b =
x

y

with (x, y) = 1. Then, ∃ k ∈ Z 3
p2

4
+

x2

y2
= k

p2y2 + 4x2 = 4y2k.
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Therefore,
4 | p2y2 =⇒ 4 | y2 =⇒ 2 | y

because p is odd. So we can express y = 2r for some integer r.

p2r2 + x2 = 4r2k =⇒ r2 | x2 =⇒ r | x
But (x, y) = (x, 2r) = 1 =⇒ r = 1 =⇒ y = 2 =⇒ x is odd. The equation

p2 + x2 = 4k

implies that 4k must be an even positive integer because both p2 and x2 are
positive odd integers.

4 | 4k =⇒ 4 | (p2 + x2) =⇒ p2 ≡ −x2 mod 4

For the square of any odd integer, we have

(2x + 1)2 mod 4 = (4x2 + 4x + 1) mod 4 = 1 =⇒ 4 - (p2 + x2).

We see that a rational a implies a contradiction, but is it possible for a ∈ Z
while b ∈ Q? Then, we would have

a2 +
x2

y2
= k.

But k − a2 ∈ Z, so this case implies that b ∈ Z.
To show that G ∼ Q(i), recall the definition of G:

G = {α = a + bi | a, b ∈ Z}.
We have just shown that all elements of Q(i) can be written in the same form
as the elements of G.
Example 2. If 1 and i form an integral basis for Q(i), then can we conclude that
the algebraic extension of an algebraic integer θ of degree 2 has the integral
basis 1 and θ? A counter example is simple to find. Consider the polynomial
x2 − 162 = 0, which has solutions x = ±9

√
2. If we adjoin one solution with

the rational numbers, Q(9
√

2), we can check our proposition. Any element of
Q(9

√
2) can be written as a + b · 9√2 with a, b ∈ Q by Theorem 10.2. Let

a = 1 and b = 1/3. The algebraic number 1 + (1/3) · 9√2 = 1 + 3
√

2 ∈ Q(9
√

2)
is actually an algebraic integer, contrary to 1/3 6∈ Z, as seen by its minimal
polynomial:

(x− 1− 3
√

2)(x− 1 + 3
√

2) = x2 − 2x− 17.

Example 3. Is there a relationship among the field extensionsQ
(
θ(1)

)
, Q

(
θ(2)

)
, . . . ,

Q
(
θ(n)

)
of the conjugates of algebraic numbers θ(1), θ(2), . . . , θ(n)?

We begin by looking at at a simple quadratic field extension Q(
√

6), which
has a basis 1 and

√
6. We know by Theorem 16.11 that 1 and −√6 is also a

basis for Q
(√

6
)

because
(

1
−√6

)
=

(
1 0
0 −1

)(
1√
6

)
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and ∣∣∣∣
1 0
0 −1

∣∣∣∣ = −1 6= 0.

The field extension Q(−√6) of the conjugate of
√

6 also has the basis 1 and −√6,
so the field extensions share all elements, that is to say Q(

√
6) = Q(−√6).

We find that the same conclusion can be reached about the field extensions
of conjugates of any minimal polynomial of degree 2. For a minimal polyno-
mial over the rational numbers, we multiply through by the greatest common
denominator to get a polynomial of the form

ax2 + bx + c = 0, a, b, c ∈ Z

which is known to have solutions

x =
−b±√b2 − 4ac

2a
.

We can find find a matrix relationship between the bases of the field extensions

Q

(
−b +

√
b2 − 4ac

2a

)
and Q

(
−b−√b2 − 4ac

2a

)
which has a nonzero determi-

nant: (
1

−b−√b2−4ac
2a

)
=

(
1 0
−b
a −1

)(
1

−b+
√

b2−4ac
2a

)

and ∣∣∣∣
1 0
−b
a −1

∣∣∣∣ = −1 6= 0.

This connection among field extensions of conjugates does not continue with
algebraic numbers of degree 3. Consider for example

x3 − 2 = 0

(note that we do not consider x3−1 = 0 because it is not a minimal polynomial).
First we want to find all the conjugates, so we factor out the real solution and
then use the quadratic formula:

(
x− 3

√
2
)(

x2 + 3
√

2x + 3
√

4
)

= 0

x = 3
√

2,
3
√

2

(
−1± i

√
3

2

)
.

The extension Q
(

3
√

2
)

contains no complex numbers, so it does not contain the
other conjugates of 3

√
2.

Consider one of the other extensions, Q
(

3
√

2
[(−1 + i

√
3
)
/2

])
, which has a

basis

1,
3
√

2

(
−1 + i

√
3

2

)
, and 3

√
4

(
−1− i

√
3

2

)
.
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So every α ∈ Q (
3
√

2
[(−1 + i

√
3
)
/2

])
can be written as

α = a1 + a2
3
√

2

(
−1 + i

√
3

2

)
+ a3

3
√

4

(
−1− i

√
3

2

)

with ai ∈ Q. If a2 = a3 = 0, then α ∈ Q. If either a2 or a3 6= 0, then α ∈ C.
Therefore, the real irrational conjugate 3

√
2 6∈ Q (

3
√

2
[(−1 + i

√
3
)
/2

])
. We also

find that

α 6= 3
√

2

(
−1− i

√
3

2

)

because such an α has no rational term (a1 = 0) and no terms with 3
√

4 (a3 = 0).
We cannot choose a rational a2 such that

a2
3
√

2

(
−1 + i

√
3

2

)
= 3
√

2

(
−1− i

√
3

2

)
.

This conclusion holds generally for minimal polynomials of the form

x3 − n = 0

for n ∈ Q. Notice that such a polynomial is minimal as long as n 6= q3 for any
q ∈ Q. We might suppose an exception exists if n2 = p3 for some p ∈ Q because
it will change the third basis element. This exception actually does not exist
because if n2 = p3, then ∃ q ∈ Q such that n = q3. This conclusion follows
from applying the Fundamental Theorem of Arithmetic to the numerator and
denominator of n2 = p3 =

x

y
. Factoring x into a product of primes reveals

that every prime must be raised to at least the sixth power for our equality to
hold. Similarly, y is a product of primes to at least the sixth power. Thus, the
numerator and denominator of n are products of primes to at least the third
power.

Example 4. Let ω =
−1 + i

√
3

2
and σ =

−1− i
√

3
2

. We have found that

Q
(

3
√

2
)
, Q

(
3
√

2ω
)
, and Q

(
3
√

2σ
)

are different fields. If we adjoin all three, we
know we can find an equivalent simple algebraic extension Q (θ).

We use the method used in the proof of Theorem 10.3 to find Q(θ) =
Q

(
3
√

2, 3
√

2ω
)
. Let α1 = β3 = 3

√
2, α2 = β1 = 3

√
2ω, and α3 = β2 = 3

√
2σ.

Then we must find the x’s that satisfy:

α1 + xβ1 = α1 + xβ2

α1 + xβ1 = α1 + xβ3

α1 + xβ1 = α2 + xβ2

α1 + xβ1 = α2 + xβ3

α1 + xβ1 = α3 + xβ2

α1 + xβ1 = α3 + xβ3.
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These solutions are: x = 0,−σ, 1, ω. We can pick any other x, say x = 2, and
let

θ = α1 + xβ1 = 3
√

2 + 2 · 3
√

2ω = i
3
√

2
√

3.

The fact that Q
(
i 3
√

2
√

3
)

= Q
(

3
√

2, 3
√

2ω
)

follows from the rest of the proof.
We could then try to find a γ such that Q(γ) = Q

(
i 3
√

2
√

3, 3
√

2σ
)
, which would

require finding the minimal polynomial for i 3
√

2
√

3 and then finding all its con-
jugates. Instead, we notice that

3
√

2σ =
−1
2

(i 3
√

2
√

3) +
−1
36

(i 3
√

2
√

3)4,

so 3
√

2σ ∈ Q(i 3
√

2
√

3). For any α ∈ Q(θ), Q(θ, α) = Q(θ) because Q(θ, α) is
defined to be the smallest field containingQ and both θ and α. Q(θ) fits this defi-
nition. Therefore Q( 3

√
2σ, i 3

√
2
√

3) = Q(i 3
√

2
√

3), and thus Q( 3
√

2, 3
√

2ω, 3
√

2σ) =
Q(i 3

√
2
√

3).

Example 5. The proof of Theorem 19.5 suggests a method for generating normal
simple algebraic extensions; namely, a simple algebraic extension equal to a
multiple algebraic extension of conjugates will always be normal.

For some γ ∈ Q of degree n, we have conjugates γ1, γ2, . . . , γn. By Theo-
rem 10.3, there exists θ such that Q(γ1, γ2, . . . , γn) = Q(θ). For any ρ ∈ Q(θ),
we must show that all conjugates of ρ are also in Q(θ). By a generalization of
Theorem 10.2, any element of Q(θ) = Q(γ1, γ2, . . . , γn) can be written as a poly-
nomial in of γ1, γ2, . . . , γn with rational coefficients (instead of a polynomial in
θ with rational coefficient). Let ρ = f(γ1, γ2, . . . , γn). Let

G(x) =
∏

{x− f(γi1 , γi2 , . . . , γin)}

over all permutations of i1, i2, . . . , in. The coefficients of G(x) are symmetric
polynomials in its roots f(γi1 , γi2 , . . . , γin). Any permutation of γ1, γ2, . . . , γn

merely permutes the f(γi1 , γi2 , . . . , γin) among themselves. Thus, the coeffi-
cients of G(x) are symmetric polynomials in γ1, γ2, . . . , γn and so are rational
numbers by Theorem 8.3. The polynomials g(x) and G(x) share the root ρ,
and because g(x) is minimal, g(x) must be a factor of G(x). But all roots of
G(x) = 0 are elements of Q(θ) because they can all be written as polynomials in
γ1, γ2, . . . , γn. All roots of g(x) = 0 are also roots of G(x) = 0 because g(x) is
a factor of G(x); therefore, all roots of g(x) = 0 are elements of Q(θ) as desired.

In Example 4, we found thatQ(i 3
√

2
√

3) = Q( 3
√

2, 3
√

2ω, 3
√

2σ) where 3
√

2, 3
√

2ω,
and 3

√
2σ are conjugates of x3 − 2 = 0. Therefore, Q(i 3

√
2
√

3) is normal.

Example 6. The set of all polynomials with integer coefficients is countable.
We have already agreed that every set of positive integers has a smallest

element. Thus, a set of infinitely many unique positive integers will have a
unique smallest element. We can map such a set to the positive integers by
letting the smallest element correspond to 1. If we remove the smallest element
from the set, we will have a new unique smallest element, which will correspond
to 2. We can continue this pattern to map a set of infinitely many unique
positive integers to the positive integers.
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If we can map the set of polynomials ∈ Z[x] to a set of positive integers, then
that set can be mapped to the positive integers, from which we can conclude
our desired result.

We assign two primes to each term of a polynomial in ascending order. The
constant term will be assigned 2 and 3; the first degree term will be assigned 5
and 7; the second degree term will be assigned 11 and 13; and so on. We have
proven that there exist infinitely many primes, so this method of assignment
can account for a polynomial of any degree. The smaller prime assigned to each
term will stand for a positive coefficient, and the larger prime will stand for
a negative coefficient. The primes will be raised to the absolute value of their
coefficients; for a polynomial of degree n, notice that only n primes will be raised
to powers even though we will have 2n possible primes for that polynomial. We
assign a number to the polynomial by multiplying together all the primes to
their appropriate powers. For instance, the polynomial

12x3 − 7x2 + 8x− 2

would be assigned the number

32 · 58 · 137 · 1712 = 128526614147073132472630078125.

As we can see, the assigned numbers get incredibly large very easily. Neverthe-
less, we know that each such number is unique from the Fundamental Theorem
of Arithmetic. Thus, we have mapped the set of polynomials ∈ Z[x] to a set
of infinitely many unique rational integers, which can be mapped to the set of
positive integers. Thus, the set of polynomials ∈ Z[x] is countable.

Note that not all positive integers will be assigned a polynomial. For exam-
ple, 12 = 22 · 3, which would imply that the constant term has both a positive
and a negative coefficient. Also, the ordering of the polynomials does not relate
any information about their complexity (not in the imaginary sense). For in-
stance, x2+x+1, which is assigned 2·5·11 = 110, would probably be considered
more complex than x − 20, which is assigned 320 · 5 = 17433922005. We can
use a similar method for proving the countability of polynomials ∈ Q[x], but
we would need three primes per term (one for a positive numerator, one for a
negative numerator, and one for the denominator) causing the assigned numbers
to become even larger. If we agreed that polynomials with the same solutions
were equivalent and did not need separate numbers, we could map Q[x] → Z[x].
Unfortunately, polynomials ∈ Z[x] could be equivalent with different numbers,
such as x2+x+1 and 2x2+2x+2. Therefore, the attempt to assign one number
to polynomials with the same solutions is laborious because we would have to
determine which polynomials are equivalent in this way.

Similarly, the countability of the algebraic numbers is possible but labori-
ous. First, we would only order minimal polynomials; thus, we would have to
check each polynomial for this feature. Second, we would start the assignment
of primes to coefficients with 3 instead of 2. We would reserve 2 to indicate
which solution to our polynomial we desired. We would order the solutions first
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according to their arguments in the complex plane, and then by their magni-
tudes. The number assigned to the first solution would have a factor of 2, that
assigned to the second would have a factor of 22, etc.

Example 7. We can use Lemma 22.5, which we used in the Gelfond-Schneider
Theorem, to find a bound for the solutions to a set of equations:

α11ξ1 + α12ξ2 + · · ·+ α1qξq = 0
α21ξ1 + α22ξ2 + · · ·+ α2qξq = 0

...
αp1ξ1 + αp2ξ2 + · · ·+ αpqξq = 0

in which 0 < p < q and αij ∈ Q. We will work out a specific example in which
αij ∈ Q(i). Let αij = i + j

√−1, p = 3, and q = 4:

(1 + i)ξ1 + (1 + 2i)ξ2 + (1 + 3i)ξ3 + (1 + 4i)ξ4 = 0
(2 + i)ξ1 + (2 + 2i)ξ2 + (2 + 3i)ξ3 + (2 + 4i)ξ4 = 0
(3 + i)ξ1 + (3 + 2i)ξ2 + (3 + 3i)ξ3 + (3 + 4i)ξ4 = 0.

Notice that maxi,j ‖αij‖ = ‖3 + 4i‖ = 25. Recall that ‖ξj‖ < c + c(cqA)
p

q−p .
We have determined A ≤ 25, so we have only to determine c in our bound.
According to the proof, we choose c > hc2 and c > h maxj ‖βj‖ in which
h = degQ(i) = 2, 1 + c1 maxj ‖βj‖ > c2 ≥ c1 maxj ‖βj‖, c1 > max(i,j)

maxi,j‖αij‖ , and
βj are the basis elements of Q(i). So we choose βj to be 1 and i; maxj ‖βj‖ = 1;
4
25

< c1 = 1; c2 = 1 · 1 = 1; and thus 2 < c = 3. Therefore,

‖ξj‖ < 3 + 3(3 · 4 · 25)3 = 27000003.

We see that even for the simple algebraic numbers we constructed, this bound
gets very large.

Example 8. We can rewrite some simple symmetric polynomials in the elemen-
tary symmetric polynomials to demonstrate Theorem 8.2. We begin with

x2
1 + x2

2 + · · ·+ x2
n.

Using the method in the proof, we know we will need the elementary symmetric
polynomials

σ2
1 =(x2

1 + x2
2 + · · ·+ x2

n)
+ 2(x1x2 + x1x3 + · · ·+ x1xn + x2x3 + . . . xn−1xn)

σ2 =x1x2 + x1x3 + · · ·+ x1xn + x2x3 + . . . xn−1xn.

Then, we can write
x2

1 + x2
2 + · · ·+ x2

n = σ2
1 − 2σ2.
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We can similarly treat

x3
1 + x3

2 + · · ·+ x3
n,

for which we will need

σ3
1 =(x3

1 + x3
2 + · · ·+ x3

n)

+ 3(x2
1x2 + x2

1x3 + · · ·+ x2
1xn + x2

2x3 + · · ·+ xn−1x
2
n)

+ 3(x1x2x3 + x1x2x4 + · · ·+ xn−2xn−1xn)

σ1σ2 =(x2
1x2 + x2

1x3 + · · ·+ x2
1xn + x2

2x3 + · · ·+ xn−1x
2
n)

+ 3(x1x2x3 + x1x2x4 + · · ·+ xn−2xn−1xn)

σ3 =(x1x2x3 + x1x2x4 + · · ·+ xn−2xn−1xn).

Then we see that

x3
1 + x3

2 + · · ·+ x3
n = σ3

1 − 3σ1σ2 + 6σ3.

Example 9. Define roots of unity to be solutions to polynomials of the form

xk − 1 = 0

for positive integers k. For example, ±1 and
−1± i

√
3

2
are roots of unity. We

can show that the roots of unity form a group under multiplication.
First, we show that for roots of unity α and β, αβ is also a root of unity.

By definition, there exist positive integers l and m such that

αl − 1 = 0 βm − 1 = 0

αl = 1 βm = 0.

Therefore,
(αl)m = 1m = 1 and (βm)l = 1l = 1.

Let k = l ·m so that αβ satisfies

xk − 1 = 0

because
(αβ)lm = (αl)m · (βm)l = 1.

We have established that multiplication is a binary operator on this set.
Associativity must hold because these are all algebraic numbers. The root of
unity 1 satisfies the criterion for the multiplicative identity. Now we show that
a multiplicative inverse exists. Let α satisfy xl−1 = 0. The equation xl−1 = 0
gives l roots of unity α = α1, α2, . . . , αl. We can factor our polynomial

(x− α1)(x− α2) · · · (x− αl) = 0
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where each αi also satisfies xl − 1 = 0 (i.e., αl
i = 1). When we take the product

α1α2 · · ·αl we must get the constant term of the polynomial, 1. Let the inverse
of α be

1
α1

= α2α3 · · ·αl.

This number satisfies xl − 1 = 0 because
(

1
α1

)l

− 1 = (α2α3 · · ·αl)l − 1

= αl
2α

l
3 · · ·αl

l − 1

= 1l1l · · · 1l − 1
= 1− 1
= 0.

Example 10. In this example, we look at a few properties of polynomials of the
form xn − 1 = 0.

Roots of such polynomials must all have a norm of 1 on the complex plane.
Therefore they can be written in the form eiθ. These roots are always located
on a unit circle, separated by equal angles of rotation.

To see this, label the roots xk, ordered by their arguments. Then xk = eiθk .
Substituting into the polynomial

(eiθk)n − 1 = 0

eiθkn = ei2πk where k ∈ Z
Therefore:

θkn = 2πk

θ

2π
=

k

n

Since k is an integer, the θk must be distributed evenly. This also means
that the k’s are a complete residue system modulo n.

Raising any root to an integer power is equivalent multiply its angle θ by
that power, thereby rotating to a different root on the circle. Therefore, raising
the k-th root to successive integer powers will yield all the other roots if and
only if (k, n) = 1.

Example 11. Now we can prove a more general version of Theorem 15.1:

Theorem 24.1. Given a polynomial

f(x) = cnxn + · · ·+ c0 = 0

where cnc0 6= 0, then then for any rational roots a
b , where (a, b) = 1, of f(x),

a | c0 and b | cn.
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Proof. Let x = a
b be a root for f(x). Then:

0 = cn
an

bn
+ cn−1

an−1

bn−1
+ · · ·+ c1

a

b
+ c0

0 = cnan + cn−1a
n−1b + · · ·+ c1abn−1 + c0b

n

Both a and b divide 0, and so they must both divide the right side of the
equation. a is a factor of all the terms of the right side except the last. Therefore
a | c0b

n. Since (a, b) = 1, then a | c0. Likewise, b is a factor of all the terms
except the first one, so b | cnan. Once again, b - a, so b | cn.

Example 12. Corollary 16.7 states that any element of K = F (θ) must have
degree m that divides the degree of K. From this we can draw a family of
conclusions. In general, any algebraic number of degree m cannot lie in an
extension of degree n if m - n. For example:

1. if θ has a fifth degree minimal polynomial, then
√

2 cannot expressed in
terms of a polynomial in θ.

2. 3
√

2 is not in Q( 7
√

6)

3. 7
√

6 is not in Q( 15
√

8)

Example 13. In this example we show that the transcendence of eπ follows from
the Gelfond-Schneider theorem.

We note the special formula for taking the logarithm of a complex number:

∀z ∈ C, log z = ln |z|+ i arg(z)

Since i and −2i are both algebraic, by the Gelfond-Schneider theorem, i−2i

is transcendental. Furthermore:

i−2i = e−2i log i

= e−2i(ln 1+i π
2 )

= e−2i(i π
2 )

= eπ

= 1 + π +
π2

2
+

π3

6
+ · · ·

Therefore eπ is also transcendental.

49



References

[1] Robert E. Greene and Steven G. Krantz, Function Theory of One Complex
Variable, Wiley, New York, 1997.

[2] Neal Koblitz, p-adic Numbers, p-adic Analysis, and Zeta Functions, Gradu-
ate Texts in Mathematics, Springer-Verlag, New York, 1977.

[3] Joseph Landin, Introduction to Algebraic Structures, Dover, New York, 1989.

[4] Kumiko Nishioka, Mahler Functions and Transcendence, Lecture Notes in
Mathematics 1631, Springer-Verlag, Berlin, 1996.

[5] Ivan Niven, Irrational Numbers, Fourth ed., Carus Mathematical Mono-
graphs, Mathematical Association of America, 1997.

[6] Bruce P. Palka, An Introduction to Complex Function Theory, Undergradu-
ate Texts in Mathematics, Springer-Verlag, New York, 1991.

[7] Harry Pollard and Harold G. Diamond, The Theory of Algebraic Numbers,
Third ed., Dover, New York, 1998.

[8] Walter Rudin, Principles of Mathematical Analysis, Second ed., McGraw-
Hill, New York, 1964.

[9] John Zuelke Fermat’s Last Theorem for Gaussian Integer Exponents, Amer-
ican Mathematical Monthly, Vol. 106.1, Jan. 1999, p. 49.

50


