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A compact Kahler manifold M is irreducible
(holomorphic) symplectic if:

(1) m(X) = {1}, and

(2) H?9(X) = Co with ¢ a holomorphic sym-
plectic form.

dim = 2: same as a K3 surface.

Examples: S c P3 a smooth quartic, S =
T/(—1) with T a 2-dim’l torus.

If dim > 2 the general theory developed mainly
by Beauville (~ 1980) and Huybrechts (~
2000) is very much like that of K3 surfaces;
we think of higher-dimensional irreducible sym-
plectic manifolds as higher dimensional K3's.

Remark: As shown by Beauville any irre-
ducible symplectic manifold can be deformed
to a projective one.



Hilbert schemes:

S a K3 surface.

Hilb"(S) = S .= {z c 8| £(0g/I,) = n}.
(1)
Let og be a non-zero 2-form on S. If
[{p1,.-opa}l € U p#pj forizj (2)
then

O s =, 506,85  (3)

and hence og defines a symplectic form on
@[Z]S[”] giving a symplectic holomorphic form
in @ neighborhood of [Z]. One can prove that
this form extends to a symplectic holomor-
phic form on all of slnl.



Theorem 1 (Beauville (Fujiki n = 2)). Sl" js
an irreducible symplectic manifold of dimen-
sion 2n.

n=1: then slll =g,

n = 2: then S2 is the blow-up of S(2) along
the diagonal.

In general: we have the cycle map

gln] <, g(n) (4)
Z = ZpESE(O ,Z)p
which is birational with irreducible exceptional
divisor

Ay = A{[Z]| Z is non-reduced}. (5)



Families of irreducible symplectic mani-
folds.

M is an irreducible symplectic manifold.

Theorem 2 (Bogomolov). Deformations of
M are unobstructed.

Remark: There are examples with non-vanishing
obstruction space H2(O,,).

By Bogomolov Def(M) is smooth and

dim Def(M) = h1(©,)) = b1 () = bo(M)—2.

(6)
Remark: We use the symplectic form to get
an isomorphism ©,; = Q,; and then the
Hodge decomposition and h29(M) = 1 to
get the last equality.



Examples: M = sl®l with § = K3.

n =11ie. M = §S: by Noether's equality
b>(M) = 22 and hence dim Def(M) = 20.

n > 2. by examining the cycle map (4) we
get that bob(M) = b>(K3)+ 1 = 23 and hence

dim Def(s")y =21, n>2. (7)

Thus the generic deformation of sl is not
of the form (K3)[": there is more to Sl
than K3's.



Assume D is a divisor on M with ¢1(D) #= 0O
(e.g. D effective). Let Def(M,D) C Def(M)
be ‘“deformations that keep c¢1(D) of type
(1,1)". Then Def(M,D) is smooth,

dimDef(M,D) =dim Def(M)—1 = bo(M)-—3.

(8)
Problem Assume D = H is ample: can we
describe explicitely all varieties parametrized
by Def(M,H)? (Here we are thinking also of
deformations “in the large”.)

dmM = 2 i.e. M a K3: No in general but
yves if H - H is small.

H-H = 2: then S — P2 double cover branched
over a sextic.

H.-H = 4: then S — P3 a smooth quartic or
a ‘‘degenerate case’.

etc.



What if dim M > 27

Beauville-Donagi: Let Z C P° be a smooth
cubic hypersurface and F(Z) be the set of
lines ¢ C Z. Then F(Z) is an irreducible
symplectic manifold deformation equivalent
to (K3)2l. (Why? If singZg = {p} and Zj
has an ordinary double point at p the set of
lines ¢ C Zg containing p is a K3 surface Sp;
when Z — Zg then F(Z) — SI[QQ].) We have
the Plucker embedding

F(Z) c Gr(1,P°) — P14 (9)

and hence the Plucker ample divisor class H
on F(Z). Varying Z we get all of Def(F(Z),H).



Moduli of sheaves

S a projective K3 surface or an abelian sur-
face, with choice of ample divisor D.

M(r,cq1,s) is the moduli space of coherent
pure D-semistable sheaves F' on S with

rk(F)=r, c1(F)=cq, (10)
and

r+s ifSisa K3,
xX(F) = o .
S if S is an abelian surface.

(11)

If S is an abelian surface we have

M(r,cq,s8) N S x Picc1(S) (12)
[F] —  (X(c), [det F])

where ¢ is the cycle map (4) and X is the
“summation map’”; &® is a locally trivial fi-
bration (except in pathological cases). Let

M(r,cq1,5)? 1= o 1(q, [L]). (13)



Mukai: M5t(r,cq,s) and M5t (r, cq,s)° are smooth,

dim M*(r,c1,8) =cf—2rs+2, (14)
Mt (r,cq,8)0 = c% —2rs—2. (15)

and they inherit from S a holomorphic sym-
plectic form.

Mukai, Huybrechts-Gottsche, O’G, Yoshioka:
Suppose M5t (r,cq1,s) = M(r,c1,s).

(a) If S is a K3 then M(r,c1,s) is irreducible
symplectic, a deformation of (K3)™ in gen-
eral not birational to (K3)[”].

(b) If S is an abelian surface then M (r, ¢y, s)°
IS irreducible symplectic, a deformation of a
generalized Kummer, by(M(r,cq1,5)°%) = 7.

Suppose dim M > 4 (dim M° > 4 if S ab. surf.).

Then NS(M) (respectively NS(M9)) has rank

at least 2; thus we do not get all of Def (M, H)

(respectively Def(MO°, H)) by varying (S, D).
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Suppose that Ms! £ M and dim M = 10(and
a technical genericity assumption on D). Let
S = K3: a suitable desingularization M of M
gives a new deformation class in dim = 10
with b>(M) > 24 (O'G). Let S be an abelian
surface: a suitable desingularization MO of
MO gives a new deformation class in dim =
6 with bo(M) = 8 (O'G). This construction
can be carried out only in these dimensions
(Kiem, Kaledin-Lehn-Sorger, Namikawa).
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Deformation classes

dim = 2: Kodaira (~ 1960) proved that any
two K3 surfaces are deformation equivalent.

Any dimension: Few deformation classes?
Let dim M = 2n. Topological restrictions:

(1) Verbitsky: Cup-product defines an injection

Sym'H2(M) — H?(M), i<n. (16)

(2) S. Salamon: A non-trivial linear relation
between 1 = bg, bo,...,bo,.

Explicitely:
bo =22, n=2. (17)

by = 46 + 10by — b3, n = 2. (18)
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Exercise: Let dimM = 4. Using (16)-(18)
show that b, (M) < 23 and that if bo(M) = 23
then

b3 (M) = 0, Sym?H?(M; Q) = H*(M; Q).
(19)

Notice: by((K3)[2) = 23.
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Idea: imitate Kodaira's proof in dim = 4
(thank Claire for this approach).

Need to fix some discreet invariants. An ir-
reducible symplectic 4-fold M is a numerical
(K3)12l if for S a K3 there exists an isomor-
phism of abelian groups

W H2(M:;7) == H2(S[2l: 7) (20)
such that

/Ma4 V(@)% ac HXOMZ). (21)

Project: classify numerical (K3)[2's up to
deformation of complex structure (and de-
termine the degree of period map).
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We deform M to X with H2''(X) = Zh with

4 _
/Xh — 12, (22)

i.e. (h,h) = 2. Then *h is ample by Huy-
brecht’s Projectivity criterion, so h ample.
We may assume that

hAhe H*X;Z)/Tors is indivisible. (23)

Furthermore we may assume that the Hodge
structure on H®*(X) is generic among those
subject to (22)-(23). Let H be a divisor with
h = c1(H). One has W9(Ox(H)) = 6 and
hence a rational map

X --» |H|Y = P°. (24)
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Theorem 3. Let X, H be as above. One of
the following holds:

(a) There exist an anti-symplectic involution
¢. X — X with quotient map f: X — Y
and an inclusion j:Y < |H|V such that
jo fis Map (24).

(b) Map (24) is birational onto Y with 6 <
degY < 12. (We can exclude degY < 8.)

Conjecture 4. Case (b) never occurs. Evi-
dence: if X, H satisfies (a) any small defor-
mation in Def(X, H) satisfies (a).

Sketch of proof?
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Problem: How do we describe the X in Case (a)?
(Thank Adrian.)

Let fsOx = Oy Pn be the decomposition into
eigen-spaces. Look for a “symmetric’ resolution

It turns out that the symmetric resolution
was written down by Eisenbud-Popescu-Walter
(without realizing the connection with irre-
ducible symplectic 4-folds).
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EPW sextics: Let V be a 6-dimensional vec-
tor space. Wedge product defines a sym-
plectic form on A3V (we trivialize A®V); thus
/\3V®OP(V) is a symplectic vector-bundle of
rank 20. Let F' be the sub-vector-bundle of
A3V ® Op(yy With fiber over ¢ € P(V) equal
to

Fy:=Im (e ® AN2(V/E) — /\3V> . (25)
Then F is a Lagrangian sub-bundle of A3V &
OIP’(V)-

For A € LG(A3V) we let
Aa: F— (APV/A) ® Opgyy (26)
be the obvious map. Let Y4 C P(V) be
Y, 1= div(det(Ay)). (27)

If Y4 # P(V) then Yy, is a sextic: this is an
EPW-sextic.
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Theorem 5. Let (X,H) be as in (a) of The-
orem (3). Then 'Y = X/(¢) is a (generic)
EPW-sextic. Conversely if Y is a generic
EPW-sexticand f.: X — Y is the natural dou-
ble cover then X is a deformation of (K3)I2l
and letting H := f*Oy (1) the couple (X, H)
satisfies (a) of Theorem (3).

Remark: The parameter space for generic
EPW-sextics is irreducible; thus if Conjec-
ture (4) holds any numerical (K3)[2l is a de-
formation of (Kk3)[2l.
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