Irreducible symplectic 4-folds which look like the Hilbert square of a K3

Kieran O'Grady

July 27, 2005

A compact Kähler manifold M is *irreducible* (holomorphic) symplectic if:

(1) $\pi_1(X) = \{1\}$, and

(2) $H^{2,0}(X) = \mathbb{C}\sigma$ with σ a holomorphic symplectic form.

dim = 2: same as a K3 surface.

Examples: $S \subset \mathbb{P}^3$ a smooth quartic, $S = T/\langle -1 \rangle$ with T a 2-dim'l torus.

If dim > 2 the general theory developed mainly by Beauville (\sim 1980) and Huybrechts (\sim 2000) is very much like that of K3 surfaces; we think of higher-dimensional irreducible symplectic manifolds as higher dimensional K3's.

Remark: As shown by Beauville any irreducible symplectic manifold can be deformed to a projective one.

Hilbert schemes:

S a K3 surface.

$$Hilb^{n}(S) = S^{[n]} := \{ Z \subset S | \ \ell(\mathcal{O}_{S}/I_{Z}) = n \}.$$
(1)

Let σ_S be a non-zero 2-form on S. If

 $[\{p_1,\ldots,p_n\}] \in S^{[n]}, \quad p_i \neq p_j \text{ for } i \neq j \quad (2)$ then

$$\Theta_{[Z]}S^{[n]} = \Theta_{p_1}S \oplus \dots \oplus \Theta_{p_n}S$$
(3)

and hence σ_S defines a symplectic form on $\Theta_{[Z]}S^{[n]}$ giving a symplectic holomorphic form in a neighborhood of [Z]. One can prove that this form extends to a symplectic holomorphic form on all of $S^{[n]}$.

Theorem 1 (Beauville (Fujiki n = 2)). $S^{[n]}$ is an irreducible symplectic manifold of dimension 2n.

n = 1: then $S^{[1]} = S$.

n = 2: then $S^{[2]}$ is the blow-up of $S^{(2)}$ along the diagonal.

In general: we have the cycle map

which is birational with irreducible exceptional divisor

$$\Delta_n := \{ [Z] | Z \text{ is non-reduced} \}.$$
 (5)

Families of irreducible symplectic manifolds.

M is an irreducible symplectic manifold.

Theorem 2 (Bogomolov). *Deformations of M are unobstructed.*

Remark: There are examples with non-vanishing obstruction space $H^2(\Theta_M)$.

By Bogomolov Def(M) is smooth and

dim
$$Def(M) = h^1(\Theta_M) = h^1(\Omega_M) = b_2(M) - 2.$$
 (6)

Remark: We use the symplectic form to get an isomorphism $\Theta_M \cong \Omega_M$ and then the Hodge decomposition and $h^{2,0}(M) = 1$ to get the last equality. **Examples:** $M = S^{[n]}$ with S = K3.

n = 1 i.e. M = S: by Noether's equality $b_2(M) = 22$ and hence dim Def(M) = 20.

 $n \ge 2$: by examining the cycle map (4) we get that $b_2(M) = b_2(K3) + 1 = 23$ and hence

dim $Def(S^{[n]}) = 21, \quad n \ge 2.$ (7)

Thus the generic deformation of $S^{[n]}$ is not of the form $(K3)^{[n]}$: there is more to $S^{[n]}$ than K3's.

Assume D is a divisor on M with $c_1(D) \neq 0$ (e.g. D effective). Let $Def(M, D) \subset Def(M)$ be "deformations that keep $c_1(D)$ of type (1,1)". Then Def(M, D) is smooth,

dim $Def(M, D) = \dim Def(M) - 1 = b_2(M) - 3.$ (8)

Problem Assume D = H is ample: can we describe <u>explicitely</u> all varieties parametrized by Def(M, H)? (Here we are thinking also of deformations "in the large".)

dim M = 2 i.e. M a K3: No in general but yes if $H \cdot H$ is small.

 $H \cdot H = 2$: then $S \to \mathbb{P}^2$ double cover branched over a sextic.

 $H \cdot H = 4$: then $S \hookrightarrow \mathbb{P}^3$ a smooth quartic or a "degenerate case".

etc.

What if dim M > 2?

Beauville-Donagi: Let $Z \subset \mathbb{P}^5$ be a smooth cubic hypersurface and F(Z) be the set of lines $\ell \subset Z$. Then F(Z) is an irreducible symplectic manifold deformation equivalent to $(K3)^{[2]}$. (Why? If $singZ_0 = \{p\}$ and Z_0 has an ordinary double point at p the set of lines $\ell \subset Z_0$ containing p is a K3 surface S_p ; when $Z \to Z_0$ then $F(Z) \to S_p^{[2]}$.) We have the Plücker embedding

$$F(Z) \subset \operatorname{Gr}(1, \mathbb{P}^5) \hookrightarrow \mathbb{P}^{14}$$
 (9)

and hence the Plücker ample divisor class H on F(Z). Varying Z we get all of Def(F(Z), H).

Moduli of sheaves

S a projective K3 surface or an abelian surface, with choice of ample divisor D.

 $M(r, c_1, s)$ is the moduli space of coherent pure *D*-semistable sheaves *F* on *S* with

$$rk(F) = r, \quad c_1(F) = c_1,$$
 (10)

and

$$\chi(F) = \begin{cases} r+s & \text{if } S \text{ is a } K3, \\ s & \text{if } S \text{ is an abelian surface.} \end{cases}$$
(11)

If S is an abelian surface we have

$$\begin{array}{ccccccc}
M(r,c_1,s) & \xrightarrow{\Phi} & S \times Pic^{c_1}(S) \\
[F] & \mapsto & (\Sigma(c),[\det F])
\end{array} (12)$$

where c is the cycle map (4) and Σ is the "summation map"; Φ is a locally trivial fibration (except in pathological cases). Let

$$M(r, c_1, s)^0 := \Phi^{-1}(a, [L]).$$
 (13)

Mukai: $M^{st}(r, c_1, s)$ and $M^{st}(r, c_1, s)^0$ are smooth,

dim
$$M^{st}(r, c_1, s) = c_1^2 - 2rs + 2,$$
 (14)
 $M^{st}(r, c_1, s)^0 = c_1^2 - 2rs - 2.$ (15)

and they inherit from S a holomorphic symplectic form.

Mukai, Huybrechts-Göttsche, O'G, Yoshioka:

Suppose
$$M^{st}(r, c_1, s) = M(r, c_1, s)$$
.

(a) If S is a K3 then $M(r, c_1, s)$ is irreducible symplectic, a deformation of $(K3)^{[n]}$ in general <u>not</u> birational to $(K3)^{[n]}$.

(b) If S is an abelian surface then $M(r, c_1, s)^0$ is irreducible symplectic, a deformation of a generalized Kummer, $b_2(M(r, c_1, s)^0) = 7$.

Suppose dim $M \ge 4$ (dim $M^0 \ge 4$ if S ab. surf.). Then NS(M) (respectively $NS(M^0)$) has rank at least 2; thus we do <u>not</u> get all of Def(M, H)(respectively $Def(M^0, H)$) by varying (S, D). Suppose that $M^{st} \neq M$ and dim M = 10 (and a technical genericity assumption on D). Let S = K3: a suitable desingularization \widetilde{M} of Mgives a *new deformation class* in dim = 10 with $b_2(\widetilde{M}) \ge 24$ (O'G). Let S be an abelian surface: a suitable desingularization \widetilde{M}^0 of M^0 gives a *new deformation class* in dim = 6 with $b_2(\widetilde{M}) = 8$ (O'G). This construction can be carried out only in these dimensions (Kiem, Kaledin-Lehn-Sorger, Namikawa).

Deformation classes

dim = 2: Kodaira (\sim 1960) proved that any two K3 surfaces are deformation equivalent.

Any dimension: Few deformation classes?

Let dim M = 2n. Topological restrictions:

(1) Verbitsky: Cup-product defines an injection

$$Sym^{i}H^{2}(M) \hookrightarrow H^{2i}(M), \quad i \leq n.$$
 (16)

(2) *S. Salamon:* A non-trivial linear relation between $1 = b_0, b_2, \dots, b_{2n}$.

Explicitely:

$$b_2 = 22, \quad n = 2.$$
 (17)

$$b_4 = 46 + 10b_2 - b_3, \quad n = 2.$$
 (18)

<u>Exercise</u>: Let dim M = 4. Using (16)-(18) show that $b_2(M) \le 23$ and that if $b_2(M) = 23$ then

$$b_3(M) = 0, \qquad Sym^2 H^2(M; \mathbb{Q}) \cong H^4(M; \mathbb{Q}).$$
(19)

Notice: $b_2((K3)^{[2]}) = 23$.

<u>Idea</u>: imitate Kodaira's proof in dim = 4 (thank *Claire* for this approach).

Need to fix some discreet invariants. An irreducible symplectic 4-fold M is a *numerical* $(K3)^{[2]}$ if for S a K3 there exists an isomorphism of abelian groups

$$\psi \colon H^2(M;\mathbb{Z}) \xrightarrow{\sim} H^2(S^{[2]};\mathbb{Z})$$
 (20)

such that

$$\int_{M} \alpha^{4} = \int_{S^{[2]}} \psi(\alpha)^{4}, \quad \alpha \in H^{2}(M; \mathbb{Z}).$$
(21)

<u>Project</u>: classify numerical $(K3)^{[2]}$'s up to deformation of complex structure (and determine the degree of period map).

We deform M to X with $H^{1,1}_{\mathbb{Z}}(X) = \mathbb{Z}h$ with

$$\int_{X} h^{4} = 12,$$
 (22)

i.e. (h,h) = 2. Then $\pm h$ is ample by *Huy-brecht's Projectivity criterion*, so *h* ample. We may assume that

 $h \wedge h \in H^4(X;\mathbb{Z})/Tors$ is indivisible. (23) Furthermore we may assume that the Hodge structure on $H^{\bullet}(X)$ is generic among those subject to (22)-(23). Let H be a divisor with $h = c_1(H)$. One has $h^0(\mathcal{O}_X(H)) = 6$ and hence a rational map

$$X \dashrightarrow |H|^{\vee} \cong \mathbb{P}^5.$$
 (24)

Theorem 3. Let *X*, *H* be as above. One of the following holds:

- (a) There exist an anti-symplectic involution $\phi: X \to X$ with quotient map $f: X \to Y$ and an inclusion $j: Y \hookrightarrow |H|^{\vee}$ such that $j \circ f$ is Map (24).
- (b) Map (24) is birational onto Y with $6 \le \deg Y \le 12$. (We can exclude $\deg Y \le 8$.)

Conjecture 4. Case (b) never occurs. Evidence: if X, H satisfies (a) any small deformation in Def(X, H) satisfies (a).

Sketch of proof?

Problem: How do we describe the X in Case (a)? (Thank Adrian.)

Let $f_*\mathcal{O}_X = \mathcal{O}_Y \oplus \eta$ be the decomposition into eigen-spaces. Look for a "symmetric" resolution of $j_*\eta$.

It turns out that the symmetric resolution was written down by Eisenbud-Popescu-Walter (without realizing the connection with irreducible symplectic 4-folds). *EPW sextics:* Let *V* be a 6-dimensional vector space. Wedge product defines a symplectic form on $\wedge^3 V$ (we trivialize $\wedge^6 V$); thus $\wedge^3 V \otimes \mathcal{O}_{\mathbb{P}(V)}$ is a symplectic vector-bundle of rank 20. Let *F* be the sub-vector-bundle of $\wedge^3 V \otimes \mathcal{O}_{\mathbb{P}(V)}$ with fiber over $\ell \in \mathbb{P}(V)$ equal to

$$F_{\ell} := Im\left(\ell \otimes \wedge^2(V/\ell) \hookrightarrow \wedge^3 V\right).$$
 (25)

Then F is a Lagrangian sub-bundle of $\wedge^{3}V \otimes \mathcal{O}_{\mathbb{P}(V)}$.

For $A \in \mathbb{LG}(\wedge^3 V)$ we let

$$\lambda_A \colon F \longrightarrow (\wedge^3 V/A) \otimes \mathcal{O}_{\mathbb{P}(V)}$$
(26)

be the obvious map. Let $Y_A \subset \mathbb{P}(V)$ be

$$Y_A := div(\det(\lambda_A)).$$
 (27)

If $Y_A \neq \mathbb{P}(V)$ then Y_A is a sextic: this is an *EPW-sextic*.

Theorem 5. Let (X, H) be as in (a) of Theorem (3). Then $Y = X/\langle \phi \rangle$ is a (generic) EPW-sextic. Conversely if Y is a generic EPW-sextic and $f: X \to Y$ is the natural double cover then X is a deformation of $(K3)^{[2]}$ and letting $H := f^* \mathcal{O}_Y(1)$ the couple (X, H)satisfies (a) of Theorem (3).

Remark: The parameter space for generic EPW-sextics is irreducible; thus if Conjecture (4) holds any numerical $(K3)^{[2]}$ is a deformation of $(K3)^{[2]}$.