Irreducible symplectic 4-folds which look like the Hilbert square of a $K 3$

Kieran O'Grady

$$
\text { July 27, } 2005
$$

A compact Kähler manifold M is irreducible (holomorphic) symplectic if:
(1) $\pi_{1}(X)=\{1\}$, and
(2) $H^{2,0}(X)=\mathbb{C} \sigma$ with σ a holomorphic symplectic form.
$\operatorname{dim}=2$: same as a $K 3$ surface.
Examples: $S \subset \mathbb{P}^{3}$ a smooth quartic, $S=$ $T /\langle-1\rangle$ with T a 2 -dim'l torus.

If $\operatorname{dim}>2$ the general theory developed mainly by Beauville (\sim 1980) and Huybrechts (\sim 2000) is very much like that of $K 3$ surfaces; we think of higher-dimensional irreducible symplectic manifolds as higher dimensional K3's.

Remark: As shown by Beauville any irreducible symplectic manifold can be deformed to a projective one.

Hilbert schemes:

S a $K 3$ surface.

$$
\begin{equation*}
\operatorname{Hilb}^{n}(S)=S^{[n]}:=\left\{Z \subset S \mid \ell\left(\mathcal{O}_{S} / I_{Z}\right)=n\right\} \tag{1}
\end{equation*}
$$

Let σ_{S} be a non-zero 2-form on S. If

$$
\begin{equation*}
\left[\left\{p_{1}, \ldots, p_{n}\right\}\right] \in S^{[n]}, \quad p_{i} \neq p_{j} \text { for } i \neq j \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
\Theta_{[Z]} S^{[n]}=\Theta_{p_{1}} S \oplus \cdots \oplus \Theta_{p_{n}} S \tag{3}
\end{equation*}
$$

and hence σ_{S} defines a symplectic form on $\Theta_{[Z]} S^{[n]}$ giving a symplectic holomorphic form in a neighborhood of [Z]. One can prove that this form extends to a symplectic holomorphic form on all of $S^{[n]}$.

Theorem 1 (Beauville (Fujiki $n=2$)). $S^{[n]}$ is an irreducible symplectic manifold of dimension $2 n$.
$n=1$: then $S^{[1]}=S$.
$n=2$: then $S^{[2]}$ is the blow-up of $S^{(2)}$ along the diagonal.

In general: we have the cycle map

$$
\begin{array}{ccc}
S^{[n]} & \xrightarrow{c} & S^{(n)} \\
Z & \mapsto & \sum_{p \in S} \ell\left(\mathcal{O}_{p, Z}\right) p \tag{4}
\end{array}
$$

which is birational with irreducible exceptional divisor

$$
\begin{equation*}
\Delta_{n}:=\{[Z] \mid Z \text { is non-reduced }\} . \tag{5}
\end{equation*}
$$

Families of irreducible symplectic manifolds.

M is an irreducible symplectic manifold.
Theorem 2 (Bogomolov). Deformations of M are unobstructed.

Remark: There are examples with non-vanishing obstruction space $H^{2}\left(\Theta_{M}\right)$.

By Bogomolov $\operatorname{Def}(M)$ is smooth and $\operatorname{dim} \operatorname{Def}(M)=h^{1}\left(\Theta_{M}\right)=h^{1}\left(\Omega_{M}\right)=b_{2}(M)-2$.
(6)

Remark: We use the symplectic form to get an isomorphism $\Theta_{M} \cong \Omega_{M}$ and then the Hodge decomposition and $h^{2,0}(M)=1$ to get the last equality.

Examples: $M=S^{[n]}$ with $S=K 3$.
$n=1$ i.e. $M=S$: by Noether's equality $b_{2}(M)=22$ and hence $\operatorname{dim} \operatorname{Def}(M)=20$.
$n \geq 2$: by examining the cycle map (4) we get that $b_{2}(M)=b_{2}(K 3)+1=23$ and hence

$$
\begin{equation*}
\operatorname{dim} \operatorname{Def}\left(S^{[n]}\right)=21, \quad n \geq 2 \tag{7}
\end{equation*}
$$

Thus the generic deformation of $S^{[n]}$ is not of the form (K3) ${ }^{[n]}$: there is more to $S^{[n]}$ than K3's.

Assume D is a divisor on M with $c_{1}(D) \neq 0$ (e.g. D effective). Let $\operatorname{Def}(M, D) \subset \operatorname{Def}(M)$ be "deformations that keep $c_{1}(D)$ of type $(1,1)$ ". Then $\operatorname{Def}(M, D)$ is smooth, $\operatorname{dim} \operatorname{Def}(M, D)=\operatorname{dim} \operatorname{Def}(M)-1=b_{2}(M)-3$.

Problem Assume $D=H$ is ample: can we describe explicitely all varieties parametrized by $\operatorname{Def}(M, H)$? (Here we are thinking also of deformations "in the large".)
$\operatorname{dim} M=2$ i.e. M a $K 3$: No in general but yes if $H \cdot H$ is small.
$H \cdot H=2$: then $S \rightarrow \mathbb{P}^{2}$ double cover branched over a sextic.
$H \cdot H=4$: then $S \hookrightarrow \mathbb{P}^{3}$ a smooth quartic or a "degenerate case".
etc.

What if $\operatorname{dim} M>2$?

Beauville-Donagi: Let $Z \subset \mathbb{P}^{5}$ be a smooth cubic hypersurface and $F(Z)$ be the set of lines $\ell \subset Z$. Then $F(Z)$ is an irreducible symplectic manifold deformation equivalent to (K3) ${ }^{[2]}$. (Why? If $\operatorname{sing} Z_{0}=\{p\}$ and Z_{0} has an ordinary double point at p the set of lines $\ell \subset Z_{0}$ containing p is a $K 3$ surface S_{p}; when $Z \rightarrow Z_{0}$ then $F(Z) \rightarrow S_{p}^{[2]}$.) We have the Plücker embedding

$$
\begin{equation*}
F(Z) \subset \operatorname{Gr}\left(1, \mathbb{P}^{5}\right) \hookrightarrow \mathbb{P}^{14} \tag{9}
\end{equation*}
$$

and hence the Plücker ample divisor class H on $F(Z)$. Varying Z we get all of $\operatorname{Def}(F(Z), H)$.

Moduli of sheaves

S a projective $K 3$ surface or an abelian surface, with choice of ample divisor D.
$M\left(r, c_{1}, s\right)$ is the moduli space of coherent pure D-semistable sheaves F on S with

$$
\begin{equation*}
r k(F)=r, \quad c_{1}(F)=c_{1}, \tag{10}
\end{equation*}
$$

and

$$
\chi(F)= \begin{cases}r+s & \text { if } S \text { is a } K 3 \\ s & \text { if } S \text { is an abelian surface }\end{cases}
$$

(11)

If S is an abelian surface we have

$$
\begin{array}{ccc}
M\left(r, c_{1}, s\right) & \xrightarrow{\Phi} & S \times P_{i c}^{c_{1}}(S) \tag{12}\\
{[F]} & \mapsto & (\Sigma(c),[\operatorname{det} F])
\end{array}
$$

where c is the cycle map (4) and Σ is the "summation map"; Φ is a locally trivial fibration (except in pathological cases). Let

$$
\begin{equation*}
M\left(r, c_{1}, s\right)^{0}:=\Phi^{-1}(a,[L]) \tag{13}
\end{equation*}
$$

Mukai: $M^{s t}\left(r, c_{1}, s\right)$ and $M^{s t}\left(r, c_{1}, s\right)^{0}$ are smooth,

$$
\begin{align*}
\operatorname{dim} M^{s t}\left(r, c_{1}, s\right) & =c_{1}^{2}-2 r s+2 \tag{14}\\
M^{s t}\left(r, c_{1}, s\right)^{0} & =c_{1}^{2}-2 r s-2 \tag{15}
\end{align*}
$$

and they inherit from S a holomorphic symplectic form.

Mukai, Huybrechts-Göttsche, O'G, Yoshioka:

Suppose $M^{s t}\left(r, c_{1}, s\right)=M\left(r, c_{1}, s\right)$.
(a) If S is a $K 3$ then $M\left(r, c_{1}, s\right)$ is irreducible symplectic, a deformation of (K3) ${ }^{[n]}$ in general not birational to $(K 3)^{[n]}$.
(b) If S is an abelian surface then $M\left(r, c_{1}, s\right)^{0}$ is irreducible symplectic, a deformation of a generalized Kummer, $b_{2}\left(M\left(r, c_{1}, s\right)^{0}\right)=7$.

Suppose $\operatorname{dim} M \geq 4$ ($\operatorname{dim} M^{0} \geq 4$ if S ab. surf.). Then $N S(M)$ (respectively $N S\left(M^{0}\right)$) has rank at least 2; thus we do not get all of $\operatorname{Def}(M, H)$ (respectively $\operatorname{Def}\left(M^{0}, H\right)$) by varying (S, D).

Suppose that $M^{s t} \neq M$ and $\operatorname{dim} M=10$ (and a technical genericity assumption on D). Let $S=K 3$: a suitable desingularization \widetilde{M} of M gives a new deformation class in dim $=10$ with $b_{2}(\widetilde{M}) \geq 24$ ($\mathrm{O}^{\prime} \mathrm{G}$). Let S be an abelian surface: a suitable desingularization \widetilde{M}^{0} of M^{0} gives a new deformation class in $\operatorname{dim}=$ 6 with $b_{2}(\widetilde{M})=8\left(O^{\prime} \mathrm{G}\right)$. This construction can be carried out only in these dimensions (Kiem, Kaledin-Lehn-Sorger, Namikawa).

Deformation classes

$\operatorname{dim}=2$: Kodaira (~ 1960) proved that any two $K 3$ surfaces are deformation equivalent.

Any dimension: Few deformation classes?

Let $\operatorname{dim} M=2 n$. Topological restrictions:
(1) Verbitsky: Cup-product defines an injection

$$
\begin{equation*}
\operatorname{Sym}^{i} H^{2}(M) \hookrightarrow H^{2 i}(M), \quad i \leq n . \tag{16}
\end{equation*}
$$

(2) S. Salamon: A non-trivial linear relation between $1=b_{0}, b_{2}, \ldots, b_{2 n}$.

Explicitely:

$$
\begin{gather*}
b_{2}=22, \quad n=2 \tag{17}\\
b_{4}=46+10 b_{2}-b_{3}, \quad n=2 \tag{18}
\end{gather*}
$$

Exercise: Let $\operatorname{dim} M=4$. Using (16)-(18) show that $b_{2}(M) \leq 23$ and that if $b_{2}(M)=23$ then

$$
b_{3}(M)=0, \quad \operatorname{Sym}^{2} H^{2}(M ; \mathbb{Q}) \cong H^{4}(M ; \mathbb{Q})
$$

Notice: $b_{2}\left((K 3){ }^{[2]}\right)=23$.

Idea: imitate Kodaira's proof in dim $=4$ (thank Claire for this approach).

Need to fix some discreet invariants. An irreducible symplectic 4 -fold M is a numerical (K3) ${ }^{[2]}$ if for S a $K 3$ there exists an isomorphism of abelian groups

$$
\begin{equation*}
\psi: H^{2}(M ; \mathbb{Z}) \xrightarrow{\sim} H^{2}\left(S^{[2]} ; \mathbb{Z}\right) \tag{20}
\end{equation*}
$$

such that

$$
\begin{equation*}
\int_{M} \alpha^{4}=\int_{S_{[2]}} \psi(\alpha)^{4}, \quad \alpha \in H^{2}(M ; \mathbb{Z}) . \tag{21}
\end{equation*}
$$

Project: classify numerical (K3) ${ }^{[2]}$'s up to deformation of complex structure (and determine the degree of period map).

We deform M to X with $H_{\mathbb{Z}}^{1,1}(X)=\mathbb{Z} h$ with

$$
\begin{equation*}
\int_{X} h^{4}=12 \tag{22}
\end{equation*}
$$

i.e. $(h, h)=2$. Then $\pm h$ is ample by Huybrecht's Projectivity criterion, so h ample. We may assume that

$$
\begin{equation*}
h \wedge h \in H^{4}(X ; \mathbb{Z}) / \text { Tors is indivisible. } \tag{23}
\end{equation*}
$$

Furthermore we may assume that the Hodge structure on $H^{\bullet}(X)$ is generic among those subject to (22)-(23). Let H be a divisor with $h=c_{1}(H)$. One has $h^{0}\left(\mathcal{O}_{X}(H)\right)=6$ and hence a rational map

$$
\begin{equation*}
X \rightarrow|H|^{\vee} \cong \mathbb{P}^{5} . \tag{24}
\end{equation*}
$$

Theorem 3. Let X, H be as above. One of the following holds:
(a) There exist an anti-symplectic involution $\phi: X \rightarrow X$ with quotient map $f: X \rightarrow Y$ and an inclusion $j: Y \hookrightarrow|H|^{\vee}$ such that $j \circ f$ is Map (24).
(b) Map (24) is birational onto Y with $6 \leq$ $\operatorname{deg} Y \leq 12$. (We can exclude deg $Y \leq 8$.)

Conjecture 4. Case (b) never occurs. Evidence: if X, H satisfies (a) any small deformation in $\operatorname{Def}(X, H)$ satisfies (a).

Sketch of proof?

Problem: How do we describe the X in Case (a)? (Thank Adrian.)

Let $f_{*} \mathcal{O}_{X}=\mathcal{O}_{Y} \oplus \eta$ be the decomposition into eigen-spaces. Look for a "symmetric" resolution of $j_{*} \eta$.

It turns out that the symmetric resolution was written down by Eisenbud-Popescu-Walter (without realizing the connection with irreducible symplectic 4-folds).

EPW sextics: Let V be a 6-dimensional vector space. Wedge product defines a symplectic form on $\wedge^{3} V$ (we trivialize $\wedge^{6} V$); thus $\wedge^{3} V \otimes \mathcal{O}_{\mathbb{P}(V)}$ is a symplectic vector-bundle of rank 20. Let F be the sub-vector-bundle of $\wedge^{3} V \otimes \mathcal{O}_{\mathbb{P}(V)}$ with fiber over $\ell \in \mathbb{P}(V)$ equal to

$$
\begin{equation*}
F_{\ell}:=\operatorname{Im}\left(\ell \otimes \wedge^{2}(V / \ell) \hookrightarrow \wedge^{3} V\right) . \tag{25}
\end{equation*}
$$

Then F is a Lagrangian sub-bundle of $\wedge^{3} V \otimes$ $\mathcal{O}_{\mathbb{P}(V)}$ 。

For $A \in \mathbb{L} \mathbb{G}\left(\wedge^{3} V\right)$ we let

$$
\begin{equation*}
\lambda_{A}: F \longrightarrow\left(\wedge^{3} V / A\right) \otimes \mathcal{O}_{\mathbb{P}(V)} \tag{26}
\end{equation*}
$$

be the obvious map. Let $Y_{A} \subset \mathbb{P}(V)$ be

$$
\begin{equation*}
Y_{A}:=\operatorname{div}\left(\operatorname{det}\left(\lambda_{A}\right)\right) . \tag{27}
\end{equation*}
$$

If $Y_{A} \neq \mathbb{P}(V)$ then Y_{A} is a sextic: this is an EPW-sextic.

Theorem 5. Let (X, H) be as in (a) of Theorem (3). Then $Y=X /\langle\phi\rangle$ is a (generic) EPW-sextic. Conversely if Y is a generic $E P W$-sextic and $f: X \rightarrow Y$ is the natural double cover then X is a deformation of $(K 3)^{[2]}$ and letting $H:=f^{*} \mathcal{O}_{Y}(1)$ the couple (X, H) satisfies (a) of Theorem (3).

Remark: The parameter space for generic EPW-sextics is irreducible; thus if Conjecture (4) holds any numerical (K3) ${ }^{[2]}$ is a deformation of (K3) ${ }^{[2]}$.

