Hilbert's original 14th problem and certain moduli spaces

Shigeru MUKAI
(RIMS, Kyoto Univ.)
$\rho: G \longrightarrow G L(N, \mathbf{C})$, or $G \stackrel{\rho}{ค} V \simeq \mathbf{C}^{N}$
N-dimensional linear representation of an algebraic group G
$G \curvearrowright \mathrm{C}\left[x_{1}, \ldots, x_{N}\right]=\mathrm{C}[V]=: S$
induced action (called linear action on a polynomial ring.)

$$
S^{G}=\left\{f\left(x_{1}, \ldots, x_{N}\right) \mid f^{g}=f \quad \forall g \in G\right\}
$$

Original 14th problem Is S^{G} finitely generated (as ring over C)?

RIMS preprint \#1343(2001), \#1502(2005) http://www.kurims.kyoto-u.ac.jp

Yes,
if G is finite. (Easy)
if $G=S L(m) . \quad$ (Hilbert 1890)
if G is reductive. (Hilbert $+\cdots$)

More generally, let $G \curvearrowright R$ be action on a ring over \mathbf{C}.

Theorem $\quad R$ finitely generated, G reductive $\Rightarrow R^{G}$ finitely generated

By the exact sequence

$$
1 \rightarrow G^{u} \rightarrow G \rightarrow G^{r e d} \rightarrow 1
$$

we have

Corollary $R^{G^{u}}$ finitely generated $\Rightarrow R^{G}$ finitely generated

Boiled down 14th problem Is S^{G} finitely generated for unipotent G ?

Yes,
if $G=\mathrm{G}_{a} . \quad$ (thm of Weitzenböck)
(action of G_{a}
\Leftrightarrow action of \mathbf{C} with polynomial coefficients
\Leftrightarrow locally finite derivation)

No Counterexample by Nagata in 1958

Metaproblem

Find good criteria of finite and non-finite generation of S^{G}
(for unipotent algebraic group G).

No Counterexample for $\mathrm{G}_{a}^{3} \quad$ (M. 2001)

Open problem

Is S^{G} finitely generated for a linear action of $G=\mathrm{G}_{a}^{2}$ on a polynomial ring?
(action of $\mathrm{G}_{a}^{2} \Leftrightarrow$ commutative pair of locally finite derivations)

I will answer two problems affirmatively for Nagata invariant rings.

§1 Nagata action and the main theorem

Consider the standard unipotent action

$$
\mathbf{C}^{n} \curvearrowright \mathbf{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]=: S_{2 n}
$$

$\left(t_{1}, \ldots, t_{n}\right) \quad\left\{\begin{array}{l}x_{i} \mapsto x_{i} \\ y_{i} \mapsto y_{i}+t_{i} x_{i}\end{array} \quad 1 \leq i \leq n\right.$.
$G \subset \mathbf{C}^{n} \quad s$-dimensional general linear subspace, $\quad r:=n-s$ (codimension)

Restriction

$$
\mathrm{G}_{a}^{s}=\mathrm{C}^{s} \simeq G \quad \curvearrowright \quad S_{2 n}
$$

is called a Nagata action.

Nagata'58 studied the case $r=3$ and showed that S^{G} is not finitely generated for square numbers $n=m^{2} \geq 16$.

Theorem The invariant ring $S_{2 n}^{G}$, $\operatorname{dim} G=$ s, is finitely generated if and only if

$$
\frac{1}{r}+\frac{1}{s}+\frac{1}{2}>1
$$

This condition is equivalent to the finiteness of the Weyl group of $T_{r, s, 2}$.

Special cases

(1) $\operatorname{dim} G=2 \Rightarrow S_{2 n}^{G}$ is f.g. for $\forall n$.
(2) $\operatorname{dim} G=3$
$(n, r)=(8,5), \mathrm{C}^{3} \curvearrowright S_{16} \Rightarrow$ f.g.
$(n, r)=(9,6), \mathrm{C}^{3} \curvearrowright S_{18} \Rightarrow$ not f.g.
Two proofs for 'if' (Nagata) part
(M.) geometry of moduli of vector bundles advantage: Determines movable cone and chamber structure
(Castravet-Tevelev) algebraic advantage: Determination of set of generators

Three-legged diagram

$T_{r, s, t}$

$W\left(T_{r, s, t}\right) \quad$ Weyl group
generators w_{1}, \ldots, w_{n}

$$
n=r+s+t-2=(\# \text { of vertices })
$$

relations $w_{1}^{2}=\cdots=w_{n}^{2}=1$

$$
\begin{array}{lllll}
w_{i} w_{j}=w_{j} w_{i} & \text { if } & \stackrel{i}{\circ} & { }_{\circ}^{j} & \text { (not joined) } \\
\left(w_{i} w_{j}\right)^{3}=1 & \text { if } & \stackrel{i}{\circ}-j & \text { (joined) }
\end{array}
$$

finite group $\quad \Leftrightarrow \quad \frac{1}{r}+\frac{1}{s}+\frac{1}{t}>1$
$\Leftrightarrow A_{n}, D_{n}$ or $E_{6,7,8}$

§2 Geometrization

$G \subset \mathbf{C}^{n}$:general linear subspace of codim r
$X_{G}=$ Blow-up of P^{r-1}, the projectivization of C^{n} / G, at n points p_{1}, \ldots, p_{n} which are the images of standard basis of \mathbf{C}^{n}

Theorem ($r \geq 3$)
$S_{2 n}^{G} \simeq \bigoplus_{a, b_{1}, \ldots, b_{n} \in \mathbb{Z}} H^{0}\left(X_{G}, \mathcal{O}_{X}\left(a h-\sum_{i} b_{i} e_{i}\right)\right)$
$\simeq \bigoplus_{L \in \operatorname{Pic} X} H^{0}(X, L)=: T C\left(X_{G}\right)$, or $\operatorname{Cox}\left(X_{G}\right)$
$\mathcal{O}_{X}(h):=\pi^{*} \mathcal{O}_{\mathbf{P}}(1)$

$e_{i}:=$ exceptional divisor over p_{i}

Discussion in the case $r=3$

$$
\frac{y_{i}}{x_{i}} \mapsto \frac{y_{i}}{x_{i}}+t_{i}, \quad\left(t_{1}, \ldots, t_{n}\right) \in \mathbf{C}^{n}
$$

$\exists 3$ independent linear combinations

$$
X=\sum a_{i} \frac{y_{i}}{x_{i}}, \quad Y=\sum b_{i} \frac{y_{i}}{x_{i}}, \quad Z=\sum c_{i} \frac{y_{i}}{x_{i}}
$$

which are G invariants.

$$
\tilde{X}=\left(\prod x_{i}\right) X, \tilde{Y}=\left(\prod x_{i}\right) Y, \tilde{Z}=\left(\prod x_{i}\right) Z
$$

and $x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}$ generate

$$
\mathbf{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}, y_{1}, \ldots, y_{n}\right]^{G}
$$

Hence

$$
S^{G}=\mathrm{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}, \tilde{X}, \tilde{Y}, \tilde{Z}\right]^{G} \cap S
$$

Form $F(\tilde{X}, \tilde{Y}, \tilde{Z})$ on \mathbf{P}^{2} vanishes at $p_{1} \Leftrightarrow$ $F(\tilde{X}, \tilde{Y}, \tilde{Z}) / x_{i} \in S$
§3 Proof of Nagata direction $\frac{1}{r}+\frac{1}{s}+\frac{1}{2} \leq 1 \Rightarrow S_{2 n}^{G}$ not finitely generated

Action of Weyl group $W\left(T_{r, s, 2}\right)$ on $H^{2}\left(X_{G}, \mathbb{Z}\right)$ (monodromy)

A_{n-1} part \leftrightarrow permutation of p_{1}, \ldots, p_{n}

Extra root $h-e_{1}-\cdots-e_{r}$
\leftrightarrow standard Cremona transformation

$$
\begin{gathered}
\mathbf{P}^{r-1} \leftarrow \cdots \rightarrow \mathbf{P}^{r-1} \\
\left(x_{1}: \cdots: x_{r}\right) \leftrightarrow\left(\frac{1}{x_{1}}: \cdots: \frac{1}{x_{r}}\right)
\end{gathered}
$$

$$
\frac{1}{r}+\frac{1}{s}+\frac{1}{2} \leq 1
$$

$W\left(T_{r, s, 2}\right)$ is infinite and X_{G} has infinitely many " (-1)-divisors"
(Simplest is the case $r=3$ and $s=3$: $B l_{9} \mathbf{P}^{2}$ has infinitely many (-1) \mathbf{P}^{1} s.)

Effective semi-group Eff $X_{G} \subset$ Pic $X_{G} \simeq$ \mathbb{Z}^{n+1} is not finitely generated
§4 Proof of f.g. direction
$\frac{1}{r}+\frac{1}{s}+\frac{1}{2}>1 \Rightarrow S_{2 n}^{G}$, or $T C\left(X_{G}\right)$, finitely generated
(A) Case division

r s	$\begin{array}{lll} 1 & & 2 \\ & 1 & \end{array}$	2	$\begin{array}{lll}3 & & \\ 3 & 4 & 5\end{array}$	$\begin{array}{ll}4 & 5 \\ 3 & 3\end{array}$
$T_{r, s, 2}$	$A_{n} \quad A_{n} \quad D_{n}$	D_{n}	$E_{6} \quad E_{7} \quad E_{8}$	$E_{7} \quad E$
X_{G}		$\begin{gathered} B l_{n} \\ \mathbf{P}^{n-3} \end{gathered}$		
pf		moduli of bundles on Y_{G}		
Y_{G}		$\begin{aligned} & \text { pointed } \\ & \mathbf{D} 1 \end{aligned}$		

(B) Birational geometry

Basic technique:
L line bundle
$|L|$ base point free $\Rightarrow \oplus_{n \geq 0} H^{0}\left(L^{n}\right)$ finitely generated
L semiample (\Leftrightarrow some multiple is base point free) \Rightarrow the same
L_{1}, \ldots, L_{k} semin-ample line bundles on X $\Rightarrow \oplus_{n_{1}, \ldots, n_{k} \geq 0} H^{0}\left(L_{1}^{n_{1}} \otimes \cdots \otimes\left(L_{k}^{n_{k}}\right)\right.$ finitely generated

Theorem $\frac{1}{r}+\frac{1}{s}+\frac{1}{2}>1, \quad r \geq 3$
(1) Eff X_{G} is finitely generated.
(2) \exists decomposition Mov $X_{G}=\cup_{i} C_{i}$ into finitely many chambers such that each C_{i} is generated by finitely many semi-ample linebundles on a variety X_{i} isomorphic to X_{G} in codimension one.
(C) Moduli of bundles
$G \subset \mathbf{C}^{n} \quad s$-dimensional general linear subspace

$$
Y_{G}=\left(\mathbf{P}^{*} G ; q_{1}, \ldots, q_{n}\right)
$$

Coble dual, or Gale transformation of

$$
\left(\mathbf{P}_{*}\left(\mathbf{C}^{n} / G\right) ; p_{1}, \ldots, p_{n}\right)
$$

Restriction of

$$
\operatorname{Aut}(\mathcal{O} \oplus \mathcal{O}(1)) \curvearrowright \bigoplus_{i}(\mathcal{O} \oplus \mathcal{O}(1))_{q_{i}}
$$

to the unipotent part ($\simeq \mathrm{G}_{a}^{2}$) is Nagata action.
$V / \mathbf{G}_{a}^{2} \cdot \mathbf{G}_{m}^{n+1}$ is isomrphic to X_{G} in codimsnsion one.
$s=3, n=7,8 \quad V / \mathrm{G}_{a}^{2} \cdot \mathrm{G}_{m}^{n+1}$ is isomorphic to moduli of 2-bundles on $B l_{q_{1}, \ldots, q_{n}} \mathbf{P}^{2}$ in codimnsion one.
$s=2 \quad V / \mathbf{G}_{a}^{2} \cdot \mathbf{G}_{m}^{n+1}$ is isomorphic to moduli of parabolic 2-bundles on n-pointed projective line ($\mathbf{P}^{1}: q_{1}, \ldots, q_{n}$) in codimnsion one.

Theorem is proved by moduli change under variation of polarizations.
$\S 5$ Generalization by H. Naito and open problem

Fix a decomposition

$$
\{1,2, \ldots, n\}=\coprod_{j=1}^{m} N_{j}, \quad\left|N_{j}\right| \geq 1
$$

$\mathrm{C}^{n} \curvearrowright \mathrm{C}\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]=: S_{m+n}$
$\left(t_{1}, \ldots, t_{n}\right) \quad \begin{cases}x_{i} \mapsto x_{i} & 1 \leq i \leq n \\ y_{i} \mapsto y_{i}+t_{i} x_{j} & i \in N_{j}\end{cases}$
($\left|N_{j}\right|=1 \forall j \Rightarrow$ Nagata action)
$G \subset \mathbf{C}^{n} \quad s$-dimensional general linear subspace, $\quad r:=n-s$ (codimension)

Geometrization Theorem

$$
\begin{gathered}
r \geq\left|N_{j}\right|+2 \quad \forall j \Rightarrow S_{m+n}^{G} \simeq T C\left(X_{G}\right) \\
X_{G}=B l_{L_{1}, \ldots, L_{m}} \mathbf{P}^{r-1}
\end{gathered}
$$

\mathbf{P}^{r-1} is projectivization of \mathbf{C}^{n} / G and L_{j} is image of $\mathbf{C}^{N_{j}} \subset \mathbf{C}^{n}$.

Problem When is S_{m+n}^{G} finitely generated?

