Hilbert's original 14th problem and certain moduli spaces

Shigeru MUKAI (RIMS, Kyoto Univ.)

 $\rho: G \longrightarrow GL(N, \mathbf{C})$, or $G \stackrel{\rho}{\curvearrowright} V \simeq \mathbf{C}^N$ N-dimensional linear representation of an algebraic group G

 $G \curvearrowright \mathbf{C}[x_1, \dots, x_N] = \mathbf{C}[V] =: S$ induced action (called *linear action* on a polynomial ring.)

 $S^G = \{f(x_1, \dots, x_N) \mid f^g = f \quad \forall g \in G\}$

Original 14th problem Is S^G finitely generated (as ring over C)?

RIMS preprint #1343(2001), #1502(2005) http://www.kurims.kyoto-u.ac.jp

Yes,

if G is finite. (Easy)

if G = SL(m). (Hilbert 1890)

if G is reductive. (Hilbert $+\cdots$)

More generally, let $G \curvearrowright R$ be action on a ring over C.

Theorem R finitely generated, G reductive $\Rightarrow R^G$ finitely generated

By the exact sequence

$$1 \to G^u \to G \to G^{red} \to 1,$$

we have

Corollary R^{G^u} finitely generated $\Rightarrow R^G$ finitely generated

Boiled down 14th problem Is S^G finitely generated for unipotent G?

Yes,

if $G = \mathbf{G}_a$. (thm of Weitzenböck)

(action of G_a \Leftrightarrow action of C with polynomial coefficients \Leftrightarrow locally finite derivation)

No Counterexample by Nagata in 1958

Metaproblem

Find good criteria of finite and non-finite generation of S^G (for unipotent algebraic group G).

No Counterexample for G_a^3 (M. 2001)

Open problem

Is S^G finitely generated for a linear action of $G = \mathbf{G}_a^2$ on a polynomial ring?

(action of $G_a^2 \Leftrightarrow$ commutative pair of locally finite derivations)

I will answer two problems affirmatively for Nagata invariant rings.

$\S1$ Nagata action and the main theorem

Consider the standard unipotent action

$$\mathbf{C}^{n} \curvearrowright \mathbf{C}[x_{1}, \dots, x_{n}, y_{1}, \dots, y_{n}] =: S_{2n}$$

$$(t_{1}, \dots, t_{n}) \qquad \begin{cases} x_{i} \mapsto x_{i} \\ y_{i} \mapsto y_{i} + t_{i} x_{i} \end{cases} \quad 1 \leq i \leq n.$$

 $G \subset \mathbf{C}^n$ s-dimensional general linear subspace, r := n - s (codimension)

Restriction

$$\mathbf{G}_a^s = \mathbf{C}^s \simeq G \quad \curvearrowleft \quad S_{2n}$$

is called a Nagata action.

Nagata'58 studied the case r = 3 and showed that S^G is not finitely generated for square numbers $n = m^2 \ge 16$. **Theorem** The invariant ring S_{2n}^G , dim G = s, is finitely generated if and only if

$$\frac{1}{r} + \frac{1}{s} + \frac{1}{2} > 1.$$

This condition is equivalent to the finiteness of the Weyl group of $T_{r,s,2}$.

Special cases (1) dim $G = 2 \Rightarrow S_{2n}^G$ is f.g. for $\forall n$.

(2) dim
$$G = 3$$

(*n*,*r*) = (8,5), C³ $\sim S_{16} \Rightarrow$ f.g.

$$(n,r) = (9,6), \mathbb{C}^3 \frown S_{18} \Rightarrow \text{not f.g.}$$

Two proofs for 'if' (Nagata) part

(M.) geometry of moduli of vector bundles advantage: Determines movable cone and chamber structure

(Castravet-Tevelev) algebraic advantage: Determination of set of generators

Three-legged diagram

 $W(T_{r,s,t})$ Weyl group

generators w_1, \ldots, w_n

n = r + s + t - 2 = (# of vertices)relations $w_1^2 = \dots = w_n^2 = 1$ $w_i w_j = w_j w_i$ if $\stackrel{i}{\circ} \stackrel{j}{\circ}$ (not joined) $(w_i w_j)^3 = 1$ if $\stackrel{i}{\circ} \stackrel{-j}{\circ}$ (joined)
finite group $\Leftrightarrow \quad \frac{1}{r} + \frac{1}{s} + \frac{1}{t} > 1$

 $\Leftrightarrow A_n$, D_n or $E_{6,7,8}$

7

§2 Geometrization

 $G \subset \mathbf{C}^n$:general linear subspace of codim r

 X_G = Blow-up of \mathbf{P}^{r-1} , the projectivization of \mathbf{C}^n/G , at n points p_1, \ldots, p_n which are the images of standard basis of \mathbf{C}^n

Theorem
$$(r \ge 3)$$

 $S_{2n}^G \simeq \bigoplus_{a,b_1,...,b_n \in \mathbb{Z}} H^0(X_G, \mathcal{O}_X(ah - \sum_i b_i e_i))$
 $\sim \bigoplus_{a,b_1,...,b_n \in \mathbb{Z}} H^0(X, L) =: TC(X_G) \text{ or } Cor(X_G)$

 $\simeq \bigoplus_{L \in \mathsf{Pic}X} H^0(X, L) =: TC(X_G), \text{ or } Cox(X_G)$

$$\mathcal{O}_{X}(h) := \pi^{*} \mathcal{O}_{\mathbf{P}}(1)$$

$$X_{G} \supset e_{1}, \dots, e_{n}$$

$$\pi \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbf{P}^{r-1} \ni p_{1}, \dots, p_{n}$$

 $e_i :=$ exceptional divisor over p_i

Discussion in the case r = 3

$$\frac{y_i}{x_i} \mapsto \frac{y_i}{x_i} + t_i, \quad (t_1, \dots, t_n) \in \mathbf{C}^n$$

 \exists 3 independent linear combinations

$$X = \sum a_i \frac{y_i}{x_i}, \quad Y = \sum b_i \frac{y_i}{x_i}, \quad Z = \sum c_i \frac{y_i}{x_i}$$
 which are G invariants.

 $\tilde{X} = (\prod x_i) X, \tilde{Y} = (\prod x_i) Y, \tilde{Z} = (\prod x_i) Z,$ and $x_1^{\pm 1}, \dots, x_n^{\pm 1}$ generate $\mathbf{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}, y_1, \dots, y_n]^G.$

Hence

$$S^{G} = \mathbf{C}[x_{1}^{\pm 1}, \dots, x_{n}^{\pm 1}, \tilde{X}, \tilde{Y}, \tilde{Z}]^{G} \cap S.$$

Form $F(\tilde{X}, \tilde{Y}, \tilde{Z})$ on \mathbf{P}^{2} vanishes at $p_{1} \Leftrightarrow F(\tilde{X}, \tilde{Y}, \tilde{Z})/x_{i} \in S$

§3 Proof of Nagata direction

 $\frac{1}{r} + \frac{1}{s} + \frac{1}{2} \leq 1 \Rightarrow S_{2n}^G$ not finitely generated

Action of Weyl group $W(T_{r,s,2})$ on $H^2(X_G,\mathbb{Z})$ (monodromy)

 A_{n-1} part \leftrightarrow permutation of p_1, \ldots, p_n

Extra root $h - e_1 - \cdots - e_r$ \leftrightarrow standard Cremona transformation

$$\mathbf{P}^{r-1} \leftarrow \cdots \rightarrow \mathbf{P}^{r-1}$$
 $(x_1 : \cdots : x_r) \leftrightarrow (\frac{1}{x_1} : \cdots : \frac{1}{x_r})$

$$\frac{1}{r} + \frac{1}{s} + \frac{1}{2} \leq 1$$

 \Downarrow

 $W(T_{r,s,2})$ is infinite and X_G has infinitely many "(-1)-divisors"

(Simplest is the case r = 3 and s = 3: Bl_9P^2 has infinitely many $(-1)P^1$'s.)

\Downarrow

Effective semi-group Eff $X_G \subset \operatorname{Pic} X_G \simeq \mathbb{Z}^{n+1}$ is not finitely generated

 $TC(X_G)$ is not finitely generated

 $[\]Downarrow$

§4 Proof of f.g. direction

 $\frac{1}{r}+\frac{1}{s}+\frac{1}{2}>1 \Rightarrow S^G_{2n}$, or $TC(X_G),$ finitely generated

(A) Case division

$r \\ s$	1	1	2	2	3 3	4	5	4 3	5 <mark>3</mark>
$T_{r,s,2}$	A_n	A_n	D_n	D_n	E_{6}	E_7	E_8	E7	E_{E}
X_G				$\mathrm{Bl}_n \mathrm{P}^{n-3}$					
pf				$\begin{array}{c} {\rm moduli}\\ {\rm of}\\ {\rm bundles}\\ {\rm on} \ Y_G \end{array}$					
Y_G				pointed \mathbf{P}^1					

(B) Birational geometry

Basic technique:

L line bundle

|L| base point free $\Rightarrow \bigoplus_{n\geq 0} H^0(L^n)$ finitely generated

L semiample (\Leftrightarrow some multiple is base point free) \Rightarrow the same

 L_1, \ldots, L_k semin-ample line bundles on X $\Rightarrow \bigoplus_{n_1, \ldots, n_k \ge 0} H^0(L_1^{n_1} \otimes \cdots \otimes (L_k^{n_k})$ finitely generated

Theorem $\frac{1}{r} + \frac{1}{s} + \frac{1}{2} > 1$, $r \ge 3$

(1) Eff X_G is finitely generated.

(2) \exists decomposition Mov $X_G = \bigcup_i C_i$ into finitely many chambers such that each C_i is generated by finitely many semi-ample linebundles on a variety X_i isomorphic to X_G in codimension one. (C) Moduli of bundles

 $G \subset \mathbf{C}^n$ s-dimensional general linear subspace

$$Y_G = (\mathbf{P}^*G; q_1, \ldots, q_n)$$

Coble dual, or Gale transformation of

$$(\mathbf{P}_*(\mathbf{C}^n/G); p_1, \ldots, p_n)$$

Restriction of

$$\operatorname{\mathsf{Aut}}(\mathcal{O}\oplus\mathcal{O}(1)) \curvearrowright igoplus_i (\mathcal{O}\oplus\mathcal{O}(1))_{q_i}$$

to the unipotent part ($\simeq G_a^2$) is Nagata action.

 $V/\mathbf{G}_a^2 \cdot \mathbf{G}_m^{n+1}$ is isomrphic to X_G in codimsnsion one.

s = 3, n = 7, 8 $V/\mathbf{G}_a^2 \cdot \mathbf{G}_m^{n+1}$ is isomorphic to moduli of 2-bundles on $Bl_{q_1,...,q_n}\mathbf{P}^2$ in codimnsion one.

s = 2 $V/G_a^2 \cdot G_m^{n+1}$ is isomorphic to moduli of parabolic 2-bundles on *n*-pointed projective line ($\mathbf{P}^1 : q_1, \ldots, q_n$) in codimnsion one.

Theorem is proved by moduli change under variation of polarizations.

$\S 5$ Generalization by H. Naito and open problem

Fix a decomposition

$$\{1, 2, \dots, n\} = \prod_{j=1}^{m} N_j, \quad |N_j| \ge 1.$$

$$\mathbf{C}^{n} \curvearrowright \mathbf{C}[x_{1}, \dots, x_{m}, y_{1}, \dots, y_{n}] =: S_{m+n}$$
$$(t_{1}, \dots, t_{n}) \qquad \begin{cases} x_{i} \mapsto x_{i} & 1 \leq i \leq n \\ y_{i} \mapsto y_{i} + t_{i}x_{j} & i \in N_{j} \end{cases}$$

 $(|N_j| = 1 \forall j \Rightarrow \text{Nagata action})$

 $G \subset \mathbf{C}^n$ s-dimensional general linear subspace, r := n - s (codimension)

Geometrization Theorem

 $r \ge |N_j| + 2 \quad \forall j \Rightarrow S_{m+n}^G \simeq TC(X_G)$ $X_G = Bl_{L_1,\dots,L_m} \mathbf{P}^{r-1}$

 \mathbf{P}^{r-1} is projectivization of \mathbf{C}^n/G and L_j is image of $\mathbf{C}^{N_j} \subset \mathbf{C}^n$.

Problem When is S_{m+n}^G finitely generated?