
Hilbert’s original 14th problem and
certain moduli spaces

Shigeru MUKAI

(RIMS, Kyoto Univ.)

ρ : G −→ GL(N,C), or G
ρ
y V ' CN

N-dimensional linear representation of an

algebraic group G

G y C[x1, . . . , xN ] = C[V ] =: S

induced action (called linear action on a

polynomial ring.)

SG = {f(x1, . . . , xN) | fg = f ∀g ∈ G}

Original 14th problem Is SG finitely

generated (as ring over C)?

—————
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Yes,

if G is finite. (Easy)

if G = SL(m). (Hilbert 1890)

if G is reductive. (Hilbert + · · · )

More generally, let G y R be action on a

ring over C.

Theorem R finitely generated, G reduc-

tive ⇒ RG finitely generated

By the exact sequence

1→ Gu → G→ Gred → 1,

we have

Corollary RGu
finitely generated ⇒ RG

finitely generated
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Boiled down 14th problem Is SG finitely

generated for unipotent G?

Yes,

if G = Ga. (thm of Weitzenböck)

(action of Ga

⇔ action of C with polynomial coefficients

⇔ locally finite derivation)

No Counterexample by Nagata in 1958

Metaproblem

Find good criteria of finite and non-finite

generation of SG

(for unipotent algebraic group G).
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No Counterexample for G3
a (M. 2001)

Open problem

Is SG finitely generated for a linear action

of G = G2
a on a polynomial ring?

(action of G2
a ⇔ commutative pair

of locally finite derivations)

I will answer two problems affirmatively for

Nagata invariant rings.
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§1 Nagata action and the main theorem

Consider the standard unipotent action

Cn y C[x1, . . . , xn, y1, . . . , yn] =: S2n

(t1, . . . , tn)

{
xi 7→ xi
yi 7→ yi + tixi

1 ≤ i ≤ n.

G ⊂ Cn s-dimensional general linear sub-

space, r := n− s (codimension)

Restriction

Gs
a = Cs ' G y S2n

is called a Nagata action.

Nagata’58 studied the case r = 3 and showed

that SG is not finitely generated for square

numbers n = m2 ≥ 16.

5



Theorem The invariant ring SG
2n, dimG =

s, is finitely generated if and only if

1

r
+

1

s
+

1

2
> 1.

This condition is equivalent to the finite-
ness of the Weyl group of Tr,s,2.

Special cases
(1) dimG = 2 ⇒ SG

2n is f.g. for ∀n.

(2) dimG = 3
(n, r) = (8,5), C3 y S16 ⇒ f.g.

(n, r) = (9,6), C3 y S18 ⇒ not f.g.

Two proofs for ‘if’ (Nagata) part

(M.) geometry of moduli of vector bundles
advantage: Determines movable cone and
chamber structure

(Castravet-Tevelev) algebraic
advantage: Determination of set of gen-
erators
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Three-legged diagram

Tr,s,t e e· · ·e e
e
...e
e

e· · ·e er s

t

W (Tr,s,t) Weyl group

generators w1, . . . , wn

n = r + s + t− 2 = (# of vertices)

relations w2
1 = · · · = w2

n = 1

wiwj = wjwi if
i◦

j
◦ (not joined)

(wiwj)
3 = 1 if

i◦—
j
◦ (joined)

finite group ⇔ 1
r + 1

s + 1
t > 1

⇔ An, Dn or E6,7,8
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§2 Geometrization

G ⊂ Cn:general linear subspace of codim r

XG = Blow-up of Pr−1, the projectiviza-

tion of Cn/G, at n points p1, . . . , pn which

are the images of standard basis of Cn

Theorem (r ≥ 3)

SG
2n '

⊕
a,b1,...,bn∈Z

H0(XG,OX(ah−
∑
i

biei))

'
⊕

L∈PicX

H0(X, L) =: TC(XG), or Cox(XG)

OX(h) := π∗OP(1)

XG ⊃ e1, . . . , en

π ↓ ↓
Pr−1 3 p1, . . . , pn

ei := exceptional divisor over pi
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Discussion in the case r = 3

yi

xi
7→

yi

xi
+ ti, (t1, . . . , tn) ∈ Cn

∃ 3 independent linear combinations

X =
∑

ai
yi

xi
, Y =

∑
bi

yi

xi
, Z =

∑
ci

yi

xi

which are G invariants.

X̃ = (
∏

xi)X, Ỹ = (
∏

xi)Y, Z̃ = (
∏

xi)Z,

and x±1
1 , . . . , x±1

n generate

C[x±1
1 , . . . , x±1

n , y1, . . . , yn]
G.

Hence

SG = C[x±1
1 , . . . , x±1

n , X̃, Ỹ , Z̃]G ∩ S.

Form F (X̃, Ỹ , Z̃) on P2 vanishes at p1 ⇔
F (X̃, Ỹ , Z̃)/xi ∈ S
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§3 Proof of Nagata direction

1
r + 1

s + 1
2 ≤ 1⇒ SG

2n not finitely generated

Action of Weyl group W (Tr,s,2) on H2(XG, Z)

(monodromy)

j j · · · j j

j

j · · · j je1 − e2 er − er+1 en−1 − en

h− e1 − · · · − er

An−1 part ↔ permutation of p1, . . . , pn

Extra root h− e1 − · · · − er

↔ standard Cremona transformation

Pr−1 ← · · · → Pr−1

(x1 : · · · : xr)↔ (
1

x1
: · · · :

1

xr
)
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1

r
+

1

s
+

1

2
≤ 1

⇓

W (Tr,s,2) is infinite and XG has infinitely

many ”(-1)-divisors”

(Simplest is the case r = 3 and s = 3:

Bl9P
2 has infinitely many (-1)P1’s.)

⇓

Effective semi-group Eff XG ⊂ PicXG '
Zn+1 is not finitely generated

⇓

TC(XG) is not finitely generated
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§4 Proof of f.g. direction

1
r + 1

s + 1
2 > 1 ⇒ SG

2n, or TC(XG), finitely

generated

(A) Case division

r 1 2 3 4 5
s 1 2 3 4 5 3 3

Tr,s,2 An An Dn Dn E6 E7 E8 E7 E8

XG Bln
Pn−3

pf moduli
of

bundles
on YG

YG pointed
P1
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(B) Birational geometry

Basic technique:

L line bundle

|L| base point free ⇒
⊕

n≥0 H0(Ln) finitely
generated

L semiample (⇔ some multiple is base point
free) ⇒ the same

L1, . . . , Lk semin-ample line bundles on X

⇒
⊕

n1,...,nk≥0 H0(Ln1
1 ⊗ · · · ⊗ (L

nk
k ) finitely

generated

Theorem 1
r + 1

s + 1
2 > 1, r ≥ 3

(1) Eff XG is finitely generated.

(2) ∃ decomposition Mov XG =
⋃

i Ci into
finitely many chambers such that each Ci

is generated by finitely many semi-ample
linebundles on a variety Xi isomorphic to
XG in codimension one.
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(C) Moduli of bundles

G ⊂ Cn s-dimensional general linear sub-

space

YG = (P∗G; q1, . . . , qn)

Coble dual, or Gale transformation of

(P∗(Cn/G); p1, . . . , pn)

Restriction of

Aut(O ⊕O(1)) y
⊕
i

(O ⊕O(1))qi

to the unipotent part (' G2
a) is Nagata

action.
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V/G2
a ·G

n+1
m is isomrphic to XG in codim-

snsion one.

s = 3, n = 7,8 V/G2
a ·G

n+1
m is isomorphic

to moduli of 2-bundles on Blq1,...,qnP
2 in

codimnsion one.

s = 2 V/G2
a ·G

n+1
m is isomorphic to mod-

uli of parabolic 2-bundles on n-pointed pro-

jective line (P1 : q1, . . . , qn) in codimnsion

one.

Theorem is proved by moduli change under

variation of polarizations.
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§5 Generalization by H. Naito and open

problem

Fix a decomposition

{1,2, . . . , n} =
m∐

j=1

Nj, |Nj| ≥ 1.

Cn y C[x1, . . . , xm, y1, . . . , yn] =: Sm+n

(t1, . . . , tn)

{
xi 7→ xi 1 ≤ i ≤ n
yi 7→ yi + tixj i ∈ Nj

(|Nj| = 1 ∀j ⇒ Nagata action)
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G ⊂ Cn s-dimensional general linear sub-

space, r := n− s (codimension)

Geometrization Theorem

r ≥ |Nj|+ 2 ∀j ⇒ SG
m+n ' TC(XG)

XG = BlL1,...,LmPr−1

Pr−1 is projectivization of Cn/G and Lj is

image of CNj ⊂ Cn.

Problem When is SG
m+n finitely gener-

ated?
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