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Strong resolution theorem

For every X (char. 0) there is
f : X ′ → X such that

(1) X ′ smooth,
(2) f : composite of smooth blow ups,
(3) isomorphism over Xns,
(4) f−1(Sing X) is normal crossings,
(5) functorial on smooth morphisms,
(6) functorial on field extensions.

Hironaka
Giraud
Villamayor, Bravo, Encinas
Bierstone and Milman
Encinas and Hauser
W lodarczyk



3

Example

Resolving S := (x2 + y3 − z6 = 0)
(Secret: single elliptic curve (E2) = −1)

Method: H := (x = 0) and use S ∩ H .

Step 1. mult(S ∩ H) = (y3 − z6 = 0) = 3
but came from multiplicity 2
blow up until the mult. drops below 2.

2 blow ups to achieve this:

S coordinates
x2 + y3 − z6

x2
1 + (y3

1 − z3
1)z1 x1 = x

z , y1 = y
z , z1 = z

x2
2 + (y3

2 − 1)z2
2 x2 = x1

z1
, y2 = y1

z1
, z2 = z1.

1 − 2
�
−
�

•

•

•
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Step 2. Make S ∩ H disjoint from positive
coeff. exceptional curves

1 − 2
�
−
�

1 − 0 − •

1 − 0 − •

1 − 0 − •

Step 3. Blow up exceptional curves
with multiplicity ≥ 2.

one such curve:

1 − 0
�
−
�

1 − 0 − •

1 − 0 − •

1 − 0 − •

where the boxed curve is elliptic.
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Problem 1.

Get too many curves.
Higher dimensions: no minimal resolution,
we do not know which resolution is simple

No solution.

Problem 2.

Reduction: from surfaces in A3

to curves in A2,
but exceptional curves and multiplicities

treated differently.

Solution: marked ideals (I, m).
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Problem 3.

S has multiplicity < 2 along the
birational transform of H ,
but what happens outside H?

Example: H ′ := (x − z2 = 0)

S H ′

x2 + y3 − z6 x − z2

x2
1 + (y3

1 − z3
1)z1 x1 − z1

x2
2 + (y3

2 − 1)z2
2 x2 − 1

singular point not on H ′

Solution: careful choice of H

maximal contact
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Problem 4.

Too many singularities on H

Example: H ′′ := (x − z3 = 0).
x2 + y3 − z6 = (x − z3)(x + z3) + y3

so S|H ′′: triple line.

Really a problem?
Yes: induction ruined

Solution: coefficient ideal C(S)

(i) resolving S is equivalent to
“resolving” C(S), and

(ii) resolving the traces C(S)|H
does not generate extra blow ups for S
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Problem 5.

H not unique

e.g. automorphisms of S

(x, y, z) 7→ (x + y3, y 3
√

1 − 2x − y3, z)

Even with maximal contact choice of H ,
S ∩ H depends on H

Solution: ideal W (S) such that

(i) resolving S is equivalent to
resolving W (S), and

(ii) W (S)|H are analytically isomorphic
for all maximal contact H .
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Problem 6.

(i) Many choices remain.
functorial but not “canonical”

(ii) Computationally hopeless.
Exponential increase in degrees and
generators at each step.

No solutions



10

Principalization

Data: X smooth variety,
I ⊂ OX ideal sheaf,
E =

∑

i Ei normal crossing divisor with
ordered index set

Blow ups: smooth centers,
normal crossing with E

Strong principalization theorem

For every (X, I,E) (char. 0) there is
f : X ′ → X such that

(1) f ∗I ⊂ OX ′ locally principal,
(2) f : composite of smooth blow ups,
(3) isomorphism over X \ cosupp I ,
(4) f−1(E ∪ cosupp I) is normal crossing,
(5) functorial on smooth morphisms,
(6) functorial on field extensions,
(7) functorial on closed embeddings.
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Strong principalization ⇒ Resolution

Projective case

take X ↪→ PN , N ≥ dim X + 2.
I ⊂ OPN ideal sheaf of X , E = ∅

Principalize (PN , I, ∅).

I is not principal along X ,
so at some point, the
birational transform X ′ of X is blown up.

But: we blow up only smooth centers,
so X ′ is smooth.

Uniqueness? Local question.

Lemma. Let X ↪→ An, X ↪→ Am

be closed embeddings. Then

X ↪→ An ↪→ An+m, and
X ↪→ Am ↪→ An+m

differ by an automorphism of An+m.



12

ordx I := order of vanishing of I at x
max-ord I := maximum {ordx I : x ∈ X}

blow up Z to get π : BZX → X
typical chart Z = (x1 = · · · = xr = 0)
g(x1, . . . , xn) pulls back to
π∗g := g(x′

1x
′
r, . . . , x

′
r−1x

′
r, x

′
r, xr+1, . . . , xn).

if ordZ I = s then
g′ := (x′

r)
−sg(x′

1x
′
r, . . . , x

′
r−1x

′
r, x

′
r, xr+1, . . . , xn).

Lemma. max-ord g′ ≤ 2 max-ord g − s.

Our blow ups for the triple (X, I,E):
Z smooth, normal crossing with E,

ordZ I = max-ord I = m.

New triple (X1, I1, E1)
X1 = BZX with F ⊂ BZX except. div.
I1 = π−1

∗ I := OBZX(mF ) · π∗I
E1 = π−1

∗ E + F (last divisor)

by lemma: max-ord I1 ≤ max-ord I .
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Solution of Problem 2

marked ideals (I,m)
Aim: for Z ⊂ H ⊂ X ,
(πH)−1

∗ (I|H,m) := trace of π−1
∗ I on BZH .

Our blow ups for the triple (X, I, m, E):
Z smooth, normal crossing with E,

ordZ I ≥ m.

New triple (X1, I1, m, E1)
X1 = BZX with F ⊂ BZX except. div.
(I1, m) = π−1

∗ (I, m) := OBZX(mF ) · π∗I
E1 = π−1

∗ E + F (last divisor)

Note: for m = max-ord I :

blow up seqs. of order m for (X, I)

||

blow up seqs. of order ≥ m for (X, I,m)
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Order reduction for ideals

For (X, I,E) and m = max-ord I ,
there is (X ′, I ′, E ′) and Π : X ′ → X s.t.

(1) Π is composite of order m blow ups

Π : (X ′, I ′, E ′) = (Xr, Ir, Er)
πr−1
−→ · · ·

(X1, I1, E1)
π0−→ (X0, I0, E0) = (X, I,E),

(2) max-ord I ′ < m, and
(3) functoriality properties.

Order reduction for marked ideals

For (X, I,m, E), there is
(X ′, I ′, m, E ′) and Π : X ′ → X s.t.

(1) Π is composite of order ≥ m blow ups

Π : (X ′, I ′, m, E ′) = (Xr, Ir, m, Er)
πr−1
−→ · · ·

· · ·
π0−→ (X0, I0, m, E0) = (X, I, m, E),

(2) max-ord I ′ < m, and
(3) functoriality properties.
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Spiraling induction

Order reduction, marked ideals, dim = n − 1

⇓

Order reduction, ideals, dim = n

⇓

Order reduction, marked ideals, dim = n

Hard: first arrow
Easy: second arrow

Order reduction

⇓

Principalization

Proof: In m steps, reduce order to 0:
Π−1
∗ I = OX ′. Thus

Π∗I = OX ′(−
∑

ciEi) for some ci.
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Structure of the proof

Step 1. Solve Problem 2 using
marked ideals

Step 2. Solve Problem 3 using
maximal contact

Step 3. Solve Problem 4 for
D-balanced ideals

Step 4. Solve Problem 5 for
MC-invariant ideals

Step 5. Given I , find W (I) such that

(i) order reduction for (X, I,E)
is equivalent to

order reduction for (X, W (I), m!, E),
(ii) W (I) is D-balanced and MC-invariant

Step 6. Complete the spiraling induction.
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Derivative ideals

D(I) :=
(

∂g
∂x

: g ∈ I, x : loc. coord.
)

Dr+1(I) := D(Dr(I))
D lowers order by 1, so
Dr(I,m) := (Dr(I), m − r)

Key computation

Blow up Z = (x1 = · · · = xr = 0):

y1 = x1
xr

, . . . , yr−1 = xr−1
xr

, yr = xr, . . . , yn = xn

π−1
∗

(

∂
∂xj

f, m − 1) = ∂
∂yj

π−1
∗ (f, m) for j < r,

π−1
∗

(

∂
∂xj

f, m − 1) = yr
∂

∂yj
π−1
∗ (f,m) for j > r,

π−1
∗

(

∂
∂xr

f, m − 1) = yr
∂

∂yr
π−1
∗ (f,m)

−yr

∑

i<r
∂

∂yi
π−1
∗ (f, m)+

+m · π−1
∗ (f,m)(−1)

Corollary: Π−1
∗

(

Dj(I, m)
)

⊂ Dj
(

Π−1
∗ (I, m)

)
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Solution of Problem 3

Corollary: Any order ≥ m blow up seq.

Π : (X ′, I ′, m, E ′) = (Xr, Ir, m, Er)
πr−1
−→ · · ·

· · ·
π0−→ (X0, I0, m, E0) = (X, I, m, E),

gives order ≥ j blow up seq.

Π : (X ′, J ′, j, E ′) = (Xr, Jr, j, Er)
πr−1
−→ · · ·

π0−→ (X0, J0, j, E0) = (X, Dm−j(I), j, E).

Maximal contact: j = 1 case:

MC(I) = Dm−1(I) maximal contact ideal

max-ord MC(I) = 1, so for general h ∈ Ix

H := (h = 0) is smooth at x and
if H is smooth (ok on open subset) then

Going down theorem

Blow up seqs. of order m for (X, I)
⋂

Blow up seqs. of order ≥ m for (H, I|H,m)
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Tuning ideals

Corollary: Any order ≥ m blow up seq.
starting with (X, I, m, E)

gives order ≥
∑

i ji blow up seq.
starting with

(X,
∏

i

Dm−ji(I),
∑

i

ji, E).

Definition:

W (I) :=

〈

∏

j

(

Dm−j(I)
)cj :

∑

j · cj ≥ m!

〉

Since W (I) ⊃ I (m−1)!, we get

Theorem

Order reduction for (X, I, m, E).

m

Order reduction for (X,W (I), m!, E).
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Derivatives and restriction

Problem. Multiplicity jumps in restriction
e.g. (xy − zn)|(y=0)

Defn. cosupp(I, m) = {x : ordx I ≥ m}.

Problem again:

S ∩ cosupp(I,m) ⊂ cosupp(I|S,m)
and = holds only for m = 1.

Theorem. S ⊂ X smooth, then

Sr ∩ cosupp
(

Π−1
∗ (I,m)

)

=

=
⋂m

j=0 cosupp(Π|Sr)
−1
∗

(

(DjI)|S, m − j
)

Solution attempt:

cosupp(I,m) = cosupp(Dm−1(I), 1)

Other problem: Set S := (x1 = 0), then
D(I|S) ( D(I)|S since ∂/∂x1 is lost.
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Solution:

(i) Set Dlog S := 〈x1
∂

∂x1
, ∂

∂x2
, . . . , 〉

then: D(I|S) = DlogS(I)|S.

(ii) Ds(I) = (well defined as filtration)

= Ds
log S(I) + Ds−1

log S

( ∂I

∂x1

)

+ · · · +
(∂sI

∂xs
1

)

Restrict to S:
(

DsI
)

|S = Ds
(

I|S
)

+Ds−1
( ∂I

∂x1
|S
)

+· · ·+
(∂sI

∂xs
1

|S
)

Apply this to π−1
∗ (I,m) with chart

y1 = x1
xr

, . . . , yr−1 = xr−1
xr

, yr = xr, . . . , yn = xn :

Dsπ−1
∗ (I,m) =

s
∑

j=0

Ds−j
log S1

(

∂jπ−1
∗ (I, m)

∂yj
1

)

Usually diff. does not commute with
birational transforms, but it does so
for ∂/∂x1 and ∂/∂y1, so
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Dsπ−1
∗ (I,m) =

s
∑

j=0

Ds−j
log S1

π−1
∗

(

∂j(I, m)

∂xj
1

)

For a sequence of blow ups Π:

DsΠ−1
∗ (I,m) =

s
∑

j=0

Ds−j
log Sr

Π−1
∗

(

∂j(I, m)

∂xj
1

)

increasing the summands on the right:

DsΠ−1
∗ (I,m) =

s
∑

j=0

Ds−j
log Sr

Π−1
∗ (DjI,m−j)

restricting to Sr:
(

DsΠ−1
∗ (I,m)

)

|Sr =

=
∑s

j=0 Ds−j(Π|Sr)
−1
∗

(

(DjI)|S,m − j
)

For s = m − 1, take cosupport to get the
theorem.
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Solution of Problem 4.

D-balanced:
(

Dj(I)
)m

⊂ Im−j ∀ j < m

Going up theorem

I : D-balanced, S ⊂ X smooth such that
(i) S 6⊂ cosupp(I, m), m = max-ord I ,
(ii) E|S is normal crossing,
then:

blow up seqs. of order m for (X, I,E).
⋃

blow up seqs. of order ≥ m for (S, I|S, m, E|S).

Proof:
cosupp(Π|Sr)

−1
∗

(

(DjI)|S, m − j
)

= cosupp(Π|Sr)
−1
∗

(

(DjI)m|S,m(m − j)
)

(since
(

Dj(I)|S
)m

⊂ (I|S)m−j)
⊃ cosupp(Π|Sr)

−1
∗

(

Im−j|S,m(m − j)
)

= cosupp(Π|Sr)
−1
∗

(

I|S, m
)

Thus

Sr∩cosupp
(

Π−1
∗ (I,m)

)

= cosupp(Π|Sr)
−1
∗

(

I|S,m
)
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Going up and down theorem

I : D-balanced, H ⊂ X smooth such that
(i) H is maximal contact,
(ii) H 6⊂ cosupp(I, m), m = max-ord I
(iii) E|H is normal crossing,
then:

blow up seqs. of order m for (X, I,E)

||

blow up seqs. of order ≥ m for (H, I|H,m, E|H)

Are we done?

Problem: No global H , so

we have open cover X = ∪X i,
on each: H i ⊂ X i, smooth max. contact

How to patch?

Solution:

Make sure blow ups do not depend on H .
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R = K[[x1, . . . , xn]], B ⊂ R ideal.
For any bi ∈ B and general λi ∈ K
(x1, . . . , xn) 7→ (x1 + λ1b1, . . . , xn + λnbn)
is an automorphism.

Lemma. For I ⊂ R, equivalent:
(i) I invariant under above automs.
(ii) B · D(I) ⊂ I ,
(iii) Bj · Dj(I) ⊂ I ∀ j.

Proof of (iii) ⇒ (i): Taylor expansion

f(x1 + b1, . . . , xn + bn) =

= f(x1, . . . , xn) +
∑

i bi
∂f
∂xi

+

+1
2

∑

i,j bibj
∂2f

∂xi∂xj
+ . . .

Definition. I is MC-invariant if

MC(I) · D(I) ⊂ I
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Solution of Problem 5.

Theorem Assume:
I is MC-invariant,
H,H ′ ⊂ X max. contact, smooth at x,
H + E and H ′ + E both normal crossing

Then there is φ ∈ Aut(X̂)
(where X̂ denotes completion) such that

(1) φ(Ĥ) = Ĥ ′ and φ(Ê) = Ê,
(2) φ∗Î = Î and φ∗

(

Î|Ĥ ′

)

= Î|Ĥ ,
(3) for any blow up sequence of order m

(Xr, Ir, Er) → · · · → (X0, I0, E)
φ lifts to φi ∈ Aut(Xi ×X X̂)
which is identity on the center of the
next blow up Zi ×X X̂ .

Proof: Pick x2, . . . , xn and x1, x
′
1 ∈ MC(I)

such that H = (x1 = 0), H ′ = (x′
1 = 0),

and E ⊂ (x2 · · ·xn = 0)
Apply lemma to:

(x′
1, x2, . . . , xn) 7→ (x′

1 + (x1 − x′
1), x2, . . . , xn)

= (x1, x2, . . . , xn)
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Theorem. W (I) is
D-balanced and MC-invariant.

Proof. Remember that W (I) =
=
(
∏

j(D
m−j(I))cj :

∑

j · cj ≥ m!
)

.
By product rule Ds(W (I)) ⊂
⊂
(
∏

j(D
m−j(I))cj :

∑

j · cj ≥ m! − s
)

.

Since MC(W (I)) = MC(I) = Dm−1(I),
MC(W (I))s · Ds(W (I)) ⊂ W (I).

D-balanced:
(

Ds(W (I))
)m!

⊂ W (I)m!−s

Fix
∑

j · cj ≥ m! − s, then

(
∏

j(D
m−j(I))cj

)m!
=
∏

j(D
m−j(I)m!)cj

⊂
∏

j(D
m−j(I)m!/j)jcj

⊂
∏

j(W (I))jcj

= W (I)
∑

j·cj ⊂ W (I)m!−s.

but this is weakly D-balanced:
(

Ds(W (I))
)m!

is integral over W (I)m!−s

2 solutions

(i) weakly D-balanced enough (Slide 33)
(ii) more work: W (I) is D-balanced
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Order reduction, marked ideals, dim = n − 1

⇓

Order reduction, ideals, dim = n

Start with (X, I,E)

Step 1. Replace I by W (I), so assume:
I is D-balanced and MC-invariant

Step 2. (Local case): there is a smooth
maximal contact H .

Substep 2.1 (achieve H+E normal crossing)
work with (Ei, I|Ei

, m, (E \ Ei)|Ei
)

use Going up to get:
Supp Ei disjoint from cosupp(I, m).

Note: get new divisors Ej but they are
automatically normal crossing with any H

Substep 2.2 (H +E nc along cosupp(I,m))
restrict to H : (H, I|H, m, E|H)
use induction and Going up and down.
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Patching problem: If X = X1 ∪ X2,
we do the same over X1 ∩ X2,

but for blow ups whith centers over
X1 \ X2 or X2 \ X1

we dont know in which order

Step 3. (Quasi projective case)
Cj ⊂ X : j ∈ J all possible images of
blow up centers for local order reductions.

Claim. L sufficiently ample,
h ∈ L ⊗ MC(I) general, then

(h = 0) has smooth point on every Cj.

⇒ X = ∪sX
s such that

(i) smooth max. contact Hs ⊂ Xs ∀ s,
(ii) each Xs intersects each Cj.

Thus: order reduction for each (Xs, I|Xs, E|Xs)
(i) involves every blow up,
(ii) with same total ordering.

Hence: automatically globalizes.
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Step 4. (Algebraic space)

Write u : U → X étale, U quasi projective
order reduction for (U, u∗I, u∗E) plus
étale invariance:

descends to X .

(Note: we see that Step 3 was not needed)
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Order reduction, ideals, dim = n

⇓

Order reduction, marked ideals, dim = n

Difference between Π−1
∗ I and Π−1

∗ (I, m):
ideal of exceptional divisor.

monomial part: M(I) :=
largest OX(−

∑

eiEi) ⊂ I
nonmonomial part: N(I) := M(I)−1 · I .

Step 1. (Achieve max-ord N(I) < m)

This is just order reduction for N(I).

Why not go down to max-ord N(I) = 0?

Answer: Only mult ≥ m blow ups allowed.

So if max-ord N(I) = s < m, we can blow
up only points where ord I ≥ m.

Reduction trick:

ordx J1 ≥ s
ordx J2 ≥ m

⇔ ordx(Jm
1 + Js

2) ≥ ms
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Step 2. (Achieve max-ord N(I) = 0)

Apply order reduction to N(I)m + Is.

Step 3. (Take care of I = M(I))

Substep 3.1 Blow up Ei with
ordEi

M(I) ≥ m.

Use index set order to make it functorial.

Substep 3.2 Blow up Ei ∩ Ej with
ordEi∩Ej

M(I) ≥ m.

Check: new exceptional divisors
have order < m.

Substep 3.3 Blow up Ei ∩ Ej ∩ Ek with
ordEi∩Ej∩Ek

M(I) ≥ m.

Check: new pairwise intersections
have order < m.

etc.
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Appendix: Integral dependence

R : ring, I ⊂ R ideal. r ∈ R is
integral over I if

rd+a1r
d−1+ · · ·+ad = 0 where aj ∈ Ij.

All elements integral over I :
integral closure: Ī .

Lemma. If J is integral over I then
cosupp(J, m) ⊃ cosupp(I,m).

Proof. Assume, r ∈ Ī but ordx r < ordx I .

ordx(a1r
d−1 + · · · + ad) ≥ minj{ordx(air

i)}
≥ (d − 1) ordx r + ordx I > d · ordx r,

which contradicts the equation.

Lemma. If J integral over I then
f−1
∗ (J, m) is integral over f−1

∗ (I, m).
Proof: Lift the equation.

Cor. If Dj(I)m integral over Im−j, then

cosupp(Π|Sr)
−1
∗

(

Dj(I)m|S, m(m − j)
)

⊃ cosupp(Π|Sr)
−1
∗

(

Im−j|S, m(m − j)
)

.

This is what we needed on Slide 22.


