RESOLUTION OF SINGULARITIES

JÁNOS KOLLÁR

Strong resolution theorem

For every X (char. 0) there is $f: X^{\prime} \rightarrow X$ such that
(1) X^{\prime} smooth,
(2) f : composite of smooth blow ups,
(3) isomorphism over $X^{n s}$,
(4) $f^{-1}(\operatorname{Sing} X)$ is normal crossings,
(5) functorial on smooth morphisms,
(6) functorial on field extensions.

Hironaka
Giraud
Villamayor, Bravo, Encinas
Bierstone and Milman
Encinas and Hauser
Włodarczyk

Example

Resolving $S:=\left(x^{2}+y^{3}-z^{6}=0\right)$
(Secret: single elliptic curve $\left(E^{2}\right)=-1$)
Method: $H:=(x=0)$ and use $S \cap H$.
Step 1. $\operatorname{mult}(S \cap H)=\left(y^{3}-z^{6}=0\right)=3$ but came from multiplicity 2 blow up until the mult. drops below 2 .
2 blow ups to achieve this:

$$
\begin{array}{ll}
\quad S & \text { coordinates } \\
x^{2}+y^{3}-z^{6} & \\
x_{1}^{2}+\left(y_{1}^{3}-z_{1}^{3}\right) z_{1} & x_{1}=\frac{x}{z_{1}}, y_{1}=\frac{y}{z_{1}}, z_{1}=z \\
x_{2}^{2}+\left(y_{2}^{3}-1\right) z_{2}^{2} & x_{2}=\frac{y_{1}}{z_{1}}, y_{2}=\frac{y_{1}}{z_{1}}, z_{2}=z_{1} .
\end{array}
$$

$$
1-2-
$$

4
Step 2. Make $S \cap H$ disjoint from positive coeff. exceptional curves

Step 3. Blow up exceptional curves with multiplicity ≥ 2.
one such curve:

where the boxed curve is elliptic.

Problem 1.

Get too many curves.
Higher dimensions: no minimal resolution, we do not know which resolution is simple

No solution.

Problem 2.

Reduction: from surfaces in \mathbb{A}^{3}
to curves in \mathbb{A}^{2},
but exceptional curves and multiplicities treated differently.

Solution: marked ideals (I, m).

Problem 3.

S has multiplicity <2 along the birational transform of H, but what happens outside H ?
Example: $H^{\prime}:=\left(x-z^{2}=0\right)$

\[

\]

singular point not on H^{\prime}

Solution: careful choice of H maximal contact

Problem 4.

Too many singularities on H
Example: $H^{\prime \prime}:=\left(x-z^{3}=0\right)$.
$x^{2}+y^{3}-z^{6}=\left(x-z^{3}\right)\left(x+z^{3}\right)+y^{3}$
so $\left.S\right|_{H^{\prime \prime}}$: triple line.
Really a problem?
Yes: induction ruined
Solution: coefficient ideal $C(S)$
(i) resolving S is equivalent to
"resolving" $C(S)$, and
(ii) resolving the traces $\left.C(S)\right|_{H}$ does not generate extra blow ups for S

Problem 5.

H not unique
e.g. automorphisms of S
$(x, y, z) \mapsto\left(x+y^{3}, y \sqrt[3]{1-2 x-y^{3}}, z\right)$
Even with maximal contact choice of H, $S \cap H$ depends on H

Solution: ideal $W(S)$ such that
(i) resolving S is equivalent to resolving $W(S)$, and
(ii) $\left.W(S)\right|_{H}$ are analytically isomorphic for all maximal contact H.

Problem 6.

(i) Many choices remain. functorial but not "canonical"
(ii) Computationally hopeless. Exponential increase in degrees and generators at each step.

No solutions

Principalization

Data: X smooth variety,
$I \subset \mathcal{O}_{X}$ ideal sheaf,

$$
\begin{array}{r}
E=\sum_{i} E_{i} \text { normal crossing divisor with } \\
\text { ordered index set }
\end{array}
$$

Blow ups: smooth centers, normal crossing with E

Strong principalization theorem

For every (X, I, E) (char. 0) there is $f: X^{\prime} \rightarrow X$ such that
(1) $f^{*} I \subset \mathcal{O}_{X^{\prime}}$ locally principal, (2) f : composite of smooth blow ups, (3) isomorphism over $X \backslash$ cosupp I, (4) $f^{-1}(E \cup \operatorname{cosupp} I)$ is normal crossing,
(5) functorial on smooth morphisms,
(6) functorial on field extensions,
(7) functorial on closed embeddings.

Strong principalization \Rightarrow Resolution

Projective case
take $X \hookrightarrow \mathbb{P}^{N}, N \geq \operatorname{dim} X+2$.
$I \subset \mathcal{O}_{\mathbb{P}^{N}}$ ideal sheaf of $X, E=\emptyset$

Principalize $\left(\mathbb{P}^{N}, I, \emptyset\right)$.
I is not principal along X,
so at some point, the
birational transform X^{\prime} of X is blown up.

But: we blow up only smooth centers, so X^{\prime} is smooth.

Uniqueness? Local question.
Lemma. Let $X \hookrightarrow \mathbb{A}^{n}, X \hookrightarrow \mathbb{A}^{m}$ be closed embeddings. Then

$$
\begin{aligned}
& X \hookrightarrow \mathbb{A}^{n} \hookrightarrow \mathbb{A}^{n+m}, \text { and } \\
& X \hookrightarrow \mathbb{A}^{m} \hookrightarrow \mathbb{A}^{n+m}
\end{aligned}
$$

differ by an automorphism of \mathbb{A}^{n+m}.
$\operatorname{ord}_{x} I:=$ order of vanishing of I at x max-ord $I:=$ maximum $\left\{\operatorname{ord}_{x} I: x \in X\right\}$
blow up Z to get $\pi: B_{Z} X \rightarrow X$ typical chart $Z=\left(x_{1}=\cdots=x_{r}=0\right)$ $g\left(x_{1}, \ldots, x_{n}\right)$ pulls back to $\pi^{*} g:=g\left(x_{1}^{\prime} x_{r}^{\prime}, \ldots, x_{r-1}^{\prime} x_{r}^{\prime}, x_{r}^{\prime}, x_{r+1}, \ldots, x_{n}\right)$.
if $\operatorname{ord}_{Z} I=s$ then

$$
g^{\prime}:=\left(x_{r}^{\prime}\right)^{-s} g\left(x_{1}^{\prime} x_{r}^{\prime}, \ldots, x_{r-1}^{\prime} x_{r}^{\prime}, x_{r}^{\prime}, x_{r+1}, \ldots, x_{n}\right) .
$$

Lemma. max-ord $g^{\prime} \leq 2$ max-ord $g-s$.

Our blow ups for the triple (X, I, E) : Z smooth, normal crossing with E, $\operatorname{ord}_{Z} I=$ max-ord $I=m$.

New triple $\left(X_{1}, I_{1}, E_{1}\right)$
$X_{1}=B_{Z} X$ with $F \subset B_{Z} X$ except. div.
$I_{1}=\pi_{*}^{-1} I:=\mathcal{O}_{B_{Z} X}(m F) \cdot \pi^{*} I$
$E_{1}=\pi_{*}^{-1} E+F$ (last divisor)
by lemma: max-ord $I_{1} \leq$ max-ord I.

Solution of Problem 2

marked ideals (I, m)
Aim: for $Z \subset H \subset X$,
$\left(\pi_{H}\right)_{*}^{-1}\left(\left.I\right|_{H}, m\right):=$ trace of $\pi_{*}^{-1} I$ on $B_{Z} H$.

Our blow ups for the triple (X, I, m, E) : Z smooth, normal crossing with E, $\operatorname{ord}_{Z} I \geq m$.

New triple $\left(X_{1}, I_{1}, m, E_{1}\right)$
$X_{1}=B_{Z} X$ with $F \subset B_{Z} X$ except. div.
$\left(I_{1}, m\right)=\pi_{*}^{-1}(I, m):=\mathcal{O}_{B_{Z} X}(m F) \cdot \pi^{*} I$ $E_{1}=\pi_{*}^{-1} E+F$ (last divisor)

Note: for $m=$ max-ord I :
blow up seqs. of order m for (X, I)
||
blow up seqs. of order $\geq m$ for (X, I, m)

Order reduction for ideals
For (X, I, E) and $m=$ max-ord I, there is $\left(X^{\prime}, I^{\prime}, E^{\prime}\right)$ and $\Pi: X^{\prime} \rightarrow X$ s.t.
(1) Π is composite of order m blow ups
$\Pi:\left(X^{\prime}, I^{\prime}, E^{\prime}\right)=\left(X_{r}, I_{r}, E_{r}\right) \xrightarrow{\pi_{r-1}} \cdots$
$\left(X_{1}, I_{1}, E_{1}\right) \xrightarrow{\pi_{0}}\left(X_{0}, I_{0}, E_{0}\right)=(X, I, E)$,
(2) max-ord $I^{\prime}<m$, and
(3) functoriality properties.

Order reduction for marked ideals
For (X, I, m, E), there is $\left(X^{\prime}, I^{\prime}, m, E^{\prime}\right)$ and $\Pi: X^{\prime} \rightarrow X$ s.t.
(1) Π is composite of order $\geq m$ blow ups
$\Pi:\left(X^{\prime}, I^{\prime}, m, E^{\prime}\right)=\left(X_{r}, I_{r}, m, E_{r}\right) \xrightarrow{\pi_{r-1}} \cdots$
$\cdots \xrightarrow{\pi_{0}}\left(X_{0}, I_{0}, m, E_{0}\right)=(X, I, m, E)$,
(2) max-ord $I^{\prime}<m$, and
(3) functoriality properties.

Spiraling induction

Order reduction, marked ideals, $\operatorname{dim}=n-1$
\Downarrow
Order reduction, ideals, $\operatorname{dim}=n$
\Downarrow
Order reduction, marked ideals, $\operatorname{dim}=n$

Hard: first arrow
Easy: second arrow

> Order reduction
> \Downarrow
> Principalization

Proof: In m steps, reduce order to 0 :

$$
\begin{aligned}
& \Pi_{*}^{-1} I=\mathcal{O}_{X^{\prime}} . \text { Thus } \\
& \Pi^{*} I=\mathcal{O}_{X^{\prime}}\left(-\sum c_{i} E_{i}\right) \text { for some } c_{i} .
\end{aligned}
$$

Structure of the proof

Step 1. Solve Problem 2 using
marked ideals
Step 2. Solve Problem 3 using
maximal contact
Step 3. Solve Problem 4 for
D-balanced ideals
Step 4. Solve Problem 5 for
MC-invariant ideals
Step 5. Given I, find $W(I)$ such that
(i) order reduction for (X, I, E) is equivalent to order reduction for $(X, W(I), m!, E)$,
(ii) $W(I)$ is D-balanced and MC-invariant

Step 6. Complete the spiraling induction.

Derivative ideals

$$
\begin{aligned}
& D(I):=\left(\frac{\partial g}{\partial x}: g \in I, x: \text { loc. coord. }\right) \\
& D^{r+1}(I):=D\left(D^{r}(I)\right) \\
& D \text { lowers order by } 1, \text { so } \\
& D^{r}(I, m):=\left(D^{r}(I), m-r\right)
\end{aligned}
$$

Key computation
Blow up $Z=\left(x_{1}=\cdots=x_{r}=0\right)$:
$y_{1}=\frac{x_{1}}{x_{r}}, \ldots, y_{r-1}=\frac{x_{r-1}}{x_{r}}, y_{r}=x_{r}, \ldots, y_{n}=x_{n}$

$$
\begin{aligned}
\pi_{*}^{-1}\left(\frac{\partial}{\partial x_{j}} f, m-1\right)= & \frac{\partial}{\partial y_{j}} \pi_{*}^{-1}(f, m) \text { for } j<r, \\
\pi_{*}^{-1}\left(\frac{\partial}{\partial x_{j}} f, m-1\right)= & y_{r} \frac{\partial}{\partial y_{j}} \pi_{*}^{-1}(f, m) \text { for } j>r, \\
\pi_{*}^{-1}\left(\frac{\partial}{\partial x_{r}} f, m-1\right)= & y_{r} \frac{\partial}{\partial y_{r}} \pi_{*}^{-1}(f, m) \\
& -y_{r} \sum_{i<r} \frac{\partial}{\partial y_{*}} \pi_{*}^{-1}(f, m)+ \\
& +m \cdot \pi_{*}^{-1}(f, m)(-1)
\end{aligned}
$$

Corollary: $\Pi_{*}^{-1}\left(D^{j}(I, m)\right) \subset D^{j}\left(\Pi_{*}^{-1}(I, m)\right)$

Solution of Problem 3

Corollary: Any order $\geq m$ blow up seq.

$$
\begin{aligned}
\Pi: & \left(X^{\prime}, I^{\prime}, m, E^{\prime}\right)=\left(X_{r}, I_{r}, m, E_{r}\right) \xrightarrow{\pi_{r-1}} \cdots \\
& \cdots \xrightarrow{\pi_{0}}\left(X_{0}, I_{0}, m, E_{0}\right)=(X, I, m, E),
\end{aligned}
$$

gives order $\geq j$ blow up seq.

$$
\Pi:\left(X^{\prime}, J^{\prime}, j, E^{\prime}\right)=\left(X_{r}, J_{r}, j, E_{r}\right) \xrightarrow{\pi_{r-1}} \cdots \cdot
$$

Maximal contact: $j=1$ case:
$M C(I)=D^{m-1}(I)$ maximal contact ideal
max-ord $M C(I)=1$, so for general $h \in I_{x}$ $H:=(h=0)$ is smooth at x and if H is smooth (ok on open subset) then

Going down theorem

Blow up seqs. of order m for (X, I)

$$
\cap
$$

Blow up seqs. of order $\geq m$ for $\left(H,\left.I\right|_{H}, m\right)$

Tuning ideals

Corollary: Any order $\geq m$ blow up seq.
starting with (X, I, m, E)
gives order $\geq \sum_{i} j_{i}$ blow up seq.
starting with

$$
\left(X, \prod_{i} D^{m-j_{i}}(I), \sum_{i} j_{i}, E\right) .
$$

Definition:

$$
W(I):=\left\langle\prod_{j}\left(D^{m-j}(I)\right)^{c_{j}}: \sum j \cdot c_{j} \geq m!\right\rangle
$$

Since $W(I) \supset I^{(m-1)!}$, we get

Theorem

Order reduction for (X, I, m, E).
 $$
\mathbb{\imath}
$$

Order reduction for $(X, W(I), m!, E)$.

Derivatives and restriction

Problem. Multiplicity jumps in restriction e.g. $\left.\left(x y-z^{n}\right)\right|_{(y=0)}$

Defn. $\operatorname{cosupp}(I, m)=\left\{x: \operatorname{ord}_{x} I \geq m\right\}$.
Problem again:
$S \cap \operatorname{cosupp}(I, m) \subset \operatorname{cosupp}\left(\left.I\right|_{S}, m\right)$ and $=$ holds only for $m=1$.

Theorem. $S \subset X$ smooth, then

$$
\begin{aligned}
& S_{r} \cap \operatorname{cosupp}\left(\Pi_{*}^{-1}(I, m)\right)= \\
& \quad=\bigcap_{j=0}^{m} \operatorname{cosupp}\left(\left.\Pi\right|_{S_{r}}\right)_{*}^{-1}\left(\left.\left(D^{j} I\right)\right|_{S}, m-j\right)
\end{aligned}
$$

Solution attempt:

$$
\operatorname{cosupp}(I, m)=\operatorname{cosupp}\left(D^{m-1}(I), 1\right)
$$

Other problem: Set $S:=\left(x_{1}=0\right)$, then $\left.D\left(\left.I\right|_{S}\right) \subsetneq D(I)\right|_{S}$ since $\partial / \partial x_{1}$ is lost.

Solution:
(i) Set $D_{\log S}:=\left\langle x_{1} \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots,\right\rangle$
then: $D\left(\left.I\right|_{S}\right)=\left.D_{\log S}(I)\right|_{S}$.
(ii) $D^{s}(I)=$ (well defined as filtration)
$=D_{\log S}^{s}(I)+D_{\log S}^{s-1}\left(\frac{\partial I}{\partial x_{1}}\right)+\cdots+\left(\frac{\partial^{s} I}{\partial x_{1}^{s}}\right)$
Restrict to S :
$\left.\left(D^{s} I\right)\right|_{S}=D^{s}\left(\left.I\right|_{S}\right)+D^{s-1}\left(\left.\frac{\partial I}{\partial x_{1}}\right|_{S}\right)+\cdots+\left(\left.\frac{\partial^{s} I}{\partial x_{1}^{s}}\right|_{S}\right)$
Apply this to $\pi_{*}^{-1}(I, m)$ with chart $y_{1}=\frac{x_{1}}{x_{r}}, \ldots, y_{r-1}=\frac{x_{r-1}}{x_{r}}, y_{r}=x_{r}, \ldots, y_{n}=x_{n}:$
$D^{s} \pi_{*}^{-1}(I, m)=\sum_{j=0}^{s} D_{\log S_{1}}^{s-j}\left(\frac{\partial^{j} \pi_{*}^{-1}(I, m)}{\partial y_{1}^{j}}\right)$

Usually diff. does not commute with birational transforms, but it does so for $\partial / \partial x_{1}$ and $\partial / \partial y_{1}$, so

$$
D^{s} \pi_{*}^{-1}(I, m)=\sum_{j=0}^{s} D_{\log S_{1}}^{s-j} \pi_{*}^{-1}\left(\frac{\partial^{j}(I, m)}{\partial x_{1}^{j}}\right)
$$

For a sequence of blow ups Π :

$$
D^{s} \Pi_{*}^{-1}(I, m)=\sum_{j=0}^{s} D_{\log S_{r}}^{s-j} \Pi_{*}^{-1}\left(\frac{\partial^{j}(I, m)}{\partial x_{1}^{j}}\right)
$$

increasing the summands on the right:

$$
D^{s} \Pi_{*}^{-1}(I, m)=\sum_{j=0}^{s} D_{\log S_{r}}^{s-j} \Pi_{*}^{-1}\left(D^{j} I, m-j\right)
$$

restricting to S_{r} :

$$
\begin{aligned}
& \left.\left(D^{s} \Pi_{*}^{-1}(I, m)\right)\right|_{S_{r}}= \\
& \quad=\sum_{j=0}^{s} D^{s-j}\left(\left.\Pi\right|_{S_{r}}\right)_{*}^{-1}\left(\left.\left(D^{j} I\right)\right|_{S}, m-j\right)
\end{aligned}
$$

For $s=m-1$, take cosupport to get the theorem.

Solution of Problem 4.

D-balanced: $\left(D^{j}(I)\right)^{m} \subset I^{m-j} \quad \forall j<m$

Going up theorem

I: D-balanced, $S \subset X$ smooth such that
(i) $S \not \subset \operatorname{cosupp}(I, m), m=$ max-ord I,
(ii) $\left.E\right|_{S}$ is normal crossing,

then:

blow up seqs. of order m for (X, I, E).

\cup

blow up seqs. of order $\geq m$ for $\left(S,\left.I\right|_{S}, m,\left.E\right|_{S}\right)$.
Proof:

$$
\begin{aligned}
& \operatorname{cosupp}\left(\left.\Pi\right|_{S_{r} r}\right)_{*}^{-1}\left(\left.\left(D^{j} I\right)\right|_{S}, m-j\right) \\
& \quad=\operatorname{cosupp}\left(\left.\Pi\right|_{S_{r}}\right)_{*}^{-1}\left(\left.\left(D^{j} I\right)^{m}\right|_{S}, m(m-j)\right) \\
& \quad\left(\text { since }\left(\left.D^{j}(I)\right|_{S}\right)^{m} \subset\left(\left.I\right|_{S}\right)^{m-j}\right) \\
& \quad \supset \operatorname{cosupp}\left(\left.\Pi\right|_{S_{r}}\right)_{*}^{-1}\left(\left.I^{m-j}\right|_{S,}, m(m-j)\right) \\
& \quad=\operatorname{cosupp}\left(\left.\Pi\right|_{S_{r} r} ^{-1}\right)_{*}^{-1}\left(\left.I\right|_{S}, m\right)
\end{aligned}
$$

Thus
$S_{r} \cap \operatorname{cosupp}\left(\Pi_{*}^{-1}(I, m)\right)=\operatorname{cosupp}\left(\left.\Pi\right|_{S_{r}}\right)_{*}^{-1}\left(\left.I\right|_{S}, m\right)$

Going up and down theorem

I: D-balanced, $H \subset X$ smooth such that
(i) H is maximal contact,
(ii) $H \not \subset \operatorname{cosupp}(I, m), m=\max$-ord I
(iii) $\left.E\right|_{H}$ is normal crossing,
then:
blow up seqs. of order m for (X, I, E)
||
blow up seqs. of order $\geq m$ for $\left(H,\left.I\right|_{H}, m,\left.E\right|_{H}\right)$

Are we done?

Problem: No global H, so we have open cover $X=\cup X^{i}$, on each: $H^{i} \subset X^{i}$, smooth max. contact

How to patch?
Solution:
Make sure blow ups do not depend on H.

$$
R=K\left[\left[x_{1}, \ldots, x_{n}\right]\right], B \subset R \text { ideal } .
$$

For any $b_{i} \in B$ and general $\lambda_{i} \in K$
$\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}+\lambda_{1} b_{1}, \ldots, x_{n}+\lambda_{n} b_{n}\right)$ is an automorphism.

Lemma. For $I \subset R$, equivalent:
(i) I invariant under above automs.
(ii) $B \cdot D(I) \subset I$,
(iii) $B^{j} \cdot D^{j}(I) \subset I \forall j$.

Proof of (iii) \Rightarrow (i): Taylor expansion

$$
\begin{aligned}
& f\left(x_{1}+b_{1}, \ldots, x_{n}+b_{n}\right)= \\
& \quad=f\left(x_{1}, \ldots, x_{n}\right)+\sum_{i} b_{i} \frac{\partial f}{\partial x_{i}}+ \\
& \quad+\frac{1}{2} \sum_{i, j} b_{i} b_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}+\ldots
\end{aligned}
$$

Definition. I is $M C$-invariant if

$$
M C(I) \cdot D(I) \subset I
$$

Solution of Problem 5.

Theorem Assume:
I is MC-invariant, $H, H^{\prime} \subset X$ max. contact, smooth at x, $H+E$ and $H^{\prime}+E$ both normal crossing
Then there is $\phi \in \operatorname{Aut}(\hat{X})$
(where \hat{X} denotes completion) such that
(1) $\phi(\hat{H})=\hat{H}^{\prime}$ and $\phi(\hat{E})=\hat{E}$,
(2) $\phi^{*} \hat{I}=\hat{I}$ and $\phi^{*}\left(\left.\hat{I}\right|_{\hat{H}^{\prime}}\right)=\left.\hat{I}\right|_{\hat{H}}$,
(3) for any blow up sequence of order m

$$
\left(X_{r}, I_{r}, E_{r}\right) \rightarrow \cdots \rightarrow\left(X_{0}, I_{0}, E\right)
$$

$$
\phi \text { lifts to } \phi_{i} \in \operatorname{Aut}\left(X_{i} \times{ }_{X} \hat{X}\right)
$$

which is identity on the center of the next blow up $Z_{i} \times{ }_{X} \hat{X}$.

Proof: Pick x_{2}, \ldots, x_{n} and $x_{1}, x_{1}^{\prime} \in M C(I)$
such that $H=\left(x_{1}=0\right), H^{\prime}=\left(x_{1}^{\prime}=0\right)$,
and $E \subset\left(x_{2} \cdots x_{n}=0\right)$
Apply lemma to:

$$
\begin{aligned}
\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) \mapsto\left(x_{1}^{\prime}+\left(x_{1}\right.\right. & \left.\left.-x_{1}^{\prime}\right), x_{2}, \ldots, x_{n}\right) \\
& =\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

Theorem. $W(I)$ is
D-balanced and MC-invariant.
Proof. Remember that $W(I)=$
$=\left(\prod_{j}\left(D^{m-j}(I)\right)^{c_{j}}: \sum j \cdot c_{j} \geq m!\right)$.
By product rule $D^{s}(W(I)) \subset$
$\subset\left(\prod_{j}\left(D^{m-j}(I)\right)^{c_{j}}: \sum j \cdot c_{j} \geq m!-s\right)$.
Since $M C(W(I))=M C(I)=D^{m-1}(I)$, $M C(W(I))^{s} \cdot D^{s}(W(I)) \subset W(I)$.
D-balanced: $\left(D^{s}(W(I))\right)^{m!} \subset W(I)^{m!-s}$ Fix $\sum j \cdot c_{j} \geq m!-s$, then

$$
\begin{aligned}
\left(\prod_{j}\left(D^{m-j}(I)\right)^{c_{j}}\right)^{m!} & =\prod_{j}\left(D^{m-j}(I)^{m!}\right)^{c_{j}} \\
& \subset \prod_{j}\left(D^{m-j}(I)^{m!/ j}\right)^{j c_{j}} \\
& \subset \prod_{j}(W(I))^{j c_{j}} \\
& =W(I)^{\sum j \cdot c_{j}} \subset W(I)^{m!-s} .
\end{aligned}
$$

but this is weakly D-balanced:
$\left(D^{s}(W(I))\right)^{m!}$ is integral over $W(I)^{m!-s}$
2 solutions
(i) weakly D-balanced enough (Slide 33)
(ii) more work: $W(I)$ is D-balanced

Order reduction, marked ideals, $\operatorname{dim}=n-1$
\Downarrow
Order reduction, ideals, $\operatorname{dim}=n$

Start with (X, I, E)
Step 1. Replace I by $W(I)$, so assume:
I is D-balanced and MC-invariant

Step 2. (Local case): there is a smooth maximal contact H.

Substep 2.1 (achieve $H+E$ normal crossing)
work with $\left(E_{i},\left.I\right|_{E_{i}}, m,\left.\left(E \backslash E_{i}\right)\right|_{E_{i}}\right)$
use Going up to get:
$\operatorname{Supp} E_{i}$ disjoint from $\operatorname{cosupp}(I, m)$.
Note: get new divisors E_{j} but they are automatically normal crossing with any H

Substep $2.2(H+E$ nc along $\operatorname{cosupp}(I, m))$
restrict to $H:\left(H,\left.I\right|_{H}, m,\left.E\right|_{H}\right)$
use induction and Going up and down.

Patching problem: If $X=X^{1} \cup X^{2}$, we do the same over $X^{1} \cap X^{2}$,
but for blow ups whith centers over
$X^{1} \backslash X^{2}$ or $X^{2} \backslash X^{1}$
we dont know in which order

Step 3. (Quasi projective case)
$C_{j} \subset X: j \in J$ all possible images of blow up centers for local order reductions.

Claim. L sufficiently ample, $h \in L \otimes M C(I)$ general, then ($h=0$) has smooth point on every C_{j}.
$\Rightarrow X=\cup_{s} X^{s}$ such that
(i) smooth max. contact $H^{s} \subset X^{s} \forall s$,
(ii) each X^{s} intersects each C_{j}.

Thus: order reduction for each $\left(X^{s},\left.I\right|_{X^{s}},\left.E\right|_{X^{s}}\right)$
(i) involves every blow up,
(ii) with same total ordering.

Hence: automatically globalizes.

Step 4. (Algebraic space)
Write $u: U \rightarrow X$ étale, U quasi projective order reduction for $\left(U, u^{*} I, u^{*} E\right.$) plus étale invariance: descends to X.
(Note: we see that Step 3 was not needed)

Order reduction, ideals, $\operatorname{dim}=n$
 \Downarrow

Order reduction, marked ideals, $\operatorname{dim}=n$
Difference between $\Pi_{*}^{-1} I$ and $\Pi_{*}^{-1}(I, m)$: ideal of exceptional divisor.
monomial part: $M(I):=$ largest $\mathcal{O}_{X}\left(-\sum e_{i} E_{i}\right) \subset I$ nonmonomial part: $N(I):=M(I)^{-1} \cdot I$.
Step 1. (Achieve max-ord $N(I)<m$)
This is just order reduction for $N(I)$.
Why not go down to max-ord $N(I)=0$?
Answer: Only mult $\geq m$ blow ups allowed.

So if max-ord $N(I)=s<m$, we can blow up only points where ord $I \geq m$.
Reduction trick:

$$
\operatorname{ord}_{x} J_{1} \geq s, \operatorname{ord}_{x}\left(J_{1}^{m}+J_{2}^{s}\right) \geq m s
$$

Step 2. (Achieve max-ord $N(I)=0$) Apply order reduction to $N(I)^{m}+I^{s}$.

Step 3. (Take care of $I=M(I)$)
Substep 3.1 Blow up E_{i} with $\operatorname{ord}_{E_{i}} M(I) \geq m$.
Use index set order to make it functorial.
Substep 3.2 Blow up $E_{i} \cap E_{j}$ with $\operatorname{ord}_{E_{i} \cap E_{j}} M(I) \geq m$.
Check: new exceptional divisors have order $<m$.

Substep 3.3 Blow up $E_{i} \cap E_{j} \cap E_{k}$ with $\operatorname{ord}_{E_{i} \cap E_{j} \cap E_{k}} M(I) \geq m$.
Check: new pairwise intersections have order $<m$.
etc.

Appendix: Integral dependence

R : ring, $I \subset R$ ideal. $r \in R$ is integral over I if
$r^{d}+a_{1} r^{d-1}+\cdots+a_{d}=0 \quad$ where $a_{j} \in I^{j}$.
All elements integral over I : integral closure: \bar{I}.

Lemma. If J is integral over I then $\operatorname{cosupp}(J, m) \supset \operatorname{cosupp}(I, m)$.
Proof. Assume, $r \in \bar{I}$ but ord ${ }_{x} r<\operatorname{ord}_{x} I$.
$\operatorname{ord}_{x}\left(a_{1} r^{d-1}+\cdots+a_{d}\right) \geq \min _{j}\left\{\operatorname{ord}_{x}\left(a_{i} r^{i}\right)\right\}$
$\geq(d-1) \operatorname{ord}_{x} r+\operatorname{ord}_{x} I>d \cdot \operatorname{ord}_{x} r$,
which contradicts the equation.
Lemma. If J integral over I then
$f_{*}^{-1}(J, m)$ is integral over $f_{*}^{-1}(I, m)$.
Proof: Lift the equation.
Cor. If $D^{j}(I)^{m}$ integral over I^{m-j}, then $\operatorname{cosupp}\left(\left.\Pi\right|_{S_{r}}\right)_{*}^{-1}\left(\left.D^{j}(I)^{m}\right|_{S}, m(m-j)\right)$ $\supset \operatorname{cosupp}\left(\left.\Pi\right|_{S_{r}}\right)_{*}^{-1}\left(\left.I^{m-j}\right|_{S}, m(m-j)\right)$.

This is what we needed on Slide 22.

