RESOLUTION OF SINGULARITIES

JÁNOS KOLLÁR

Strong resolution theorem

For every X (char. 0) there is $f: X' \to X$ such that

(1) X' smooth,

 $\mathbf{2}$

- (2) f: composite of smooth blow ups,
- (3) isomorphism over X^{ns} ,
- (4) $f^{-1}(\operatorname{Sing} X)$ is normal crossings,
- (5) functorial on smooth morphisms,
- (6) functorial on field extensions.

Hironaka Giraud Villamayor, Bravo, Encinas Bierstone and Milman Encinas and Hauser Włodarczyk

Example

Resolving $S := (x^2 + y^3 - z^6 = 0)$ (Secret: single elliptic curve $(E^2) = -1$) Method: H := (x = 0) and use $S \cap H$.

Step 1. $\operatorname{mult}(S \cap H) = (y^3 - z^6 = 0) = 3$ but came from multiplicity 2 blow up until the mult. drops below 2.

2 blow ups to achieve this:

Step 2. Make $S \cap H$ disjoint from positive coeff. exceptional curves

one such curve:

4

where the boxed curve is elliptic.

Problem 1.

Get too many curves. Higher dimensions: no minimal resolution, we do not know which resolution is simple

 $\mathbf{5}$

No solution.

Problem 2.

Reduction: from surfaces in \mathbb{A}^3 to curves in \mathbb{A}^2 ,

but exceptional curves and multiplicities treated differently.

Solution: marked ideals (I, m).

Problem 3.

6

S has multiplicity < 2 along the birational transform of H, but what happens **outside** H? Example: $H' := (x - z^2 = 0)$

S	H'
$x^2 + y^3 - z^6$	$x - z^2$
$x_1^2 + (y_1^3 - z_1^3)z_1$	$x_1 - z_1$
$x_2^2 + (y_2^3 - 1)z_2^2$	$x_2 - 1$

singular point not on H'

Solution: careful choice of Hmaximal contact

Problem 4.

Too many singularities on H

Example: $H'' := (x - z^3 = 0).$ $x^2 + y^3 - z^6 = (x - z^3)(x + z^3) + y^3$ so $S|_{H''}$: triple line.

Really a problem? Yes: induction ruined

Solution: coefficient ideal C(S)

(i) resolving S is equivalent to "resolving" C(S), and

(ii) resolving the traces $C(S)|_H$ does not generate extra blow ups for S

Problem 5.

8

H not unique

e.g. automorphisms of S $(x, y, z) \mapsto (x + y^3, y\sqrt[3]{1 - 2x - y^3}, z)$ Even with maximal contact choice of H, $S \cap H$ depends on H

Solution: ideal W(S) such that

- (i) resolving S is equivalent to resolving W(S), and
- (ii) $W(S)|_H$ are analytically isomorphic for all maximal contact H.

Problem 6.

(i) Many choices remain.functorial but not "canonical"

(ii) Computationally hopeless.Exponential increase in degrees and generators at each step.

No solutions

Principalization

Data: X smooth variety, $I \subset \mathcal{O}_X$ ideal sheaf, $E = \sum_i E_i$ normal crossing divisor with ordered index set

Blow ups: smooth centers, normal crossing with E

Strong principalization theorem

For every (X, I, E) (char. 0) there is $f: X' \to X$ such that

(1) $f^*I \subset \mathcal{O}_{X'}$ locally principal,

(2) f: composite of smooth blow ups,

(3) isomorphism over $X \setminus \operatorname{cosupp} I$,

(4) $f^{-1}(E \cup \operatorname{cosupp} I)$ is normal crossing,

(5) functorial on smooth morphisms,

(6) functorial on field extensions,

(7) functorial on closed embeddings.

10

Strong principalization \Rightarrow Resolution

Projective case

take $X \hookrightarrow \mathbb{P}^N$, $N \ge \dim X + 2$. $I \subset \mathcal{O}_{\mathbb{P}^N}$ ideal sheaf of $X, E = \emptyset$

Principalize $(\mathbb{P}^N, I, \emptyset)$.

I is not principal along X, so at some point, the birational transform X' of X is blown up.

But: we blow up only smooth centers, so X' is smooth.

Uniqueness? Local question.

Lemma. Let $X \hookrightarrow \mathbb{A}^n$, $X \hookrightarrow \mathbb{A}^m$ be closed embeddings. Then $X \hookrightarrow \mathbb{A}^n \hookrightarrow \mathbb{A}^{n+m}$, and $X \hookrightarrow \mathbb{A}^m \hookrightarrow \mathbb{A}^{n+m}$ differ by an automorphism of \mathbb{A}^{n+m} . $\operatorname{ord}_{x} I := \operatorname{order}$ of vanishing of I at xmax-ord I :=maximum { $\operatorname{ord}_{x} I : x \in X$ }

blow up Z to get
$$\pi : B_Z X \to X$$

typical chart $Z = (x_1 = \cdots = x_r = 0)$
 $g(x_1, \ldots, x_n)$ pulls back to
 $\pi^*g := g(x'_1x'_r, \ldots, x'_{r-1}x'_r, x'_r, x_{r+1}, \ldots, x_n).$
if $\operatorname{ord}_Z I = s$ then
 $g' := (x'_r)^{-s}g(x'_1x'_r, \ldots, x'_{r-1}x'_r, x'_r, x_{r+1}, \ldots, x_n).$

Lemma. max-ord $g' \leq 2 \max$ -ord g - s.

Our blow ups for the triple (X, I, E): Z smooth, normal crossing with E, $\operatorname{ord}_{Z} I = \operatorname{max-ord} I = m$.

New triple (X_1, I_1, E_1) $X_1 = B_Z X$ with $F \subset B_Z X$ except. div. $I_1 = \pi_*^{-1} I := \mathcal{O}_{B_Z X}(mF) \cdot \pi^* I$ $E_1 = \pi_*^{-1} E + F$ (last divisor)

by lemma: max-ord $I_1 \leq \text{max-ord } I$.

Solution of Problem 2

marked ideals (I, m)Aim: for $Z \subset H \subset X$, $(\pi_H)^{-1}_*(I|_H, m) :=$ trace of π^{-1}_*I on B_ZH .

Our blow ups for the triple (X, I, m, E): Z smooth, normal crossing with E, $\operatorname{ord}_{Z} I \geq m$.

New triple (X_1, I_1, m, E_1) $X_1 = B_Z X$ with $F \subset B_Z X$ except. div. $(I_1, m) = \pi_*^{-1}(I, m) := \mathcal{O}_{B_Z X}(mF) \cdot \pi^* I$ $E_1 = \pi_*^{-1}E + F$ (last divisor)

Note: for m = max-ord I:

blow up seqs. of order
$$m$$
 for (X, I)
||
blow up seqs. of order $\geq m$ for (X, I, m)

Order reduction for ideals

For (X, I, E) and m = max-ord I, there is (X', I', E') and $\Pi : X' \to X$ s.t.

(1) Π is composite of order *m* blow ups

$$\Pi : (X', I', E') = (X_r, I_r, E_r) \xrightarrow{\pi_{r-1}} \cdots$$
$$(X_1, I_1, E_1) \xrightarrow{\pi_0} (X_0, I_0, E_0) = (X, I, E),$$

- (2) max-ord I' < m, and
- (3) functoriality properties.

Order reduction for marked ideals For (X, I, m, E), there is (X', I', m, E') and $\Pi : X' \to X$ s.t. (1) Π is composite of order $\geq m$ blow ups $\Pi : (X', I', m, E') = (X_r, I_r, m, E_r) \xrightarrow{\pi_{r-1}} \cdots$ $\cdots \xrightarrow{\pi_0} (X_0, I_0, m, E_0) = (X, I, m, E),$ (2) max-ord I' < m, and (3) functoriality properties.

14

Spiraling induction

Order reduction, marked ideals, dim = n - 1 $\downarrow \downarrow$ Order reduction, ideals, dim = n $\downarrow \downarrow$ Order reduction, marked ideals, dim = n

Hard: first arrow Easy: second arrow

 $\begin{array}{c} \text{Order reduction} \\ \downarrow \\ \text{Principalization} \end{array}$

Proof: In *m* steps, reduce order to 0: $\Pi_*^{-1}I = \mathcal{O}_{X'}$. Thus $\Pi^*I = \mathcal{O}_{X'}(-\sum c_i E_i)$ for some c_i .

Structure of the proof

- Step 1. Solve Problem 2 using marked ideals
- Step 2. Solve Problem 3 using maximal contact
- Step 3. Solve Problem 4 for *D-balanced* ideals
- Step 4. Solve Problem 5 for *MC-invariant* ideals
- Step 5. Given I, find W(I) such that
 - (i) order reduction for (X, I, E) is equivalent to order reduction for (X, W(I), m!, E),
 (ii) W(I) is D-balanced and MC-invariant
- Step 6. Complete the spiraling induction.

Derivative ideals

$$D(I) := \left(\frac{\partial g}{\partial x} : g \in I, x : \text{loc. coord.}\right)$$
$$D^{r+1}(I) := D(D^r(I))$$
$$D \text{ lowers order by 1, so}$$
$$D^r(I, m) := (D^r(I), m - r)$$

Key computation

Blow up $Z = (x_1 = \dots = x_r = 0)$: $y_1 = \frac{x_1}{x_r}, \dots, y_{r-1} = \frac{x_{r-1}}{x_r}, y_r = x_r, \dots, y_n = x_n$

$$\pi_*^{-1}\left(\frac{\partial}{\partial x_j}f, m-1\right) = \frac{\partial}{\partial y_j}\pi_*^{-1}(f, m) \quad \text{for } j < r,$$

$$\pi_*^{-1}\left(\frac{\partial}{\partial x_j}f, m-1\right) = y_r\frac{\partial}{\partial y_j}\pi_*^{-1}(f, m) \quad \text{for } j > r,$$

$$\pi_*^{-1}\left(\frac{\partial}{\partial x_r}f, m-1\right) = y_r\frac{\partial}{\partial y_r}\pi_*^{-1}(f, m)$$

$$-y_r\sum_{i < r}\frac{\partial}{\partial y_i}\pi_*^{-1}(f, m) +$$

$$+m \cdot \pi_*^{-1}(f, m)(-1)$$

Corollary: $\Pi^{-1}_*(D^j(I,m)) \subset D^j(\Pi^{-1}_*(I,m))$

Solution of Problem 3

18

Corollary: Any order $\geq m$ blow up seq. $\Pi : (X', I', m, E') = (X_r, I_r, m, E_r) \xrightarrow{\pi_{r-1}} \cdots$ $\cdots \xrightarrow{\pi_0} (X_0, I_0, m, E_0) = (X, I, m, E),$ gives order $\geq j$ blow up seq. $\Pi : (X', J', j, E') = (X_r, J_r, j, E_r) \xrightarrow{\pi_{r-1}} \cdots$ $\xrightarrow{\pi_0} (X_0, J_0, j, E_0) = (X, D^{m-j}(I), j, E).$

Maximal contact: j = 1 case: $MC(I) = D^{m-1}(I)$ maximal contact ideal

max-ord MC(I) = 1, so for general $h \in I_x$ H := (h = 0) is smooth at x and if H is smooth (ok on open subset) then

Going down theorem

Blow up seqs. of order
$$m$$
 for (X, I)

$$\bigcap$$
Blow up seqs. of order $\geq m$ for $(H, I|_H, m)$

Tuning ideals

Corollary: Any order $\geq m$ blow up seq. starting with (X, I, m, E)gives order $\geq \sum_{i} j_{i}$ blow up seq. starting with $(X, \prod_{i} D^{m-j_{i}}(I), \sum_{i} j_{i}, E).$

Definition:

$$W(I) := \left\langle \prod_{j} \left(D^{m-j}(I) \right)^{c_j} : \sum_{j \in C_j} j \cdot c_j \ge m! \right\rangle$$

Since $W(I) \supset I^{(m-1)!}$, we get

Theorem

Order reduction for
$$(X, I, m, E)$$
.
 \square
Order reduction for $(X, W(I), m!, E)$.

Derivatives and restriction

20

Problem. Multiplicity jumps in restriction e.g. $(xy - z^n)|_{(y=0)}$ Defn. $\operatorname{cosupp}(I, m) = \{x : \operatorname{ord}_x I \ge m\}$. Problem again: $S \cap \operatorname{cosupp}(I, m) \subset \operatorname{cosupp}(I|_S, m)$ and = holds only for m = 1.

Theorem.
$$S \subset X$$
 smooth, then
 $S_r \cap \operatorname{cosupp}(\Pi^{-1}_*(I,m)) =$
 $= \bigcap_{j=0}^m \operatorname{cosupp}(\Pi|_{S_r})^{-1}_*((D^jI)|_S, m-j)$

Solution attempt:

 $cosupp(I, m) = cosupp(D^{m-1}(I), 1)$ Other problem: Set $S := (x_1 = 0)$, then $D(I|_S) \subsetneq D(I)|_S$ since $\partial/\partial x_1$ is lost.

Solution: (i) Set $D_{\log S} := \langle x_1 \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots, \rangle$ then: $D(I|_S) = D_{\log S}(I)|_S$. (ii) $D^s(I) =$ (well defined as filtration) $= D^s_{\log S}(I) + D^{s-1}_{\log S}(\frac{\partial I}{\partial x_1}) + \dots + (\frac{\partial^s I}{\partial x_1^s})$

Restrict to S:

$$(D^{s}I)|_{S} = D^{s}(I|_{S}) + D^{s-1}\left(\frac{\partial I}{\partial x_{1}}|_{S}\right) + \dots + \left(\frac{\partial^{s}I}{\partial x_{1}^{s}}|_{S}\right)$$
Apply this to $\pi_{*}^{-1}(I,m)$ with chart
 $y_{1} = \frac{x_{1}}{x_{r}}, \dots, y_{r-1} = \frac{x_{r-1}}{x_{r}}, y_{r} = x_{r}, \dots, y_{n} = x_{n}$:
 $D^{s}\pi_{*}^{-1}(I,m) = \sum_{j=0}^{s} D_{\log S_{1}}^{s-j}\left(\frac{\partial^{j}\pi_{*}^{-1}(I,m)}{\partial y_{1}^{j}}\right)$

Usually diff. does **not** commute with birational transforms, **but** it does so for $\partial/\partial x_1$ and $\partial/\partial y_1$, so

$$D^{s}\pi_{*}^{-1}(I,m) = \sum_{j=0}^{s} D^{s-j}_{\log S_{1}}\pi_{*}^{-1}\left(\frac{\partial^{j}(I,m)}{\partial x_{1}^{j}}\right)$$

For a sequence of blow ups Π :

$$D^s \Pi^{-1}_*(I,m) = \sum_{j=0}^s D^{s-j}_{\log S_r} \Pi^{-1}_* \left(\frac{\partial^j(I,m)}{\partial x_1^j} \right)$$

increasing the summands on the right:

$$D^{s}\Pi_{*}^{-1}(I,m) = \sum_{j=0}^{s} D^{s-j}_{\log S_{r}}\Pi_{*}^{-1}(D^{j}I,m-j)$$

restricting to S_r :

$$(D^{s}\Pi_{*}^{-1}(I,m))|_{S_{r}} =$$

= $\sum_{j=0}^{s} D^{s-j}(\Pi|_{S_{r}})_{*}^{-1}((D^{j}I)|_{S},m-j)$

For s = m - 1, take cosupport to get the theorem.

Solution of Problem 4.

D-balanced: $(D^{j}(I))^{m} \subset I^{m-j} \quad \forall \ j < m$

Going up theorem

I: *D*-balanced, $S \subset X$ smooth such that (i) $S \not\subset \text{cosupp}(I, m)$, m = max-ord I, (ii) $E|_S$ is normal crossing,

then:

blow up seqs. of order m for (X, I, E).

blow up seqs. of order $\geq m$ for $(S, I|_S, m, E|_S)$.

Proof:

$$cosupp(\Pi|_{S_{r}})^{-1}_{*}((D^{j}I)|_{S}, m-j) = cosupp(\Pi|_{S_{r}})^{-1}_{*}((D^{j}I)^{m}|_{S}, m(m-j)) (since (D^{j}(I)|_{S})^{m} \subset (I|_{S})^{m-j}) \supset cosupp(\Pi|_{S_{r}})^{-1}_{*}(I^{m-j}|_{S}, m(m-j)) = cosupp(\Pi|_{S_{r}})^{-1}_{*}(I|_{S}, m)$$

Thus

 $S_r \cap \operatorname{cosupp} \left(\Pi_*^{-1}(I,m) \right) = \operatorname{cosupp} \left(\Pi|_{S_r} \right)_*^{-1} \left(I|_S,m \right)$

Going up and down theorem

I: *D*-balanced, $H \subset X$ smooth such that

(i) H is maximal contact,

(ii) $H \not\subset \operatorname{cosupp}(I, m), m = \operatorname{max-ord} I$

(iii) $E|_H$ is normal crossing,

then:

blow up seqs. of order m for (X, I, E)

blow up seqs. of order $\geq m$ for $(H, I|_H, m, E|_H)$

Are we done?

Problem: No global H, so we have open cover $X = \bigcup X^i$, on each: $H^i \subset X^i$, smooth max. contact

How to patch?

Solution:

Make sure blow ups do not depend on H.

24

$$R = K[[x_1, \ldots, x_n]], B \subset R$$
 ideal.
For any $b_i \in B$ and general $\lambda_i \in K$
 $(x_1, \ldots, x_n) \mapsto (x_1 + \lambda_1 b_1, \ldots, x_n + \lambda_n b_n)$
is an automorphism.

Lemma. For $I \subset R$, equivalent: (i) I invariant under above automs. (ii) $B \cdot D(I) \subset I$, (iii) $B^j \cdot D^j(I) \subset I \forall j$. Proof of (iii) \Rightarrow (i): Taylor expansion $f(x_1 + b_1, \dots, x_n + b_n) =$ $= f(x_1, \dots, x_n) + \sum_i b_i \frac{\partial f}{\partial x_i} +$ $+ \frac{1}{2} \sum_{i,j} b_i b_j \frac{\partial^2 f}{\partial x_i \partial x_j} + \dots$

Definition. I is MC-invariant if $MC(I) \cdot D(I) \subset I$

Solution of Problem 5.

Theorem Assume:

I is MC-invariant, $H, H' \subset X$ max. contact, smooth at x, H + E and H' + E both normal crossing **Then** there is $\phi \in \operatorname{Aut}(\hat{X})$ (where \hat{X} denotes completion) such that (1) $\phi(\hat{H}) = \hat{H}'$ and $\phi(\hat{E}) = \hat{E}$, (2) $\phi^* \hat{I} = \hat{I}$ and $\phi^* (\hat{I}|_{\hat{H}'}) = \hat{I}|_{\hat{H}}$, (3) for any blow up sequence of order m $(X_r, I_r, E_r) \to \cdots \to (X_0, I_0, E)$ ϕ lifts to $\phi_i \in \operatorname{Aut}(X_i \times_X \hat{X})$ which is identity on the center of the next blow up $Z_i \times_X \hat{X}$.

Proof: Pick $x_2, ..., x_n$ and $x_1, x'_1 \in MC(I)$ such that $H = (x_1 = 0), H' = (x'_1 = 0),$ and $E \subset (x_2 \cdots x_n = 0)$ Apply lemma to: $(x'_1, x_2, ..., x_n) \mapsto (x'_1 + (x_1 - x'_1), x_2, ..., x_n)$ $= (x_1, x_2, ..., x_n)$

26

Theorem. W(I) is *D*-balanced and MC-invariant.

Proof. Remember that
$$W(I) =$$

= $(\prod_j (D^{m-j}(I))^{c_j} : \sum_j j \cdot c_j \ge m!).$
By product rule $D^s(W(I)) \subset$
 $\subset (\prod_j (D^{m-j}(I))^{c_j} : \sum_j j \cdot c_j \ge m! - s).$
Since $MC(W(I)) = MC(I) = D^{m-1}(I),$
 $MC(W(I))^s \cdot D^s(W(I)) \subset W(I).$

D-balanced:
$$(D^s(W(I)))^{m!} \subset W(I)^{m!-s}$$

Fix $\sum j \cdot c_j \ge m! - s$, then

$$\left(\prod_{j} (D^{m-j}(I))^{c_j} \right)^{m!} = \prod_{j} (D^{m-j}(I)^{m!})^{c_j} \subset \prod_{j} (D^{m-j}(I)^{m!/j})^{j_{c_j}} \subset \prod_{j} (W(I))^{j_{c_j}} = W(I)^{\sum_{j} j \cdot c_j} \subset W(I)^{m!-s}$$

but this is weakly *D*-balanced: $(D^{s}(W(I)))^{m!}$ is integral over $W(I)^{m!-s}$ 2 solutions (i) meables *D* halowed ensuch (Slide 22)

(i) weakly *D*-balanced enough (Slide 33) (ii) more work: W(I) is *D*-balanced Order reduction, marked ideals, dim = n - 1

 \Downarrow

Order reduction, ideals, $\dim = n$

Start with (X, I, E)

- Step 1. Replace I by W(I), so assume: I is D-balanced and MC-invariant
- Step 2. (Local case): there is a smooth maximal contact H.
- Substep 2.1 (achieve H+E normal crossing) work with $(E_i, I|_{E_i}, m, (E \setminus E_i)|_{E_i})$ use Going up to get: Supp E_i disjoint from $\operatorname{cosupp}(I, m)$. Note: get new divisors E_j but they are automatically normal crossing with any H
- Substep 2.2 (H + E nc along cosupp(I, m))restrict to H: $(H, I|_H, m, E|_H)$ use induction and Going up and down.

Patching problem: If $X = X^1 \cup X^2$, we do the same over $X^1 \cap X^2$, **but** for blow ups whith centers over $X^1 \setminus X^2$ or $X^2 \setminus X^1$ we dont know in which order

Step 3. (Quasi projective case) $C_j \subset X : j \in J$ all possible images of blow up centers for local order reductions.

Claim. L sufficiently ample, $h \in L \otimes MC(I)$ general, then (h = 0) has smooth point on every C_j . $\Rightarrow X = \bigcup_s X^s$ such that (i) smooth max. contact $H^s \subset X^s \forall s$, (ii) each X^s intersects each C_j . **Thus:** order reduction for each $(X^s, I|_{X^s}, E|_{X^s})$ (i) involves every blow up,

(ii) with same total ordering.

Hence: automatically globalizes.

Step 4. (Algebraic space) Write $u: U \to X$ étale, U quasi projective order reduction for (U, u^*I, u^*E) plus étale invariance: descends to X.

(Note: we see that Step 3 was not needed)

30

Order reduction, ideals, dim = n \downarrow Order reduction, marked ideals, dim = n

Difference between $\Pi_*^{-1}I$ and $\Pi_*^{-1}(I, m)$: ideal of exceptional divisor. monomial part: M(I) :=largest $\mathcal{O}_X(-\sum e_i E_i) \subset I$ nonmonomial part: $N(I) := M(I)^{-1} \cdot I$. Step 1. (Achieve max-ord N(I) < m) This is just order reduction for N(I). Why not go down to max-ord N(I) = 0? Answer: Only mult $\geq m$ blow ups allowed.

So if max-ord N(I) = s < m, we can blow up only points where ord $I \ge m$. Reduction trick:

$$\operatorname{ord}_x J_1 \ge s$$

 $\operatorname{ord}_x J_2 \ge m \Leftrightarrow \operatorname{ord}_x (J_1^m + J_2^s) \ge ms$

Step 2. (Achieve max-ord N(I) = 0)

Apply order reduction to $N(I)^m + I^s$.

Step 3. (Take care of I = M(I))

Substep 3.1 Blow up E_i with $\operatorname{ord}_{E_i} M(I) \ge m$.

Use index set order to make it functorial.

Substep 3.2 Blow up $E_i \cap E_j$ with ord $_{E_i \cap E_j} M(I) \ge m$.

Check: new exceptional divisors have order < m.

Substep 3.3 Blow up $E_i \cap E_j \cap E_k$ with ord $_{E_i \cap E_j \cap E_k} M(I) \ge m$.

Check: new pairwise intersections have order < m.

etc.

Appendix: Integral dependence

 $R : \operatorname{ring}, I \subset R \text{ ideal. } r \in R \text{ is}$ integral over I if $r^d + a_1 r^{d-1} + \dots + a_d = 0 \quad \text{where} \quad a_j \in I^j.$ All elements integral over I: $integral \ closure: \ \overline{I}.$ Lemma. If J is integral over I then $\operatorname{cosupp}(J,m) \supset \operatorname{cosupp}(I,m).$

Proof. Assume, $r \in \overline{I}$ but $\operatorname{ord}_x r < \operatorname{ord}_x I$. $\operatorname{ord}_x(a_1r^{d-1} + \cdots + a_d) \ge \min_j \{\operatorname{ord}_x(a_ir^i)\}$ $\ge (d-1)\operatorname{ord}_x r + \operatorname{ord}_x I > d \cdot \operatorname{ord}_x r$, which contradicts the equation.

Lemma. If J integral over I then $f_*^{-1}(J,m)$ is integral over $f_*^{-1}(I,m)$. Proof: Lift the equation.

Cor. If $D^{j}(I)^{m}$ integral over I^{m-j} , then $\operatorname{cosupp}(\Pi|_{S_{r}})^{-1}_{*}(D^{j}(I)^{m}|_{S}, m(m-j))$ $\supset \operatorname{cosupp}(\Pi|_{S_{r}})^{-1}_{*}(I^{m-j}|_{S}, m(m-j)).$

This is what we needed on Slide 22.