ACTIONS OF C* AND C_{+}ON AFFINE ALGEBRAIC VARIETIES

SHULIM KALIMAN (UNIVERSITY OF MIAMI)

1. Terminology.

X - a smooth complex affine algebraic variety $A=\mathbf{C}[X]$ - the algebra of regular functions on X G - an algebraic group
$\Phi: G \times X \rightarrow X-$ an algebraic action (i.e. Φ is an action and a morphims)
A^{G}-subalgebra of G-invariant regular functions
$X / / G=\operatorname{Spec} A^{G}$-algebraic quotient.

Remark. $X / / G$ is affine for reductive G (Nagata).
$X / / G$ is quasi-affine (Winkelmann, 2003) for nonreductive, but not necessarily affine (Nagata, Roberts, Daigle, Freudenburg for $G=\mathbf{C}_{+}, X=\mathbf{C}^{n}$ with $n \geq 5$)

14-h Hilbert Problem (Nagata): Is $F \cap A$ an affine domain for a subfield F of $\operatorname{Frac}(A)$?
Yes, when transcendence degree of $F($ over $\mathbf{C}) \leq 2$ (Zariski, 1953). Otherwise, No (Kuroda, 2004).

Examples. (1) $\bar{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{C}^{n}=X$, $\lambda \in \mathbf{C}^{*}=G$:
A linear action is given by $\lambda(\bar{x})=\left(\lambda^{k_{1}} x_{1}, \ldots, \lambda^{k_{n}} x_{n}\right)$ where $k_{i} \in \mathbf{Z}$.
(2) $\bar{x} \in \mathbf{C}^{n}=X, t \in \mathbf{C}_{+}=G$:

A triangular action is given by
$\bar{x} \rightarrow\left(x_{1}, x_{2}+t p_{2}\left(x_{1}\right), \ldots, x_{n}+t p_{n}\left(x_{1}, \ldots, x_{n-1}\right)\right)$
where each p_{i} is a polynomial.
The fixed point set for this action is $p_{2}=\ldots=p_{n}=$ 0 is a cylinder $Y \times \mathbf{C}_{x_{n}}$.
$\left(2^{\prime}\right)$ A triangular action without no fixed points is free. Say, if each p_{i} is constant and $p_{n} \neq 0$ then the action is free (and called a translation).

More generally, a $\mathbf{C}_{+}-$action is free (resp. a translation) on X if it has no fixed points
(resp. $X \simeq Y \times \mathbf{C}$ and the action is a translation on the second factor). In particular, for a translation $X / / \mathbf{C}_{+} \simeq X / \mathbf{C}_{+} \simeq Y$ is affine.

Cancellation Conjecture (Zariski-Ramanujam): For any translation on \mathbf{C}^{n} we have $\mathbf{C}^{n} / / \mathbf{C}_{+} \simeq \mathbf{C}^{n-1}$.

Yes, for $n \leq 3$ (Fujita, 1979).
That is, any translation on \mathbf{C}^{3} is conjugate in $\mathrm{Aut}^{\mathbf{C}}{ }^{3}$ to a translation $\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}, x_{3}+t\right)$ from Example (2').

Definition. Two G-actions Φ_{1} and Φ_{2} on X are equivalent if $\Phi_{2}=\alpha \circ \Phi_{1} \circ \alpha^{-1}$ for some $\alpha \in \operatorname{Aut} X$.

Classification Problem. For G-actions on X with given properties describe all equivalence classes.
(Jung-van der Kulk) AutC ${ }^{2}$ is the amalgamated product $\mathcal{A}_{2} *_{\mathcal{H}_{2}} \mathcal{J}_{2}$ where $\mathcal{H}_{n}=\mathcal{A}_{n} \cap \mathcal{J}_{n}$.

Jonquière subgroup and subgroups of affine transformation of Aut \mathbf{C}^{n} :

$$
\begin{aligned}
& \quad \mathcal{J}_{n}=\left\{\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right) \mid \varphi_{i} \in \mathbf{C}\left[x_{1}, \ldots, x_{i}\right] \forall i\right\} \\
& \mathcal{A}_{n}=\left\{\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right) \mid \varphi_{i} \in \mathbf{C}\left[x_{1}, \ldots, x_{n}\right], \operatorname{deg} \varphi_{i}=1 \forall i\right\}
\end{aligned}
$$

Algebraic subgroup of $\operatorname{Aut} \mathbf{C}^{2}$ is of bounded length in this product (Wright, 1979).
Hence it is isomorphic to a subgroup of one of factors (Serre, 1980).

Corollary. (Gutwirth, Rentchler, 1960's). Every \mathbf{C}^{*}-action on \mathbf{C}^{2} is equivalent to linear one, every \mathbf{C}_{+}-action on \mathbf{C}^{2} is equivalent to a triangular one. In particular, every free \mathbf{C}_{+}-action on \mathbf{C}^{2} is a translation.

Nagata's automorphism
$(x, y, z) \rightarrow\left(x-2 y\left(x z+y^{2}\right)-z\left(x z+y^{2}\right)^{2}, y+z\left(x z+y^{2}\right), z\right)$
is not a composition of Jonquière and affine transformations (Shestakov, Umirbaev, 2004).

Linearization Theorem (M. Koras. P. Russell, 1999). Every \mathbf{C}^{*}-action on \mathbf{C}^{3} is equivalent to a linear one.

Corollary (Popov, 2001, see also Kraft-Popov). Every action of a connected reductive group on \mathbf{C}^{3} is linearizable, i.e. it is equivalent to a representation.
\exists non-linearizable actions of reductive groups different from tori on \mathbf{C}^{4} (Schwarz, 1989). Actually for any such a group \exists such an action on some $\mathbf{C}^{n}, n \geq$ 4 (Knop, 1991).
\exists non-linearizable actions of finite groups on \mathbf{C}^{4} (Jauslin-Moser, Masuda, Petrie, 1991).
\exists a non-linearizable \mathbf{R}^{*}-action on \mathbf{R}^{4} (Asanuma, 1999).
\exists a non-linearizable analytic \mathbf{C}^{*}-action on \mathbf{C}^{3} (Derksen, Kutzschebauch, 1998).

Remark. Asanuma's construction would work for \mathbf{C}^{*}-actions on \mathbf{C}^{4} if \exists a non-rectifiable embedding of \mathbf{C} into \mathbf{C}^{3}. (Each embedding $\mathbf{C} \hookrightarrow \mathbf{C}^{n}$ is rectifiable for $n \geq 4$ (Jelonek, 1987) and $n=2$ (the AMS theorem)).

Elements of proof of Linearization theo-

 rem.Hard case: \mathbf{C}^{*}-action Φ on \mathbf{C}^{3} has one fixed point o; the induced \mathbf{C}^{*}-action Ψ on $T_{o} \mathbf{C}^{3} \simeq \mathbf{C}_{x, y, z}^{3}$ is given by $(x, y, z) \rightarrow\left(\lambda^{-a} x, \lambda^{b} y, \lambda^{c} z\right)$ where $a, b, c>0$.

$$
T_{o} \mathbf{C}^{3} / / \Psi \simeq \mathbf{C}^{2} / \mathbf{Z}_{d}, d=a / \operatorname{GCD}(a, b) \operatorname{GCD}(a, c)
$$

$S=\mathbf{C}^{3} / / \Phi$ is contractible with one singular point s_{0} of analytic type $\mathbf{C}^{2} / \mathbf{Z}_{d}$ and $\bar{\kappa}(S)=-\infty$.

When a, b, and c are pairwise prime then $S \simeq$ $T_{o} \mathbf{C}^{3} / \Psi \Rightarrow$ Linearization theorem. One can show $S \simeq T_{o} \mathbf{C}^{3} / \Psi$ for $\bar{\kappa}\left(S \backslash s_{0}\right)=-\infty$.
(Koras, Russell, coming) Let S be a normal contractible surface of $\bar{\kappa}(S)=-\infty$ with quotient singularities only. Then $\bar{\kappa}\left(S_{\mathrm{reg}}\right)=-\infty$.

The case of non-pairwise prime a, b, and c can be reduced to the pairwise prime case provided some special class of contractible (Koras-Russell) threefolds are exotic algebraic structures on \mathbf{C}^{3}, i.e. they are diffeomorphic to \mathbf{R}^{6} but not isomorphic to \mathbf{C}^{3}.

Remark. Every smooth affine contractible variety of dimension at least 3 is diffeomorphic to a real Euclidean space (Choudary, Dimca, 1994).
(Makar-Limanov, 1996; Kaliman, Makar-Limanov, 1997) Koras-Russell threefolds are exotic structures.

The Russell cubic R is given by $x+x^{2} y+z^{2}+t^{3}=0$ in \mathbf{C}^{4}.
R is diffeomorphic to $\mathbf{R}^{6}, \bar{\kappa}(R)=-\infty, R$ admits dominant morphism from \mathbf{C}^{3}.

Remark. \exists one-to-one correspondence between C_{+}-actions on X and locally nilpotent derivations (LND) on A.

Makar-Limanov invariant

$$
\operatorname{AK}(X)=\bigcap_{\partial \in \operatorname{LND}(A)} \operatorname{Ker} \partial ;
$$

in other words it is subalgebra of functions invariant under any \mathbf{C}_{+}-action on X.
$\operatorname{AK}\left(\mathbf{C}^{n}\right)=\mathbf{C}$ while $\operatorname{AK}(R)=\left.\mathbf{C}[x]\right|_{R}$, i.e. R is not isomorphic to \mathbf{C}^{3} (but what about biholomorphic?).

Idea of computation of Makar-Limanov invariant.

Step 1. Introduce associated affine variety \hat{X} and affine domain $\hat{A}=\mathbf{C}[\hat{X}]$ for X and A with a map $A \rightarrow \hat{A}, a \rightarrow \hat{a}$ so that $\forall \partial \in \operatorname{LND}(A) \backslash 0 \exists$! an associated $\hat{\partial} \in \operatorname{LND}(\hat{A}) \backslash 0$.
C - a germ of a smooth curve at $o \in C, C^{*}=C \backslash o$, $\rho: \mathcal{X} \rightarrow C-$ an affine morphism such that \mathcal{X} is normal, $\hat{X}:=\rho^{*}(o)$ is reduced irreducible, $\mathcal{X}^{*}:=$ $\mathcal{X} \backslash \rho^{-1}(o) \simeq X \times C^{*}$ over C^{*}.
∂ defines a LND on \mathcal{X}^{*} unique up to multiplication by a function on C^{*}. Choose this factor so that it extends to $\operatorname{LND} \delta$ on \mathcal{X} with $\hat{\partial}=\left.\delta\right|_{\hat{X}} \neq 0 . \quad(\hat{a}$ is defined via a similarly.)

Example. $\rho: \mathcal{R}=\left\{c x+x^{2} y+z^{2}+t^{3}=\right.$ $0\} \rightarrow C \simeq \mathbf{C}$. For $c \neq 0, \rho^{-1}(c) \simeq R$ while $\rho^{-1}(0) \simeq \hat{R}=\left\{x^{2} y+z^{2}+t^{3}=0\right\}$.

Step 2. $\operatorname{deg}_{\partial}(a)=\min \left\{n \mid \partial^{n+1}(a)=0\right\}$, i.e. $\operatorname{Ker} \partial=$ $\left\{a \in A \mid \operatorname{deg}_{\partial}(a)=0\right\}$. Use $\operatorname{deg}_{\hat{\partial}}(\hat{a}) \leq \operatorname{deg}_{\partial}(a)$.

Say, $\operatorname{deg}_{\partial}(y) \geq \operatorname{deg}_{\hat{\partial}}(\hat{y}) \geq 2$ for R. Using different associated varieties \Rightarrow
$\forall a \in \mathbf{C}[R]$ with $\operatorname{deg}_{\partial}(a) \leq 1$ is a restriction of $p \in \mathbf{C}[x, z, t]$.

Fact. $\forall a \in A, a=a_{2} / a_{1}$ where $a_{1} \in \operatorname{Ker} \partial$ and a_{2} is from algebra generated by $b \in A$ with $\operatorname{deg}_{\partial}(b)=1$ over Ker ∂.
\Rightarrow on R we have $y=p(x, z, t) / q(x, z, t)$ with $q(x, z, t) \in \operatorname{Ker} \partial$. On the other hand $y=-(x+$ $\left.z^{2}+t^{3}\right) / x \Rightarrow x \in \operatorname{Ker} \partial$.

Limitation of Makar-Limanov invariant.

1. Is $R \times \mathbf{C}$ exotic?
2. Hypersurface $D=\left\{u v=p(\bar{x}\} \subset \mathbf{C}_{u, v, \bar{x}}^{n+2}\right.$ with $n \geq 2$ and smooth reduced $p^{*}(0) \subset \mathbf{C}^{n}$ has $\operatorname{AK}(D)=$ C (Kaliman, Zaidenberg, 1999). If $p^{*}(0)$ is contractible then D is diffeomorphic to $\mathbf{R}^{2 n+2}$

Example. $u v=x+x^{2} y+z^{2}+t^{3}$.

Such D has Andersén-Lempert property (1992), i.e. the Lie algebra generated by algebraic integrable vector fields coincides with Lie algebra of all algebraic vector fields (Kaliman, Kutzschebauch, coming).

Free C_{+}-actions.

(Gutwirth, 1961, Rentschler, 1968) any \mathbf{C}_{+}-action on \mathbf{C}^{2} is triangular, i.e. $\Phi_{t}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}+t p_{2}\left(x_{1}\right)\right)$ in a suitable coordinate system
\Rightarrow any free action is a translation.

There are non-triangular \mathbf{C}_{+}-actions on \mathbf{C}^{3} (Bass,

 1984) ${ }^{1}$ since the fixed point set may not be a cylinder.(Winkelmann, 1990) Not all free \mathbf{C}_{+}-actions on \mathbf{C}^{4} are translations ${ }^{2}$ since it may happen that $\mathbf{C}^{4} / / \mathbf{C}_{+}$ is not isomorphic to $\mathbf{C}^{4} / \mathbf{C}_{+}$.

[^0]Theorem. (Kaliman, 2004) Let Φ be a $\mathbf{C}_{+}-$ action on factorial three-dimensional X with $H_{2}(X)=$ $H_{3}(X)=0$. Suppose that the action is free and $S=X / / \Phi$ is smooth.
Then Φ is a translation, i.e. X is isomorphic to $S \times \mathbf{C}$ and the action is generated by a translation on the second factor.

Since $\mathbf{C}^{3} / / \mathbf{C}_{+} \simeq \mathbf{C}^{2}$ for any nontrivial \mathbf{C}_{+}-action (Miyanishi, 1980) we have

Corollary. A free \mathbf{C}_{+}-action on \mathbf{C}^{3} is a translation in a suitable coordinate system.
Equivalently, every nowhere vanishing (as a vector field) locally nilpotent derivation on $\mathbf{C}^{[3]}$ is a partial derivative in a suitable coordinate system.

Theorem (Kaliman, Saveliev, 2004) Let Φ be a \mathbf{C}_{+}-action on three-dimensional contractible X. Then the quotient $X / / \Phi$ is a smooth contractible surface.

Since smooth contractible surfaces are rational (Gurjar, Shastri) we have

Corollary 2. If a contractible threefold X admits a nontrivial \mathbf{C}_{+}-action, then X is rational.

Remark. This is a partial answer to the Van de Ven conjecture in dimension 3 which states that smooth contractible affine algebraic varieties are rational.
(For smooth contractible affine threefolds with a nontrivial \mathbf{C}^{*}-action rationality is proven by Gurjar, Shastri, and Pradeep).

Element of proof of smoothness of the quotient for contractible three-dimensional X.

Quotient morphism $\pi: X \rightarrow X / / \Phi$ is surjective
$\Rightarrow X / / \Phi$ is contractible and has at worst quotient singularities whose links are homology spheres
\Rightarrow by theorems of Prill, and Brieskorn (about local fundamental groups of quotient singularities) \Rightarrow $X / / \Phi$ has at worst E_{8}-singularities (i.e. singularities of type $\left.x^{2}+y^{3}+z^{5}=0\right)^{3}$.

The link of an E_{8}-singularity is a Poincaré homology 3 -sphere \mathcal{P}.

Link $X / / \Phi$ at infinity is also a homology 3 -sphere.
\Rightarrow if $X / / \Phi$ does have a singularity then there is a simply connected homology cobordism between \mathcal{P} and another homology 3 -sphere.

But this is impossible (Taubes, 1987; see also Fintushel and Stern, 1990).
$\Rightarrow X / / \Phi$ is smooth.

[^1]
C^{*}-actions on affine surfaces.

S - a normal affine surface with an effective \mathbf{C}^{*} action Φ
$B=\mathbf{C}[S]$-algebra of regular functions so that
$B=\oplus_{i \in \mathbf{Z}} B_{i}=B_{\geq 0} \oplus_{B_{0}} B_{\leq 0}$
F - the set of fixed points of Φ
$C=(S \backslash F) / \Phi$ - a curve.

Dolgachev-Pikhman-Demazure (DPD) presentation (Flenner, Zaidenberg, 2003; Kollar)

Elliptic case: C is smooth projective and \exists a \mathbf{Q} divisor D on C so that $B=\oplus_{i \geq 0} H^{0}\left(C, \mathcal{O}(\lfloor i D\rfloor) u^{i}\right.$ where $\lfloor E\rfloor$ is the integral part of a \mathbf{Q}-divisor E.
Parabolic case: C is smooth affine and \exists a \mathbf{Q} divisor D on C so that $B=\oplus_{i \geq 0} H^{0}\left(C, \mathcal{O}(\lfloor i D\rfloor) u^{i}\right.$.

Hyperbolic case: C is affine smooth and \exists
Q-divisors D_{+}and D_{-}on C so that $D_{+}+D_{-} \leq 0$, $B_{\geq 0}=\oplus_{i \geq 0} H^{0}\left(C, \mathcal{O}\left(\left\lfloor i D_{+}\right\rfloor\right) u^{i}\right.$ and $B_{\leq 0}=\oplus_{i \leq 0} H^{0}\left(C, \mathcal{O}\left(-\left\lfloor i D_{-}\right\rfloor\right) u^{i}\right.$.

Smooth surfaces with more than two equivalence classes of effective \mathbf{C}^{*}-actions are \mathbf{C}^{2} and DanilovGizatullin surfaces (suggested by P. Russell).

Let $\mathbf{F}_{n} \rightarrow \mathbf{P}^{1}$ be a Hirzebruch surface over \mathbf{P}^{1} and L be its section with $L^{2}=k+1$. If L is ample then $\mathbf{F}_{n} \backslash L$ is a Danilov-Gizatullin surface.

Theorem. There are k equivalence classes of effective \mathbf{C}^{*}-actions on this surface.

Theorem. (Flenner, Kaliman, Zaidenberg, coming) Let Φ be an effective \mathbf{C}^{*}-action on a smooth affine surface S different from \mathbf{C}^{2} or a DanilovGizatullin surface. Then any other effective \mathbf{C}^{*} action is equivalent either to Φ or to Φ^{-1}. In particular, for such S its DPD-presentation is "essentially" unique.

[^0]: be given by

 $$
 \Phi_{t}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}+t x_{1} u, x_{3}-2 t x_{2} u-t^{2} x_{1} u^{2}\right)
 $$

 and $\partial\left(x_{1}\right)=0, \partial\left(x_{2}\right)=x_{1} u$, and $\partial\left(x_{3}\right)=-2 x_{2} u$ which implies that $\partial(u)=0$. Hence $x_{1} x_{3}+x_{2}^{2}=0$ is the fixed point set which is not a cylinder and, therefore, the action cannot be triangular.
 $2_{\Phi_{t}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}+t x_{1}, x_{3}+t x_{2}+t^{2} x_{1} / 2, x_{4}+t\left(x_{2}^{2}-2 x_{1} x_{3}-1\right)\right) \text {. The reason }}$ why this free \mathbf{C}_{+}-action is not a translation is that $\mathbf{C}^{4} / \mathbf{C}_{+}$is not Hausdorff while in the case of translations $\mathbf{C}^{4} / \mathbf{C}_{+}=\mathbf{C}^{4} / / \mathbf{C}_{+}$is affine.

[^1]: $3_{\text {We use the fact that } E_{8}}$ is the only quotient singularity with a perfect local fundamental group.

