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1. Terminology.

X – a smooth complex affine algebraic variety

A = C[X ] – the algebra of regular functions on X

G – an algebraic group

Φ : G ×X → X – an algebraic action (i.e. Φ is an

action and a morphims)

AG -subalgebra of G-invariant regular functions

X//G = SpecAG –algebraic quotient.

Remark. X//G is affine for reductive G (Na-

gata).

X//G is quasi-affine (Winkelmann, 2003) for non-

reductive, but not necessarily affine (Nagata, Roberts,

Daigle, Freudenburg for G = C+, X = Cn with

n ≥ 5)
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14-h Hilbert Problem (Nagata): Is F ∩A an affine

domain for a subfield F of Frac(A)?

Yes, when transcendence degree of F (over C) ≤ 2

(Zariski, 1953). Otherwise, No (Kuroda, 2004).

Examples. (1) x̄ = (x1, . . . , xn) ∈ Cn = X ,

λ ∈ C∗ = G:

A linear action is given by λ(x̄) = (λk1x1, . . . , λ
knxn)

where ki ∈ Z.

(2) x̄ ∈ Cn = X , t ∈ C+ = G:

A triangular action is given by

x̄ → (x1, x2 + tp2(x1), . . . , xn + tpn(x1, . . . , xn−1))

where each pi is a polynomial.

The fixed point set for this action is p2 = . . . = pn =

0 is a cylinder Y ×Cxn.

(2′) A triangular action without no fixed points is

free. Say, if each pi is constant and pn 6= 0 then the

action is free (and called a translation).

More generally, a C+-action is free (resp. a trans-

lation) on X if it has no fixed points
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(resp. X ' Y × C and the action is a translation

on the second factor). In particular, for a translation

X//C+ ' X/C+ ' Y is affine.

Cancellation Conjecture (Zariski-Ramanujam):

For any translation on Cn we have Cn//C+ ' Cn−1.

Yes, for n ≤ 3 (Fujita, 1979).

That is, any translation on C3 is conjugate in AutC3

to a translation (x1, x2, x3) → (x1, x2, x3 + t) from

Example (2′).

Definition. Two G-actions Φ1 and Φ2 on X are

equivalent if Φ2 = α ◦Φ1 ◦α−1 for some α ∈ AutX .

Classification Problem. For G-actions on X

with given properties describe all equivalence classes.
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(Jung-van der Kulk) AutC2 is the amalgamated

product A2 ∗H2 J2 where Hn = An ∩ Jn.

Jonquière subgroup and subgroups of affine trans-

formation of AutCn:

Jn = {ϕ = (ϕ1, . . . , ϕn)|ϕi ∈ C[x1, . . . , xi]∀i}
An = {ϕ = (ϕ1, . . . , ϕn)|ϕi ∈ C[x1, . . . , xn], deg ϕi = 1∀i}.

Algebraic subgroup of AutC2 is of bounded length

in this product (Wright, 1979).

Hence it is isomorphic to a subgroup of one of factors

(Serre, 1980).

Corollary. (Gutwirth, Rentchler, 1960’s). Every

C∗-action on C2 is equivalent to linear one, every

C+-action on C2 is equivalent to a triangular one.

In particular, every free C+-action on C2 is a

translation.
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Nagata’s automorphism

(x, y, z) → (x−2y(xz+y2)−z(xz+y2)2, y+z(xz+y2), z)

is not a composition of Jonquière and affine transfor-

mations (Shestakov, Umirbaev, 2004).

Linearization Theorem (M. Koras. P. Russell,

1999). Every C∗-action on C3 is equivalent to a

linear one.

Corollary (Popov, 2001, see also Kraft-Popov).

Every action of a connected reductive group on

C3 is linearizable, i.e. it is equivalent to a repre-

sentation.

∃ non-linearizable actions of reductive groups dif-

ferent from tori on C4 (Schwarz, 1989). Actually for

any such a group ∃ such an action on some Cn, n ≥
4 (Knop, 1991).

∃ non-linearizable actions of finite groups on C4

(Jauslin-Moser, Masuda, Petrie, 1991).
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∃ a non-linearizable R∗-action on R4 (Asanuma,

1999).

∃ a non-linearizable analytic C∗-action on C3 (Derk-

sen, Kutzschebauch, 1998).

Remark. Asanuma’s construction would work for

C∗-actions on C4 if ∃ a non-rectifiable embedding of

C into C3. (Each embedding C ↪→ Cn is rectifiable

for n ≥ 4 (Jelonek, 1987) and n = 2 (the AMS the-

orem)).

Elements of proof of Linearization theo-

rem.

Hard case: C∗-action Φ on C3 has one fixed point o;

the induced C∗-action Ψ on ToC
3 ' C3

x,y,z is given

by (x, y, z) → (λ−ax, λby, λcz) where a, b, c > 0.

ToC
3//Ψ ' C2/Zd, d = a/GCD(a, b)GCD(a, c).

S = C3//Φ is contractible with one singular point

s0 of analytic type C2/Zd and κ̄(S) = −∞.
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When a, b, and c are pairwise prime then S '
ToC

3/Ψ ⇒ Linearization theorem. One can show

S ' ToC
3/Ψ for κ̄(S \ s0) = −∞.

(Koras, Russell, coming) Let S be a normal con-

tractible surface of κ̄(S) = −∞ with quotient sin-

gularities only. Then κ̄(Sreg) = −∞.

The case of non-pairwise prime a, b, and c can be

reduced to the pairwise prime case provided some

special class of contractible (Koras-Russell) three-

folds are exotic algebraic structures on C3, i.e. they

are diffeomorphic to R6 but not isomorphic to C3.

Remark. Every smooth affine contractible vari-

ety of dimension at least 3 is diffeomorphic to a real

Euclidean space (Choudary, Dimca, 1994).

(Makar-Limanov, 1996; Kaliman, Makar-Limanov,

1997) Koras-Russell threefolds are exotic struc-

tures.

The Russell cubic R is given by x+x2y+z2+t3 = 0

in C4.
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R is diffeomorphic to R6, κ̄(R) = −∞, R admits

dominant morphism from C3.

Remark. ∃ one-to-one correspondence between

C+-actions on X and locally nilpotent derivations

(LND) on A.

Makar-Limanov invariant

AK(X) =
⋂

∂∈LND(A)

Ker ∂;

in other words it is subalgebra of functions invariant

under any C+-action on X .

AK(Cn) = C while AK(R) = C[x]|R, i.e. R is not

isomorphic to C3 (but what about biholomorphic?).

Idea of computation of Makar-Limanov

invariant.

Step 1. Introduce associated affine variety X̂ and

affine domain Â = C[X̂ ] for X and A with a map

A → Â, a → â so that ∀ ∂ ∈ LND(A) \ 0 ∃! an

associated ∂̂ ∈ LND(Â) \ 0.
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C – a germ of a smooth curve at o ∈ C, C∗ = C\o,

ρ : X → C – an affine morphism such that X is

normal, X̂ := ρ∗(o) is reduced irreducible, X ∗ :=

X \ ρ−1(o) ' X × C∗ over C∗.

∂ defines a LND on X ∗ unique up to multiplication

by a function on C∗. Choose this factor so that it

extends to LND δ on X with ∂̂ = δ|X̂ 6= 0. (â is

defined via a similarly.)

Example. ρ : R = {cx + x2y + z2 + t3 =

0} → C ' C. For c 6= 0, ρ−1(c) ' R while

ρ−1(0) ' R̂ = {x2y + z2 + t3 = 0}.

Step 2. deg∂(a) = min{n|∂n+1(a) = 0}, i.e. Ker ∂ =

{a ∈ A| deg∂(a) = 0}.
Use deg∂̂(â) ≤ deg∂(a).

Say, deg∂(y) ≥ deg∂̂(ŷ) ≥ 2 for R. Using different

associated varieties ⇒
∀ a ∈ C[R] with deg∂(a) ≤ 1 is a restriction of

p ∈ C[x, z, t].
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Fact. ∀a ∈ A, a = a2/a1 where a1 ∈ Ker ∂ and a2

is from algebra generated by b ∈ A with deg∂(b) = 1

over Ker ∂.

⇒ on R we have y = p(x, z, t)/q(x, z, t) with

q(x, z, t) ∈ Ker ∂. On the other hand y = −(x +

z2 + t3)/x ⇒ x ∈ Ker ∂.

Limitation of Makar-Limanov invariant.

1. Is R×C exotic?

2. Hypersurface D = {uv = p(x̄} ⊂ Cn+2
u,v,x̄ with

n ≥ 2 and smooth reduced p∗(0) ⊂ Cn has AK(D) =

C (Kaliman, Zaidenberg, 1999). If p∗(0) is con-

tractible then D is diffeomorphic to R2n+2

Example. uv = x + x2y + z2 + t3.

Such D has Andersén-Lempert property (1992), i.e.

the Lie algebra generated by algebraic integrable vec-

tor fields coincides with Lie algebra of all algebraic

vector fields (Kaliman, Kutzschebauch, coming).
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Free C+-actions.

(Gutwirth, 1961, Rentschler, 1968) any C+-action

on C2 is triangular, i.e. Φt(x1, x2) = (x1, x2+tp2(x1))

in a suitable coordinate system

⇒ any free action is a translation.

There are non-triangular C+-actions on C3 (Bass,

1984) 1 since the fixed point set may not be a cylin-

der.

(Winkelmann, 1990) Not all free C+-actions on C4

are translations 2 since it may happen that C4//C+

is not isomorphic to C4/C+.

1More precisely, for t ∈ C+, (x1, x2, x3) ∈ C3, and u = x1x3 + x2
2 such an action may

be given by

Φt(x1, x2, x3) = (x1, x2 + tx1u, x3 − 2tx2u− t2x1u
2)

and ∂(x1) = 0, ∂(x2) = x1u, and ∂(x3) = −2x2u which implies that ∂(u) = 0. Hence

x1x3 + x2
2 = 0 is the fixed point set which is not a cylinder and, therefore, the action

cannot be triangular.

2Φt(x1, x2, x3, x4) = (x1, x2 +tx1, x3 +tx2 +t2x1/2, x4 +t(x2
2−2x1x3−1)). The reason

why this free C+-action is not a translation is that C4/C+ is not Hausdorff while in the

case of translations C4/C+ = C4//C+ is affine.
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Theorem. (Kaliman, 2004) Let Φ be a C+-

action on factorial three-dimensional X with H2(X) =

H3(X) = 0. Suppose that the action is free and

S = X//Φ is smooth.

Then Φ is a translation, i.e. X is isomorphic to

S×C and the action is generated by a translation

on the second factor.

Since C3//C+ ' C2 for any nontrivial C+-action

(Miyanishi, 1980) we have

Corollary. A free C+-action on C3 is a trans-

lation in a suitable coordinate system.

Equivalently, every nowhere vanishing (as a vec-

tor field) locally nilpotent derivation on C[3] is a

partial derivative in a suitable coordinate system.

Theorem (Kaliman, Saveliev, 2004) Let Φ be a

C+-action on three-dimensional contractible X.

Then the quotient X//Φ is a smooth contractible

surface.
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Since smooth contractible surfaces are rational (Gur-

jar, Shastri) we have

Corollary 2. If a contractible threefold X ad-

mits a nontrivial C+-action, then X is rational.

Remark. This is a partial answer to the Van

de Ven conjecture in dimension 3 which states that

smooth contractible affine algebraic varieties are ra-

tional.

(For smooth contractible affine threefolds with a

nontrivial C∗-action rationality is proven by Gurjar,

Shastri, and Pradeep).

Element of proof of smoothness of the

quotient for contractible three-dimensional

X.

Quotient morphism π : X → X//Φ is surjective

⇒ X//Φ is contractible and has at worst quotient

singularities whose links are homology spheres
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⇒ by theorems of Prill, and Brieskorn (about lo-

cal fundamental groups of quotient singularities) ⇒
X//Φ has at worst E8–singularities (i.e. singulari-

ties of type x2 + y3 + z5 = 0)3.

The link of an E8–singularity is a Poincaré homol-

ogy 3-sphere P .

Link X//Φ at infinity is also a homology 3-sphere.

⇒ if X//Φ does have a singularity then there is

a simply connected homology cobordism between P
and another homology 3-sphere.

But this is impossible (Taubes, 1987; see also

Fintushel and Stern, 1990).

⇒ X//Φ is smooth.

3We use the fact that E8 is the only quotient singularity with a perfect local funda-

mental group.
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C∗-actions on affine surfaces.

S - a normal affine surface with an effective C∗-
action Φ

B = C[S] -algebra of regular functions so that

B = ⊕i∈ZBi = B≥0 ⊕B0 B≤0

F - the set of fixed points of Φ

C = (S \ F )/Φ - a curve.

Dolgachev-Pikhman-Demazure (DPD) presentation

(Flenner, Zaidenberg, 2003; Kollar)

Elliptic case: C is smooth projective and ∃ a Q-

divisor D on C so that B = ⊕i≥0H
0(C,O(biDc)ui

where bEc is the integral part of a Q-divisor E.

Parabolic case: C is smooth affine and ∃ a Q-

divisor D on C so that B = ⊕i≥0H
0(C,O(biDc)ui.

Hyperbolic case: C is affine smooth and ∃
Q-divisors D+ and D− on C so that D+ + D− ≤ 0,

B≥0 = ⊕i≥0H
0(C,O(biD+c)ui and

B≤0 = ⊕i≤0H
0(C,O(−biD−c)ui.
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Smooth surfaces with more than two equivalence

classes of effective C∗-actions are C2 and Danilov-

Gizatullin surfaces (suggested by P. Russell).

Let Fn → P1 be a Hirzebruch surface over P1 and

L be its section with L2 = k + 1. If L is ample then

Fn \ L is a Danilov-Gizatullin surface.

Theorem. There are k equivalence classes of

effective C∗-actions on this surface.

Theorem. (Flenner, Kaliman, Zaidenberg, com-

ing) Let Φ be an effective C∗-action on a smooth

affine surface S different from C2 or a Danilov-

Gizatullin surface. Then any other effective C∗-
action is equivalent either to Φ or to Φ−1. In par-

ticular, for such S its DPD-presentation is “es-

sentially” unique.
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