ACTIONS OF C^* AND C_+ ON AFFINE ALGEBRAIC VARIETIES

SHULIM KALIMAN (UNIVERSITY OF MIAMI)

1. Terminology.

X – a smooth complex affine algebraic variety $A = \mathbf{C}[X]$ – the algebra of regular functions on X G – an algebraic group $\Phi: G \times X \to X$ – an algebraic action (i.e. Φ is an action and a morphims) A^G -subalgebra of G-invariant regular functions

 $X//G = \operatorname{Spec} A^G$ –algebraic quotient.

Remark. X//G is affine for reductive G (Nagata).

X//G is quasi-affine (Winkelmann, 2003) for nonreductive, but not necessarily affine (Nagata, Roberts, Daigle, Freudenburg for $G = \mathbf{C}_+, X = \mathbf{C}^n$ with $n \geq 5$) 14-h Hilbert Problem (Nagata): Is $F \cap A$ an affine domain for a subfield F of Frac(A)? Yes, when transcendence degree of F (over \mathbf{C}) ≤ 2 (Zariski, 1953). Otherwise, No (Kuroda, 2004).

Examples. (1) $\bar{x} = (x_1, \dots, x_n) \in \mathbf{C}^n = X$, $\lambda \in \mathbf{C}^* = G$:

A linear action is given by $\lambda(\bar{x}) = (\lambda^{k_1} x_1, \dots, \lambda^{k_n} x_n)$ where $k_i \in \mathbb{Z}$.

(2)
$$\bar{x} \in \mathbf{C}^n = X$$
, $t \in \mathbf{C}_+ = G$:
A triangular action is given by
 $\bar{x} \to (x_1, x_2 + tp_2(x_1), \dots, x_n + tp_n(x_1, \dots, x_{n-1}))$
where each p_i is a polynomial.
The fixed point set for this action is $p_2 = \dots = p_n =$
0 is a cylinder $Y \times \mathbf{C}_{x_n}$.

(2') A triangular action without no fixed points is free. Say, if each p_i is constant and $p_n \neq 0$ then the action is free (and called a translation).

More generally, a C_+ -action is free (resp. a translation) on X if it has no fixed points (resp. $X \simeq Y \times \mathbf{C}$ and the action is a translation on the second factor). In particular, for a translation $X//\mathbf{C}_+ \simeq X/\mathbf{C}_+ \simeq Y$ is affine.

Cancellation Conjecture (Zariski-Ramanujam): For any translation on \mathbb{C}^n we have $\mathbb{C}^n//\mathbb{C}_+ \simeq \mathbb{C}^{n-1}$.

Yes, for $n \leq 3$ (Fujita, 1979).

That is, any translation on \mathbb{C}^3 is conjugate in Aut \mathbb{C}^3 to a translation $(x_1, x_2, x_3) \rightarrow (x_1, x_2, x_3 + t)$ from Example (2').

Definition. Two *G*-actions Φ_1 and Φ_2 on *X* are equivalent if $\Phi_2 = \alpha \circ \Phi_1 \circ \alpha^{-1}$ for some $\alpha \in \text{Aut}X$.

Classification Problem. For G-actions on X with given properties describe all equivalence classes.

(Jung-van der Kulk) Aut \mathbf{C}^2 is the amalgamated product $\mathcal{A}_2 *_{\mathcal{H}_2} \mathcal{J}_2$ where $\mathcal{H}_n = \mathcal{A}_n \cap \mathcal{J}_n$.

Jonquière subgroup and subgroups of affine transformation of $\operatorname{Aut} \mathbf{C}^n$:

$$\mathcal{J}_n = \{ \varphi = (\varphi_1, \dots, \varphi_n) | \varphi_i \in \mathbf{C}[x_1, \dots, x_i] \forall i \}$$
$$\mathcal{A}_n = \{ \varphi = (\varphi_1, \dots, \varphi_n) | \varphi_i \in \mathbf{C}[x_1, \dots, x_n], \deg \varphi_i = 1 \forall i \}.$$

Algebraic subgroup of $\operatorname{Aut} \mathbb{C}^2$ is of bounded length in this product (Wright, 1979). Hence it is isomorphic to a subgroup of one of factors (Serre, 1980).

Corollary. (Gutwirth, Rentchler, 1960's). Every \mathbf{C}^* -action on \mathbf{C}^2 is equivalent to linear one, every \mathbf{C}_+ -action on \mathbf{C}^2 is equivalent to a triangular one. In particular, every free \mathbf{C}_+ -action on \mathbf{C}^2 is a translation.

Nagata's automorphism

 $(x,y,z) \to (x-2y(xz+y^2)-z(xz+y^2)^2,y+z(xz+y^2),z)$

is not a composition of Jonquière and affine transformations (Shestakov, Umirbaev, 2004).

Linearization Theorem (M. Koras. P. Russell, 1999). Every \mathbf{C}^* -action on \mathbf{C}^3 is equivalent to a linear one.

Corollary (Popov, 2001, see also Kraft-Popov). Every action of a connected reductive group on \mathbf{C}^3 is linearizable, i.e. it is equivalent to a representation.

 \exists non-linearizable actions of reductive groups different from tori on \mathbb{C}^4 (Schwarz, 1989). Actually for any such a group \exists such an action on some \mathbb{C}^n , $n \ge$ 4 (Knop, 1991).

 \exists non-linearizable actions of finite groups on \mathbb{C}^4 (Jauslin-Moser, Masuda, Petrie, 1991). \exists a non-linearizable \mathbf{R}^* -action on \mathbf{R}^4 (Asanuma, 1999).

 \exists a non-linearizable analytic \mathbf{C}^* -action on \mathbf{C}^3 (Derksen, Kutzschebauch, 1998).

Remark. Asanuma's construction would work for \mathbb{C}^* -actions on \mathbb{C}^4 if \exists a non-rectifiable embedding of \mathbb{C} into \mathbb{C}^3 . (Each embedding $\mathbb{C} \hookrightarrow \mathbb{C}^n$ is rectifiable for $n \geq 4$ (Jelonek, 1987) and n = 2 (the AMS theorem)).

Elements of proof of Linearization theorem.

Hard case: \mathbf{C}^* -action Φ on \mathbf{C}^3 has one fixed point o; the induced \mathbf{C}^* -action Ψ on $T_o\mathbf{C}^3 \simeq \mathbf{C}^3_{x,y,z}$ is given by $(x, y, z) \to (\lambda^{-a}x, \lambda^b y, \lambda^c z)$ where a, b, c > 0.

$$T_o \mathbf{C}^3 / / \Psi \simeq \mathbf{C}^2 / \mathbf{Z}_d, \ d = a / \text{GCD}(a, b) \text{GCD}(a, c).$$

 $S = \mathbf{C}^3 / \Phi$ is contractible with one singular point s_0 of analytic type $\mathbf{C}^2 / \mathbf{Z}_d$ and $\bar{\kappa}(S) = -\infty$.

When a, b, and c are pairwise prime then $S \simeq T_o \mathbf{C}^3 / \Psi \Rightarrow$ Linearization theorem. One can show $S \simeq T_o \mathbf{C}^3 / \Psi$ for $\bar{\kappa}(S \setminus s_0) = -\infty$.

(Koras, Russell, coming) Let S be a normal contractible surface of $\bar{\kappa}(S) = -\infty$ with quotient singularities only. Then $\bar{\kappa}(S_{reg}) = -\infty$.

The case of non-pairwise prime a, b, and c can be reduced to the pairwise prime case provided some special class of contractible (Koras-Russell) threefolds are exotic algebraic structures on \mathbf{C}^3 , i.e. they are diffeomorphic to \mathbf{R}^6 but not isomorphic to \mathbf{C}^3 .

Remark. Every smooth affine contractible variety of dimension at least 3 is diffeomorphic to a real Euclidean space (Choudary, Dimca, 1994).

(Makar-Limanov, 1996; Kaliman, Makar-Limanov, 1997) Koras-Russell threefolds are exotic structures.

The Russell cubic R is given by $x+x^2y+z^2+t^3=0$ in \mathbb{C}^4 . R is diffeomorphic to \mathbf{R}^6 , $\bar{\kappa}(R) = -\infty$, R admits dominant morphism from \mathbf{C}^3 .

Remark. \exists one-to-one correspondence between \mathbf{C}_+ -actions on X and locally nilpotent derivations (LND) on A.

Makar-Limanov invariant

$$\operatorname{AK}(X) = \bigcap_{\partial \in \operatorname{LND}(A)} \operatorname{Ker} \partial;$$

in other words it is subalgebra of functions invariant under any \mathbf{C}_+ -action on X.

 $\operatorname{AK}(\mathbf{C}^n) = \mathbf{C}$ while $\operatorname{AK}(R) = \mathbf{C}[x]|_R$, i.e. R is not isomorphic to \mathbf{C}^3 (but what about biholomorphic?).

Idea of computation of Makar-Limanov invariant.

Step 1. Introduce associated affine variety \hat{X} and affine domain $\hat{A} = \mathbf{C}[\hat{X}]$ for X and A with a map $A \to \hat{A}, a \to \hat{a}$ so that $\forall \ \partial \in \text{LND}(A) \setminus 0 \ \exists !$ an associated $\hat{\partial} \in \text{LND}(\hat{A}) \setminus 0$. C – a germ of a smooth curve at $o \in C, C^* = C \setminus o$, $\rho : \mathcal{X} \to C$ – an affine morphism such that \mathcal{X} is normal, $\hat{X} := \rho^*(o)$ is reduced irreducible, $\mathcal{X}^* :=$ $\mathcal{X} \setminus \rho^{-1}(o) \simeq X \times C^*$ over C^* .

 ∂ defines a LND on \mathcal{X}^* unique up to multiplication by a function on C^* . Choose this factor so that it extends to LND δ on \mathcal{X} with $\hat{\partial} = \delta|_{\hat{X}} \neq 0$. (\hat{a} is defined via a similarly.)

Example. ρ : $\mathcal{R} = \{cx + x^2y + z^2 + t^3 = 0\} \rightarrow C \simeq \mathbf{C}$. For $c \neq 0, \ \rho^{-1}(c) \simeq R$ while $\rho^{-1}(0) \simeq \hat{R} = \{x^2y + z^2 + t^3 = 0\}.$

Step 2. $\deg_{\partial}(a) = \min\{n | \partial^{n+1}(a) = 0\}$, i.e. Ker $\partial = \{a \in A | \deg_{\partial}(a) = 0\}$. Use $\deg_{\hat{\partial}}(\hat{a}) \leq \deg_{\partial}(a)$.

Say, $\deg_{\partial}(y) \ge \deg_{\hat{\partial}}(\hat{y}) \ge 2$ for R. Using different associated varieties \Rightarrow $\forall a \in \mathbf{C}[R]$ with $\deg_{2}(a) \le 1$ is a restriction of

 $\forall a \in \mathbf{C}[R]$ with $\deg_{\partial}(a) \leq 1$ is a restriction of $p \in \mathbf{C}[x, z, t]$.

Fact. $\forall a \in A, a = a_2/a_1$ where $a_1 \in \text{Ker } \partial$ and a_2 is from algebra generated by $b \in A$ with $\deg_{\partial}(b) = 1$ over Ker ∂ .

 \Rightarrow on R we have y = p(x, z, t)/q(x, z, t) with $q(x, z, t) \in \text{Ker }\partial$. On the other hand $y = -(x + z^2 + t^3)/x \Rightarrow x \in \text{Ker }\partial$.

Limitation of Makar-Limanov invariant.

1. Is $R \times \mathbf{C}$ exotic?

2. Hypersurface $D = \{uv = p(\bar{x}\} \subset \mathbf{C}_{u,v,\bar{x}}^{n+2} \text{ with } n \geq 2 \text{ and smooth reduced } p^*(0) \subset \mathbf{C}^n \text{ has } \mathrm{AK}(D) = \mathbf{C} \text{ (Kaliman, Zaidenberg, 1999). If } p^*(0) \text{ is contractible then } D \text{ is diffeomorphic to } \mathbf{R}^{2n+2}$

Example. $uv = x + x^2y + z^2 + t^3$.

Such D has Andersén-Lempert property (1992), i.e. the Lie algebra generated by algebraic integrable vector fields coincides with Lie algebra of all algebraic vector fields (Kaliman, Kutzschebauch, coming).

Free C_+ -actions.

(Gutwirth, 1961, Rentschler, 1968) any \mathbf{C}_+ -action on \mathbf{C}^2 is triangular, i.e. $\Phi_t(x_1, x_2) = (x_1, x_2 + tp_2(x_1))$ in a suitable coordinate system

 \Rightarrow any free action is a translation.

There are non-triangular \mathbf{C}_+ -actions on \mathbf{C}^3 (Bass, 1984)¹ since the fixed point set may not be a cylinder.

(Winkelmann, 1990) Not all free \mathbf{C}_+ -actions on \mathbf{C}^4 are translations ² since it may happen that $\mathbf{C}^4//\mathbf{C}_+$ is not isomorphic to $\mathbf{C}^4/\mathbf{C}_+$.

$$\Phi_t(x_1, x_2, x_3) = (x_1, x_2 + tx_1u, x_3 - 2tx_2u - t^2x_1u^2)$$

¹More precisely, for $t \in \mathbf{C}_+$, $(x_1, x_2, x_3) \in \mathbf{C}^3$, and $u = x_1 x_3 + x_2^2$ such an action may be given by

and $\partial(x_1) = 0$, $\partial(x_2) = x_1 u$, and $\partial(x_3) = -2x_2 u$ which implies that $\partial(u) = 0$. Hence $x_1 x_3 + x_2^2 = 0$ is the fixed point set which is not a cylinder and, therefore, the action cannot be triangular.

 $²_{\Phi_t(x_1, x_2, x_3, x_4)} = (x_1, x_2 + tx_1, x_3 + tx_2 + t^2x_1/2, x_4 + t(x_2^2 - 2x_1x_3 - 1)).$ The reason why this free \mathbf{C}_+ -action is not a translation is that $\mathbf{C}^4/\mathbf{C}_+$ is not Hausdorff while in the case of translations $\mathbf{C}^4/\mathbf{C}_+ = \mathbf{C}^4//\mathbf{C}_+$ is affine.

Theorem. (Kaliman, 2004) Let Φ be a \mathbb{C}_+ action on factorial three-dimensional X with $H_2(X) = H_3(X) = 0$. Suppose that the action is free and $S = X//\Phi$ is smooth.

Then Φ is a translation, i.e. X is isomorphic to $S \times \mathbf{C}$ and the action is generated by a translation on the second factor.

Since $\mathbf{C}^3//\mathbf{C}_+ \simeq \mathbf{C}^2$ for any nontrivial \mathbf{C}_+ -action (Miyanishi, 1980) we have

Corollary. A free C_+ -action on C^3 is a translation in a suitable coordinate system.

Equivalently, every nowhere vanishing (as a vector field) locally nilpotent derivation on $\mathbf{C}^{[3]}$ is a partial derivative in a suitable coordinate system.

Theorem (Kaliman, Saveliev, 2004) Let Φ be a \mathbf{C}_+ -action on three-dimensional contractible X. Then the quotient $X//\Phi$ is a smooth contractible surface. Since smooth contractible surfaces are rational (Gurjar, Shastri) we have

Corollary 2. If a contractible threefold X admits a nontrivial C_+ -action, then X is rational.

Remark. This is a partial answer to the Van de Ven conjecture in dimension 3 which states that smooth contractible affine algebraic varieties are rational.

(For smooth contractible affine threefolds with a nontrivial \mathbf{C}^* -action rationality is proven by Gurjar, Shastri, and Pradeep).

Element of proof of smoothness of the quotient for contractible three-dimensional X.

Quotient morphism $\pi: X \to X//\Phi$ is surjective

 $\Rightarrow X//\Phi$ is contractible and has at worst quotient singularities whose links are homology spheres

 \Rightarrow by theorems of Prill, and Brieskorn (about local fundamental groups of quotient singularities) \Rightarrow $X//\Phi$ has at worst E_8 -singularities (i.e. singularities of type $x^2 + y^3 + z^5 = 0$)³.

The link of an E_8 -singularity is a Poincaré homology 3-sphere \mathcal{P} .

Link $X//\Phi$ at infinity is also a homology 3-sphere.

 \Rightarrow if $X//\Phi$ does have a singularity then there is a simply connected homology cobordism between \mathcal{P} and another homology 3-sphere.

But this is impossible (Taubes, 1987; see also Fintushel and Stern, 1990).

 $\Rightarrow X//\Phi$ is smooth.

³We use the fact that E_8 is the only quotient singularity with a perfect local fundamental group.

C^{*}-actions on affine surfaces.

S - a normal affine surface with an effective ${\bf C}^*\text{-}$ action Φ

 $B = \mathbf{C}[S]$ -algebra of regular functions so that $B = \bigoplus_{i \in \mathbf{Z}} B_i = B_{\geq 0} \bigoplus_{B_0} B_{\leq 0}$

F - the set of fixed points of Φ $C = (S \setminus F)/\Phi$ - a curve.

Dolgachev-Pikhman-Demazure (DPD) presentation (Flenner, Zaidenberg, 2003; Kollar)

Elliptic case: C is smooth projective and \exists a **Q**divisor D on C so that $B = \bigoplus_{i \ge 0} H^0(C, \mathcal{O}(\lfloor iD \rfloor) u^i$ where $\lfloor E \rfloor$ is the integral part of a **Q**-divisor E.

Parabolic case: C is smooth affine and \exists a **Q**divisor D on C so that $B = \bigoplus_{i \ge 0} H^0(C, \mathcal{O}(\lfloor iD \rfloor) u^i)$.

Hyperbolic case: C is affine smooth and \exists **Q**-divisors D_+ and D_- on C so that $D_+ + D_- \leq 0$, $B_{\geq 0} = \bigoplus_{i\geq 0} H^0(C, \mathcal{O}(\lfloor iD_+ \rfloor)u^i \text{ and}$ $B_{\leq 0} = \bigoplus_{i\leq 0} H^0(C, \mathcal{O}(-\lfloor iD_- \rfloor)u^i.$ Smooth surfaces with more than two equivalence classes of effective \mathbf{C}^* -actions are \mathbf{C}^2 and Danilov-Gizatullin surfaces (suggested by P. Russell).

Let $\mathbf{F}_n \to \mathbf{P}^1$ be a Hirzebruch surface over \mathbf{P}^1 and L be its section with $L^2 = k + 1$. If L is ample then $\mathbf{F}_n \setminus L$ is a Danilov-Gizatullin surface.

Theorem. There are k equivalence classes of effective C^* -actions on this surface.

Theorem. (Flenner, Kaliman, Zaidenberg, coming) Let Φ be an effective \mathbb{C}^* -action on a smooth affine surface S different from \mathbb{C}^2 or a Danilov-Gizatullin surface. Then any other effective \mathbb{C}^* action is equivalent either to Φ or to Φ^{-1} . In particular, for such S its DPD-presentation is "essentially" unique.