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Abstract

We review the basic notions related to Apollonian circle packings, in particular
focusing on root quadruples. After considering several examples of infinite families
of such quadruples, we show that all primitive root quadruples take on a particularly
simple form, and can be easily parametrized by suitable integers k and α. We then
classify all possible families with k = pj , p a prime, and combine these families using
an analog of the Chinese Remainder Theorem to give an exhaustive classification of all
such families. As a final note, we examine a congruence property mod 12 of the families
Pk,α for gcd(k, 12) = 1.

1 Introduction

Apollonian circle packing is rooted in the following theorem of Euclidean geometry, known as
Apollonius’ Theorem: given any three mutually tangent circles in the plane, there are exactly
two circles tangent to the first three. By starting with a configuration of four mutually
tangent circles, with one containing the other three, this theorem can be exploited to fill in
the lunes between circles, as each lune is bounded by three circles. Continuing in this fashion
ad infinitum gives an Apollonian circle packing. The curvatures (a, b, c, d) of any set of four
mutually tangent circles satisfy the Descartes equation

(a+ b+ c+ d)2 = 2(a2 + b2 + c2 + d2) (1.1)

and are called a Descartes quadruple. We are primarily concerned with primitive inte-
gral root quadruples, which are Descartes quadruples of the form (a, b, c, d) ∈ Z4 such that
gcd(a, b, c, d) = 1, a+ b+ c+ d > 0, a ≤ 0 ≤ b ≤ c ≤ d, and a+ b+ c ≥ d. A root quadruple
represents the curvatures of the four largest circles in a packing, with a ≤ 0 representing the
negative orientation of the circle which contains the other three. The case a = 0 refers to
the case of an unbounded strip packing, which contains circles of infinite radius and is of no
particular concern to us, so we shall henceforth omit it from our discussion.

We note that starting with an integral root quadruple will result in a packing that has all
integral curvatures. This follows from the formula for d′, the curvature of the circle tangent
to the three circles of curvature a, b, and c, and unequal to the circle of curvature d:

d′ = 2a+ 2b+ 2c− d, (1.2)
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which itself follows from a consequence of the Descartes equation,

d, d′ = a+ b+ c± 2
√
ab+ bc+ ac. (1.3)

The paper [GLMWY] gives the following theorem:

Theorem 1. For a solution (a, b, c, d) ∈ Z4 to the Descartes Equation (1.1) we define the
simplified quadruple (x, d1, d2,m) ∈ Z4 by

a
b
c
d

 =


1 0 0 0
−1 1 0 0
−1 0 1 0
−1 1 1 −2




x
d1
d2
m

 =


x

d1 − x
d2 − x

−2m+ d1 + d2 − x

 , (1.4)

which satisfies
x2 +m2 = d1d2. (1.5)

The transformation can, of course, be reversed, giving a bijection between integral solutions
to the equations (1.1) and (1.5). Furthermore,

(i)the Descartes quadruple (a, b, c, d) is primitive if and only if gcd(x, d1, d2) = 1,

and

(ii)the Descartes quadruple (a, b, c, d) with a+b+c+d > 0 and a 6= 0 is a root quadruple if

and only if x < 0 ≤ 2m ≤ d1 ≤ d2.

Notation. Let A denote the 4 × 4 matrix in (1.4). Its inverse, by which we can transform
from Descartes quadruples to simplified quadruples, is

A−1 =


1 0 0 0
1 1 0 0
1 0 1 0
1
2

1
2

1
2
−1

2

 . (1.6)

2 Finding Infinite Families

We can use the much simpler (1.5) in lieu of (1.1) to calculate formulae in terms of a variable
n ∈ N, which may be free or constrained to certain equivalence classes; in any case, such a
formula will have infinitely many solutions. We start by examining several examples in an
ad hoc fashion; we will later proceed systematically.

Example 1. [GLMWY] The quadruple (−n, n + 1, n2 + n, n2 + n + 1) is a primitive root
quadruple for all n ∈ N.
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Let m = 0 and x = −n in (1.5), giving

n2 = d1d2. (2.1)

In order to satisfy condition (i), let d1 = 1 and d2 = n2. Then we have a simplified quadruple
x = (−n, 1, n2, 0)T . We can transform x to a Descartes quadruple by multiplying on the left
by A, which gives Ax = (−n, n+ 1, n2 + n, n2 + n+ 1)T .

Letting m = 1 and x = −n results in a similar computation which yields the Descartes
quadruple for all n ≡ 1 (mod 2), n > 1(

−n, n+ 2,
(n+ 1)2

2
,
(n+ 1)2

2

)
. (2.2)

Example 2. The quadruple

(
−n, n+ 8,

n2 + 8n+ 4

8
,
n2 + 8n+ 36

8

)
is a root quadruple for

all n ≡ 2 (mod 4), n > 6.

Letting m = 2 and x = −n in (1.5) gives

n2 + 4 = d1d2. (2.3)

Pick n = 2k, giving 4(k2 + 1) = d1d2. Choosing k odd gives us k2 ≡ 1 (mod 4), so that
k2 + 1 ≡ 2 (mod 4), and k2+1

2
≡ 1 (mod 2). Now let d1 = 8, so that d2 = n2+4

8
is odd (and

hence relatively prime to 8). We now have the simplified quadruple x = (−n, 8, n2+4
8
, 2)T .

Computing Ax gives the desired Descartes quadruple.

Example 3. The quadruple

(
−n, n+ 4,

n2 + 4n

4
,
n2 + 4n+ 16

4

)
is a root quadruple for all

n ≡ 2 (mod 4), n > 2.

Letting d1 = 4 and x = −n in (1.5) gives

n2 +m2 = 4d2. (2.4)

Taking n ≡ 2 (mod 4), we can set n = 4k + 2, which gives

16k2 + 16k + 4 +m2 = 4d2. (2.5)

We see that m must be even, so we set m = 2j, which gives

4(4k2 + 4k + 1 + j2) = 4d2 ⇔ 4k2 + 4k + 1 + j2 = d2. (2.6)

We are assured condition (i) by setting j even. By condition (ii), we in fact have j = 0,
which implies m = 0, which in turn implies d2 = 4k2 + 4k + 1. We thus get the quadruple
x = (−n, 4, n2

4
, 0)T . Computing Ax gives the desired Descartes quadruple.

A similar computation yields the Descartes quadruple for all n ≡ 0 (mod 4), n > 12(
−n, n+ 4,

n2 + 4n+ 4

4
,
n2 + 4n+ 4

4

)
. (2.7)
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Example 4. Without belabouring computations, we note the following two families of quadru-
ples: (

−n, n+ 5,
n2 + 5n+ 1

5
,
n2 + 5n+ 16

5

)
, n ≡ ±2 (mod 5), n > 3 (2.8)(

−n, n+ 5,
n2 + 5n+ 4

5
,
n2 + 5n+ 9

5

)
, n ≡ ±1 (mod 5), n > 4. (2.9)

3 An Infinite Family of Infinite Families

For the remainder of this paper, we will denote by δ a number which squares to −1 modulo
some positive integer k. If δ does not exist in a particular ring Z/kZ, it may still be used
hypothetically for the sake of argument. In particular, it is well-known that δ exists in Z/pZ
if and only if p ≡ 1 (mod 4) or p = 2.

Theorem 2. For each prime p ≡ 1 (mod 4), the following is a primitive root quadruple for
suitable natural numbers n, α, and β.

x :=

(
−n, n+ p,

n2 + pn+ α2

p
,
n2 + pn+ β2

p

)T
. (3.1)

More precisely, we must have 0 < α < p
2

and β = p − α. This condition implies that
α < β. The given quadruple is a primitive root quadruple for all n ≡ ±δα (mod p) such that
p2−α2 ≤ n2. Note that there are infinitely many such n ∈ N. In fact, this covers all possible
families of the form (−n, n+ p, ...).

Proof. Applying (1.5) to

A−1x =

(
−n, p, n

2 + α2

p
,
p2 + (α2 − β2)

2p

)T
(3.2)

we get that α =

(
p2 + (α2 − β2)

2p

)
. Clearing denominators and collecting terms we get

β2 = α2 + p2 − 2pα ⇔ β =
√
α2 + p2 − 2pα =

√
(p− α)2 = p− α. (3.3)

To ensure that α < β, we require α < p
2
. In addition, we require α > 0, since α = 0 would

give gcd(n, p, n
2+α2

p
) > 1.

We need to ensure that
n2 + pn+ α2

p
and

n2 + pn+ β2

p
are integers, meaning find n such

that n2 + α2 and n2 + β2 are congruent to 0 (mod p). Since α2 ≡ β2 (mod p), it suffices to
check for the former. Since α 6≡ 0 (mod p), we have

n2 ≡ −α2 (mod p) ⇔ n ≡ ±δα (mod p). (3.4)

We need to find δ ∈ Z/pZ such that δ2 ≡ −1 (mod p). As noted above, it is well know that δ
can be found for all p ≡ 1 (mod 4) (for example, Wilson’s Theorem implies that δ ≡ ±

(
p−1
2

)
!

(mod p)). Therefore, the quadruple will be integral for p ≡ 1 (mod 4).
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In [GLMWY], it is demonstrated that for a simplified quadruple to transform to a prim-
itive root quadruple, it must satisfy two conditions:

(i) gcd(x, d1, d2) = 1, and

(ii) x < 0 ≤ 2m ≤ d1 ≤ d2. We will refer to these four inequalities as I, II, III, and IV,
listed left to right.

Every quadruple in our family satisfies (i), since n 6≡ 0 (mod p) so that gcd(n, p) = 1. For
(ii), we move left to right:

I. Clear by positivity of n.
II. We need p2 ≥ (β2 − α2) = p2 − 2pα, which implies 2pα ≥ 0. This is satisfied by our

hypothesis.
III. We need p2 + (α2 − β2) ≤ p2. This holds by β ≥ α.
IV. We need p2 ≤ n2 + α2. We simply give this inequality as a lower bound for n.

To prove that we have covered all such families, note that we have proven that α must
be in

(
0, p

2

]
∩Z. Since all other parameters are tied to α, and are exhaustive, it must be the

case that these conditions exhaust families of the form (−n, n+ p, ...). �

Remark. The quadruple (3.1) does not give an infinite family of integral root quadruples
for any p ≡ 3 (mod 4), because the number δ does not exist in Z/pZ for any p ≡ 3 (mod 4).

4 The Form of a Root Quadruple

It is no coincidence that all of the families we have looked at take a form like that in Theo-
rem 2. We will prove that, in fact, all primitive root quadruples take this form, and we will
henceforth write them in the form given in Theorem 3.

Theorem 3. Each primitive root quadruple can be written in the form

x :=

(
−n, n+ k,

n2 + kn+ α2

k
,
n2 + kn+ (k − α)2

k

)T
, (4.1)

where n, k, and α are integers such that n2+α2

k
∈ N, gcd(n, k, n

2+α2

k
) = 1, n, k > 0, and

0 ≤ α ≤ (k − α).

Proof. Let (a, b, c, d) be a primitive root quadruple. In particular, this implies that the
quantity

√
ab+ ac+ bc is an integer, and that d = a + b + c − 2

√
ab+ ac+ bc, since we

must have d′ ≥ d. Define n = −a, k = a + b, and α =
√
ab+ ac+ bc. The positivity

of k follows from Lemma 3.1(i) of [GLMWY]. Plugging these values into (4.1) yields the
quadruple (a, b, c, d). Note also that the root condition implies (k−α)2 = ab+ bd+ad. Since
(a, b, c, d) is a root quadruple,

c ≤ d⇔ ca+ cb ≤ da+ db (4.2)

⇔ ab+ ca+ cb ≤ ab+ da+ db

⇔ α2 ≤ (k − α)2 = k2 − 2kα + α2.
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From this we know that

0 ≤ k(k − 2α)⇔ 0 ≤ k − 2α (4.3)

⇔ α ≤ k − α.

The coprimality of n, k and n2+α2

k
follows from that of a, b, and c, since gcd(a, b, c) =

gcd(a, b, c, d) (note that d is determined by a, b, and c).
Conversely, any quadruple of the form (4.1) satisfying the divisibility conditions and

inequalities is a primitive root quadruple. �

With this theorem in hand, we proceed to classify all possible root quadruples of the form
(4.1) with k = pj, for p a prime.

5 Powers of 2

Theorem 4. Let j be a positive even integer. The following is a primitive root quadruple:

x :=

(
−n, n+ 2j,

n2 + 2jn+ α2

2j
,
n2 + 2jn+ (2j − α)2

2j

)T
, (5.1)

where α ≤ 2j−1, α = q2j/2, n = `2j/2, and n2 ≥ 22j − α2, and where q, ` ∈ N have opposite
parity. More succinctly, we may write n ≡ 2j/2 +α (mod 2j/2+1). As there is no upper bound
on j or n, this gives an infinite set of infinite families of primitive root quadruples. The given
parameters are the only such that guarantee primitivity.

Proof. One easily verifies that

A−1x =

(
−n, 2j, n

2 + α2

2j
,
22j + (2j+1α− 22j)

2j+1

)T
(5.2)

satisfies (1.5). Because q2+`2 ≡ 1 (mod 2), A−1x satisfies condition (i). Simple computations
analogous to those done in the proof of Theorem 2 show that (5.2) satisfies condition (ii):

I. Clear.
II. 22j + (2j+1α− 22j) = 2j+1α ≥ 0.
III. 22j ≥ 2j+1α ⇔ 2j−1 ≥ α, which is part of our hypothesis.
IV. This is our given lower bound for n2.
We must now show that our choices of α and n are the only ones that generate primitive

quadruples. Assuming first that α is odd, the equation n2 + α2 ≡ 0 (mod 2j) implies that n
must also be odd. In particular, n and α are units in the ring Z/2jZ, satisfying the equation(
n
α

)2 ≡ −1 (mod 2j). This is a contradiction, as the equation y2 + 1 ≡ 0 (mod 2j) has no
solution for j > 1. Assume now that α = q2e, with e < j/2 and gcd(q, 2j) = 1. Reducing the
equation n2 + α2 ≡ 0 (mod 2j) modulo 22e shows that n2 ≡ 0 (mod 22e), which implies in
turn that n ≡ 0 (mod 2e). Writing n = `2e yields the equation `2+q2 ≡ 0 (mod 2j−2e), which
gives a contradiction by a completely analogous argument to the one previously considered.
�
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Theorem 5. Let j be a positive odd integer. The quadruple (5.1) is a primitive root quadruple
if we take α = q2(j−1)/2 and n = `2(j−1)/2, where q and ` are both odd. More succinctly, this
condition is equivalent to n ≡ α ≡ 2(j−1)/2 (mod 2(j+1)/2).

Proof. Verifying that condition (ii) is satisfied is identical to the case for j even. We
verify the primitivity condition. Suppose first that q is even. We can then set q = 2q′, so
n2 + α2

2j
=
q2 + `2

2
=

4q′2 + `2

2
, which is only an integer for ` even. In this case, condition (i)

is not satisfied.

Suppose now q is odd and set q = 2q′ + 1, so
n2 + α2

2j
=
q2 + `2

2
=

4q′2 + 4q′ + 1 + `2

2
,

which is only an integer for ` odd. Writing ` = 2`′ + 1 shows that this fraction is an odd
integer, meaning that condition (i) is satisfied.

Verifying that these are the only such parameters that yield primitive root quadruples
follows exactly as in the case for j even. We need only consider the cases where α is odd, or
α = q2e with gcd(q, 2j) = 1 and e < (j − 1)/2. �

6 Powers of Odd Primes

Theorem 6. Let p be a prime equivalent to 1 (mod 4), and let j be a positive even integer.
The following is a primitive root quadruple for suitable natural numbers n and α.

x :=

(
−n, n+ pj,

n2 + pjn+ α2

pj
,
n2 + pjn+ (pj − α)2

pj

)T
. (6.1)

More precisely, let α = qpe, with gcd(q, pj) = 1, and α ≤ pj/2. Let δ denote a square root of
−1 in Z/pjZ. If e < j/2, then we may take n ≡ ±δα (mod pj−e) (with a slight restriction,
explained in the proof). If e = j/2, then n = `pj/2, with ` 6≡ ±δq (mod p). If e > j/2, then
n = `pj/2, with ` 6≡ 0 (mod p). In each of these cases, we take n2 ≥ p2j − α2. There are
infinitely many n satisfying each of these conditions. The given conditions are the only such
that guarantee primitivity.

Proof. We easily verify that

A−1x =

(
−n, pj, n

2 + α2

pj
,
p2j + (2pjα− p2j)

2pj

)T
(6.2)

satisfies (1.5). We first verify condition (ii):
I. Clear.
II. p2j + (2pjα− p2j) = 2pjα ≥ 0.
III. p2j ≥ 2pjα ⇔ pj/2 ≥ α, which is part of our hypothesis.
IV. This is our given lower bound for n2.

We now proceed systematically and verify the remaining claims in the theorem. Note
that, by Hensel’s Lemma, the existence of δ in Z/pZ guarantees its existence in Z/pjZ.
Moreover, reducing δ modulo pe with 0 < e < j yields an element in Z/peZ which squares
to −1. Writing α = qpe, with gcd(q, pj) = 1, and substituting into the equation n2 + α2 ≡ 0
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(mod pj) gives n2 + q2p2e ≡ 0 (mod pj). If e < j/2, we proceed as in the characteristic
2 case, and find that n = `pe. This gives the equation `2 + q2 ≡ 0 (mod pj−2e), which is
equivalent to ` ≡ ±δq (mod pj−2e). Multiplying through by pe gives n ≡ ±δα (mod pj−e).
If e 6= 0, we write n ≡ ±δα + fpj−e (mod pj), where f ∈ Z/peZ. Expanding the equation
(±δα + fpj−e)2 + α2

pj
shows exactly which values of f will yield integers relatively prime to

p, thereby guaranteeing primitivity.

If e = j/2, then we arrive at the equation
n2 + α2

pj
= `2 + q2. If ` is congruent to ±δq

(mod p), then evidently `2 + q2 ≡ 0 (mod p), and the quadruple will not be primitive.

If e > j/2, then we are left with the equation
n2 + α2

pj
≡ n

pj
(mod p), in which case we

must have n = `pj/2 with gcd(`, p) = 1.
These three subcases exhaust all possible choices for α. �

Theorem 7. Let j be a positive odd integer. The quadruple (6.1) is a primitive root quadruple
for suitable α and n. More precisely, let α = qpe, with gcd(q, pj) = 1, and α ≤ pj/2. If
e < j/2, then we may take n ≡ ±δα (mod pj−e) (with a suitable restriction, explained in the
proof). These are the only parameters for α that yield primitive root quadruples.

Proof. Verifying that the given α and n (subject to the same restriction as previously
discussed) satisfy conditions (i) and (ii) is identical to the proof for the case of j even. We
prove that these are the only admissible choices for α. Assuming that α = qpe with e > j/2

gives
n2 + α2

pj
≡ n2

pj
(mod p). This implies that n must be of the form `p(j+1)/2, with ` an

arbitrary integer. This gives
n2

pj
≡ `2p ≡ 0 (mod p), and therefore such an α cannot yield a

primitive quadruple. �

We now deal with primes p ≡ 3 (mod 4). For such primes, there does not exist a square
root δ of −1 in Z/pjZ, because such a δ would imply the existence of δ in Z/pZ, which we
know to be false.

Lemma 1. There never exists an infinite family of primitive root quadruples in the form
(n, n+ k, ...) when k = pj for p ≡ 3 (mod 4) and j an odd positive integer.

Proof. We assume such a family exists and work by cases depending on the nature of a
hypothetical α.
Case 1. gcd(α, p) = 1. This implies that α is a unit in Z/pjZ, so

n2 + α2 ≡ 0 (mod pj) ⇔
(n
α

)2
≡ −1 (mod pj), (6.3)

but δ 6∈ Z/pjZ, a contradiction.
Case 2. gcd(α, p) > 1. Let α = qpe, where gcd(q, p) = 1 and e > 0. Then

n2 + α2 ≡ 0 (mod pj) ⇔ n2 + q2p2e ≡ 0 (mod pj). (6.4)
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Subcase 1. e < j/2. We can then take(
n

pe

)2

≡ −q2 (mod pj−2e) ⇔
(
n

qpe

)2

≡ −1 (mod pj−2e), (6.5)

which is again a contradiction.
Subcase 2. e > j/2. In this case, n2 ≡ 0 (mod pj), which implies that n ≡ 0 (mod p(j+1)/2).
Let n = `p(j+1)/2, so that n2 = `2pj+1. We then have

n2 + α2

pj
=
`2pj+1 + q2p2e

pj
= `2p+ q2p2e−j, (6.6)

which gives gcd(x, d1, d2) > 1, a contradiction. �

Theorem 8. Let j be a positive even integer. The following is a primitive root quadruple for
p ≡ 3 (mod 4): (

−n, n+ pj,
n2 + pjn+ α2

pj
,
n2 + pjn+ (pj − α)2

pj

)
, (6.7)

where α = qpj/2, α ≤ pj/2, n = `pj/2, and n2 ≥ p2j − α2. If q ≡ 0 (mod p), ` must be
relatively prime to p. If q 6≡ 0 (mod p), ` may be any positive integer large enough to satisfy
the lower bound on n. These are the only parameters that yield primitive root quadruples.

Proof. The simplified quadruple(
−n, pj, n

2 + α2

pj
,
p2j + (2pjα− p2j)

2pj

)
(6.8)

is easily seen to satisfy (1.5).
To satisfy condition (i), we need `2 + q2 6≡ 0 (mod p). By similar computations to those

used in the proof of Lemma 1, α must be a multiple of pj/2. For q ≡ 0 (mod p), we obviously
need ` 6≡ 0 (mod p). For q 6≡ 0 (mod p), we get

`2 + q2 6≡ 0 (mod p) ⇔ `2 6≡ −q2 (mod p), (6.9)

which is always satisfied, since δ 6∈ Z/p2jZ.

We show that condition (ii) is satisfied by the usual computations:
I. Clear.
II. p2j + (2pjα− p2j) = 2pjα ≥ 0.
III. p2j ≥ 2pjα ⇔ pj/2 ≥ α ⇔ pj/2/2 ≥ q, which is part of our hypothesis.
IV. This is our given lower bound for n2.

We now show that our choices of α and n are the only possibilities. Assume that α = qpe,
with e < j/2 and gcd(q, pj) = 1. The equation n2 + α2 ≡ 0 (mod pj) is then equivalent to

the equation
(

n
qpe

)2
≡ −1 (mod pj−2e), which we know to be a contradiction. Hence, α must

be divisible by pj/2. �
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7 Composite Numbers

Theorem 9. Given two infinite families of primitive root quadruples of the form

Pk,αk
:=

(
−n, n+ k,

n2 + kn+ α2
k

k
,
n2 + kn+ (k − αk)2

k

)
where n ≡ nk (mod k) (7.1)

and

Pk′,αk′
:=

(
−n, n+ k′,

n2 + k′n+ α2
k′

k′
,
n2 + k′n+ (k′ − αk′)2

k′

)
where n ≡ nk′ (mod k′),

(7.2)
where k and k′ are relatively prime, we can generate an associated composition:

Pk,αk
� Pk′,αk′

:=

(
−n, n+ kk′,

n2 + kk′n+ α2
kk′

kk′
,
n2 + kk′n+ (kk′ − αkk′)2

kk′

)
. (7.3)

Here n ≡ nkk′ ≡ nkk
′τk′ +nk′kτk (mod kk′), 0 ≤ αkk′ ≤ kk′/2 with αkk′ ≡ ±(αkk

′τk′ +αk′kτk)
(mod kk′), and τk denotes the multiplicative inverse of k (mod k′) and vice versa. The
composition Pk,αk

� Pk′,αk′
is primitive, and a root quadruple for n2 ≥ k2k′2 − α2

kk′.

Proof. By the Chinese Remainder Theorem, nkk′ ≡ nkk
′τk′ + nk′kτk (mod kk′). We know

that n2
k ≡ −α2

k (mod k) and n2
k′ ≡ −α2

k′ (mod k′). Defining αkk′ as in the statement of the
theorem, we have α2

kk′ ≡ α2
kk
′2τ 2k′ + α2

k′k
2τ 2k (mod kk′). There are no cross terms due to

reduction modulo kk′. We will show that this αkk′ satisfies the necessary conditions. Note
that

n2
kk′ + α2

kk′ = n2
kk
′2τ 2k′ + n2

k′k
2τ 2k + α2

kk
′2τ 2k′ + α2

k′k
2τ 2k . (7.4)

Again by the Chinese Remainder Theorem, the right hand side is 0 modulo both k and k′,
therefore n2

kk′ + α2
kk′ ≡ 0 (mod kk′).

To ensure that the quadruple is ordered correctly, we need to verify that αkk′ ≤ kk′

2
. If

that is the case upon computation, we are done. If the computed α is greater than kk′

2
,

replace it with kk′ − α < kk′ − kk′

2
= kk′

2
.

We need only to verify that gcd(n, kk′,
n2+α2

kk′
kk′

,
n2+(kk′−αkk′ )

2

kk′
) = 1, assuming

gcd

(
n, k,

n2 + α2
k

k
,
n2 + (k − αk)2

k

)
= gcd

(
n, k′,

n2 + α2
k′

k′
,
n2 + (k′ − αk′)2

k′

)
= 1.

Note that, by coprimality of k and k′, we have the following chain of equalities:

gcd

(
n, kk′,

n2 + α2
kk′

kk′
,
n2 + (kk′ − αkk′)2

kk′

)
= gcd

(
n, kk′,

n2 + α2
kk′

kk′
,
n2 + α2

kk′

kk′
+ kk′ − 2αkk′

)
= gcd

(
n, kk′,

n2 + α2
kk′

kk′
, 2αkk′

)
= gcd

(
gcd(n, kk′),

n2 + α2
kk′

kk′
, 2αkk′

)
= gcd

(
gcd(n, k)gcd(n, k′),

n2 + α2
kk′

kk′
, 2αkk′

)
10



= gcd

(
gcd(n, k),

n2 + α2
kk′

kk′
, 2αkk′

)
×gcd

(
gcd(n, k′),

n2 + α2
kk′

kk′
, 2αkk′

)
?
= gcd

(
gcd(n, k),

n2 + α2
kk′

k
, 2αkk′

)
×gcd

(
gcd(n, k′),

n2 + α2
kk′

k′
, 2αkk′

)
.

The equality (?) follows from the following fact: if a divides bc, and gcd(a, b) = d, then

a/d divides c. Let a = gcd(gcd(n, k, 2αkk′),
n2+α2

kk′
k

), b = k′, and c =
n2+α2

kk′
kk′

. Then the since
gcd(a, b) = 1, the claim says that a divides c, and a divides gcd(n, k, 2αkk′) by definition.

Therefore, a divides gcd(gcd(n, k, 2αkk′),
n2+α2

kk′
kk′

), and therefore must be less than or equal

to this quantity. We have a priori that gcd(gcd(n, k, 2αkk′),
n2+α2

kk′
kk′

) is less than or equal to
a, and therefore the result follows.

Since αkk′ ≡ αk(mod k) we have

n2 + α2
kk′

k
=
n2 + (αk + `k)2

k
=
n2 + α2

k

k
+ 2αk`+ k`2,

with αkk′ = αk + `k for some ` (likewise for k′). Additionally, by construction, we must have
gcd(k, αkk′) = gcd(k, αk) (and likewise for k′). Continuing in the chain of equalities gives

gcd

(
n, kk′,

n2 + α2
kk′

kk′
,
n2 + (kk′ − αkk′)2

kk′

)
= gcd

(
gcd(n, k),

n2 + α2
kk′

k
, 2αkk′

)
×gcd

(
gcd(n, k′),

n2 + α2
kk′

k′
, 2αkk′

)
= gcd

(
n, k,

n2 + α2
k

k
+ 2αk`, 2αk

)
×gcd

(
n, k′,

n2 + α2
k′

k′
+ 2αk′`

′, 2αk′

)
= gcd

(
n, k,

n2 + α2
k

k
, 2αk

)
×gcd

(
n, k′,

n2 + α2
k′

k′
, 2αk′

)
= 1.

The last equality follows from primitivity of the families Pk,αk
,Pk′,αk′

. �

This theorem gives us a way to generate all families of primitive integral root quadruples.
For any choice of k (except those containing odd powers of primes congruent to 3 (mod 4)),
one can find a family for the appropriate power of each prime factor of k, then compose these
families using Theorem 9. Using reduction of nmodulo these prime powers, one can determine
which family to lift. Together with Theorem 3 and the classification of families corresponding
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to k = pj, this shows how to generate all primitive integral root quadruples. Moreover,
this theorem implies the following claim: given a primitive root quadruple (a, b, c, d) with
a+ b+ c+ d > 0, the integer a+ b = k is a sum of two squares.

8 Congruence Relations

In this section we investigate a curious congruence relation satisfied by certain families Pk,α.
We first recall the following result from [GLMWY]:

Theorem 10. In any primitive integral Apollonian packing, the Descartes quadruples (mod
12) all fall in exactly one of four possible orbits. The first orbit Y = Y1 (mod 12) consists of
all permutations of

{(0, 0, 1, 1), (0, 1, 1, 4), (0, 1, 4, 9), (1, 4, 4, 9), (4, 4, 9, 9)} (mod 12).

The other three orbits are Y2 := (3, 3, 3, 3) − Y, Y3 := (6, 6, 6, 6) + Y, and Y4 := (9, 9, 9, 9) −
Y (mod 12).

We note that by writing out all the elements in each orbit, we may determine in which
orbit a given Descartes quadruple lies simply by checking any two entries of the quadruple
(that is, any two entries of a Descartes quadruple determine the orbit in which it lies). With
this, we may prove the following theorem.

Theorem 11. Let Pk,α denote any primitive family corresponding to the parameter k, with
arbitrary admissible α, and assume that k and 12 are relatively prime. Then the family Pk,α
contains root quadruples in every orbit Yi, i = 1, 2, 3, 4.

Proof. Let Pk,α be given by quadruples

xn =

(
−n, n+ k,

n2 + kn+ α2

k
,
n2 + kn+ (k − α)2

k

)T
, n ≡ nk (mod k).

Since the entries are given by polynomials in n, we have xn+12 ≡ xn (mod 12). Since
n ≡ nk(mod k), we have that n is of the form n = km + nk, with m ∈ Z. By coprimality
of k and 12, as m ranges over Z (or, more precisely, as m ranges over Z/12Z), n will range
over Z/12Z. Therefore, after rearranging quadruples mod 12, the elements of Pk,α fall into
the following congruence classes:

(0, k, . . .)
(11, k + 1, . . .)
(10, k + 2, . . .)
...
(1, k + 11, . . .)

Since we may determine in which orbit a quadruple lies with only two entries, this information
suffices.

Now, since k is relatively prime to 12, it must be congruent to 1, 5, 7, or 11 (mod 12).
Since we know that k must be a sum of two squares, it cannot be congruent to 3 (mod 4),
and therefore the only congruence classes we need consider are k ≡ 1 (mod 12) and k ≡
5 (mod 12). In each case, we have:

12



(0, 1, . . .) ∈ Y1, (0, 5, . . .) ∈ Y4
(11, 2, . . .) ∈ Y2, (11, 6, . . .) ∈ Y2
(10, 3, . . .) ∈ Y3, (10, 7, . . .) ∈ Y3
(8, 5, . . .) ∈ Y4, (4, 1, . . .) ∈ Y1.

Therefore, we see that if k and 12 are relatively prime, the family Pk,α will contain at
least one (indeed, infinitely many) elements in each orbit Yi. �
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