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Abstract. Given any collection of circles Ci with radii ri in an Apollonian

circle packing, we call the function F (s) =
∑

rsi an Apollonian sum. In this
paper, we study the decay of radii in a packing by studying the convergence

and special values of Apollonian sums. We first examine sums over sequences

of tangent circles inside a packing. We give examples of such sequences where
the radii decay quadratically and exponentially, and then construct sequences

whose sums converge for s > r and diverge for s ≤ r, where r is any real

number in [0, 1/2]. We also examine the collection of all circles tangent to a
fixed circle–in this case the Apollonian sum is related to an interesting Dirichlet

series. Finally we study generations of circles in the construction of a packing.
We find an explicit formula for the Apollonian sum over generation n when

s = −1, i.e. for the sum of curvatures in generation n. We extend this formula

to the case of a four-colored packing.

1. Introduction

A Descartes configuration is a collection of four mutually tangent circles; that
is, any two circles touch tangentially and the points of tangency are distinct. We
consider these configurations as lying in Ĉ = C∪{∞}, and extend the definition to
”generalized circles,” meaning circles and lines. We may orient the circles to make
their interiors disjoint. A Descartes configuration can be extended to an Apollonian
packing by filling in additional circles in the exterior of the configuration. Each new
circle fits in a lune between three existing circles, and is tangent to all three. An
Apollonian packing is the union of all such circles.

Let us label each circle by its curvature, ε. Descartes discovered the relation
(ε1 + ε2 + ε3 + ε4)2 = 2(ε21 + ε22 + ε23 + ε24), where εi are the curvatures of four circles
in a Descartes configuration. The curvature of a circle is taken to be negative if its
interior contains ∞, and zero if it is a line. Given three mutually tangent circles in
a packing with curvatures ε1,ε2,ε3, there are two possible circles tangent to these
three circles. If the curvatures of the two possible circles are ε4 and ε′4, Descartes’
equation gives the useful result: ε′4 = 2(ε1 + ε2 + ε3)− ε4. It follows that if the four
initial curvatures of a Descartes configuration are integers, then all the curvatures
in the packing are integers. Such a packing is called integral.

The collection of curvatures εi in a packing (with multiplicity) is an important
object of study. There are clearly countably many such curvatures. It seems most
natural to index them by a certain Coxeter group called the Apollonian group,
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Figure 1. An Apollonian packing

which is discussed below, rather than by the integers. The collection of curvatures
in an integral Apollonian packing has interesting arithmetic properties; for example,
it is conjectured [6] that all sufficiently large integers satisfying certain congruence
conditions appear. In this paper we study the collection of curvatures analytically,
without assuming integrality, and hope that the analysis sheds some light on the
arithmetic. Most of our results apply to all packings, not just integral ones.

Some theorems of Boyd are especially relevant to us. In [2] he studies the num-
ber NP (x) of circles with curvature at most x in a packing P , and proves that

limn→∞
logNP (x)

log x = δ (Kontorovich and Oh have recently improved upon this re-

sult, finding the asymptotic formula NP (x) ∼ c · xδ [8]). In these formulas δ is
the Hausdorff dimension of the residual set of a packing, i.e. the complement of
the interiors of all the circles. Since any two Apollonian packings are equivalent
under some Mobius transformation of Ĉ, the residual dimension does not depend
on the choice of packing. It is valued at approximately 1.3058 [10], and thought
not to have an elementary closed form. Boyd shows that the residual dimension
δ also appears as the minimal exponent of what we will call an Apollonian sum.
Define FP (s) :=

∑
ε−si =

∑
rsi where the εi are the curvatures of all circles in

the packing, or equivalently ri are all the radii. Then the Apollonian sum FP (s)
converges for s > δ and diverges for s < δ [1]. This sum has other properties worth
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noting: π · Fp(2) is simply twice the area of the outer circle, since the residual set
has measure zero. The divergence of FP (1) can be proven by elementary Euclidean
geometry.

In this paper, we study the Apollonian sum above by slicing and dicing it, look-
ing at

∑
ε−si where the curvatures εi range over particular subsets of circles in a

fixed packing P . For each Apollonian sum we study, we obtain a minimal exponent
between zero and δ. In many cases, we are able to find explicit formulas relating the
Apollonian sum to the Riemann zeta function, Hurwitz zeta functions, or Dirichlet
series. The special values of these sums frequently have geometric significance; e.g.
s = 1 is a sum of radii while s = 2 is a sum of areas.

In Section 3 we examine sums over sequences of tangent circles within a pack-
ing. We study one explicit sequence where the curvatures grow quadratically, so
the Apollonian sum, which can be written in terms of Hurwitz zeta functions, has
minimal exponent 1/2. We also construct a sequence where the curvatures grow
exponentially, producing a minimal exponent of zero, and then show that every real
number in [0, 1/2] is obtained as the minimal exponent of some sequence. Section
4 focuses on the Apollonian sum over all circles tangent to a fixed circle in a pack-
ing. Here the minimal exponent is one, and, in the special case where the fixed
circle is a line, the Apollonian sum is closely related to an interesting Dirichlet series.

Section 5 is somewhat different. It is natural to build Apollonian packings
generation-by-generation, with each new generation of circles filling in the inter-
stices of the last. The Apollonian sum over a generation is a finite sum, so conver-
gence is not an issue. Instead, we attempt to understand the relationship between
generations. The special value s = −1 corresponds to a sum of curvatures, and the
Descartes formula gives a recursive relation between generations. Mallows [9] has
studied generating functions for curvature sums of this type in Apollonian sphere
packings. We give an explicit formula for the curvature sum in generation n of a
circle packing. We also partition the circles in a packing into four classes, which we
call colors, and give formulas for curvature sums by generation and color. Further
study of the Apollonian sums over generations and colors could lead to interesting
geometric results.

Acknowledgements: We would like to thank our fellow participants in the
New York Number Theory RTG summer program: Alexander Berenbeim, Tabes
Bridges, Todd Gaugler, Tim Heath, Karol Koziol, Tasos Moulinos and Warren
Wai. We owe a special debt of gratitude to the organizers of the program, Dorian
Goldfeld and Lucien Szpiro.

2. Background

The Apollonian Group: The Apollonian group A is a Coxeter group on 4
generators with the presentation < S1, S2, S3, S4|S2

i = e >. We use a particular
faithful representation A → GL(4,Z), given by:
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S1 7→


−1 2 2 2
0 1 0 0
0 0 1 0
0 0 0 1

, S2 7→


1 0 0 0
2 −1 2 2
0 0 1 0
0 0 0 1

,

S3 7→


1 0 0 0
0 1 0 0
2 2 −1 2
0 0 0 1

, S4 7→


1 0 0 0
0 1 0 0
0 0 1 0
2 2 2 −1

.

Figure 2. Cayley graph of the Apollonian group.

In this representation, A acts on quadruples (ε1, ε2, ε3, ε4)T satisfying Descartes’
equation. The action of A takes Descartes configurations to Descartes configura-
tions within the same circle packing. For example, S4 ∈ A takes the Descartes
quadruple v = (ε1, ε2, ε3, ε4)T to the Descartes quadruple S1 · v = (ε1, ε2, ε3, 2(ε1 +
ε2 + ε3) − ε4)T . The circle with curvature 2(ε1 + ε2 + ε3) − ε4 is the second circle
tangent to the mutually tangent circles with curvatures ε1, ε2, and ε3.

If we fix an initial Descartes configuration in a packing P , we may label every
circle by the shortest sequence of generators of A required to reach it. This is al-
most a one-to-one correspondence between A and circles in the packing. The only
ambiguity is that all four circles of the initial configuration should be labelled with
the identity e ∈ A. We will sometimes abuse notation slightly and refer to subsets
of A and sets of circles in P interchangeably.

Apollonian Sums: Let P be an Apollonian packing and C be a collection of
circles in P . Then the Apollonian sum over C is defined as FC,P (s) =

∑
rsi where

the ri are the radii of circles in C. We may also assume that an initial Descartes
quadruple is fixed in P and use the correspondence above to define sums over sub-
sets B ⊂ A. We will only be interested in Apollonian sums where the summed
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circles lie in a bounded region of the complex plane; otherwise the sum will be
divergent for all s ≥ 0.

Minimal Exponent: The minimal exponent of an Apollonian sum FC,P is de-
fined as inf{σ > 0 : FC,P (σ) <∞}.

We note that any two Descartes configurations (and hence any two packings)
are equivalent under a Mobius transformation. As long as the circles remain in a
bounded region of the complex plane, the minimal exponent of a sum is invariant
under Mobius transformations (since Mobius transformations are Lipschitz away
from the point which maps to infinity). Thus we have the following:

Lemma 2.1. Given a subset B ⊂ A, the minimal exponent of the sum over B is
independent of the choice of packing and initial configuration.

Hurwitz Zeta Function: The Hurwitz zeta function is a generalization of the
Riemann zeta function and is given by ζ(s, α) =

∑∞
n=0

1
(n+α)s when <(s) > 1.

When α is rational the Hurwitz zeta function may be written as a linear combina-
tion Dirichlet L-series. In general the Hurwitz zeta function satisfies a functional
equation and has meromorphic continuation in s to the whole complex plane. As
a function of α where s 6= 1 is fixed ζ(s, α) is analytic on <(α) > 0 [7].

3. Sums Over Paths

In this section we take Apollonian sums over sequences of tangent circles inside
a packing. We may identify these with sequences of generators in the Apollonian
group. Let A∞ be the set of all infinite sequences where the entries are the genera-
tors of A and no two adjacent entries are the same. Any truncation of the sequence
gives an element of A.

A sequence x = . . . si3si2si1 ∈ A∞ applied to an initial Descartes configuration
gives rise to a sequence of circles ci with radii ri. Lemma 2.1 implies that the
minimal exponent of the sequence is independent of the initial configuration. It
follows that the minimal exponent depends only on the tail of x ∈ A∞ not the first
finitely many terms.

We begin with sums over the sequences in A∞ generated by 2 of the Si matrices.
We find an explicit formula for all such sums, which clearly demonstrates that the
minimal exponent is 1

2 , and which can be put in terms of an infinite series of Hurwitz
zeta functions. We note that the radii of these sums grow quadratically, as opposed
to exponentially, which makes them the slowest growing sums in any Apollonian
packing. By reordering Descartes quadruples we only need consider sums of the
form . . . S1S2S1S2.

Proposition 3.1. The sum over the sequence x = . . . S1S2S1S2 is given by Fx,p(s) =

(c+d)−s
∑∞
n=1((n+ a−b+c+d

2(c+d) )2− cd
(c+d)2 )−s where (a, b, c, d) is the initial quadruple

and c, d correspond to the fixed circles.
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Proof. We begin by computing (S1S2)n which is given by:

(1)


2n+ 1 −2n 4n2 + 2n 4n2 + 2n

2n 1− 2n 4n2 − 2n 4n2 − 2n
0 0 1 0
0 0 0 1

 .

Applying this transformation to the Descartes quadruple (a, b, c, d) gives

(2) (4n2(c+ d) + 2n(a− b+ c+ d) + a, 4n2(c+ d) + 2n(a− b− c− d) + b, c, d).

Notice that the first two entries are quadratic in n with discriminant 16cd by the
Descartes equation. Summing over n gives
(3)

Fx,p(s) =

∞∑
n=1

(4(c+d)(n+
a− b+ c+ d

4(c+ d)
)2− cd

c+ d
)−s+(4(c+d)(n+

a− b− c− d
4(c+ d)

)2− cd

c+ d
)−s.

Simplifying we obtain the final result. �

Corollary 3.2. Sequences on 2 generators always have minimal exponent 1
2 , unless

the initial Descartes quadruple is of the form (1, 1, 0, 0). In fact, this shows that all
sequences on 2 generators lie in a bounded region of the complex plane, except for
this case.

Corollary 3.3. When one of the fixed circles is zero, i.e. the quadruple contains
a line, the sum simplifies to c−sζ(2s, a−b+3c

2c ). If the initial quadruple is (1, 0, 1, 0),
the sum is ζ(2s)− 1.

Corollary 3.4. By performing binomial expansion on the sum in Proposition 3.2
we get an alternative form

(4) Fx,p(s) = (c+ d)−s
∞∑
k=0

(
−s
k

)
(
−cd

(c+ d)2
)kζ(2s+ 2k,

3

2
+

a− b
2(c+ d)

)

Corollary 3.5. By partial fraction decomposition the sum of the radii is
(5)

Fx,p(1) =
1

2
√
cd

∞∑
n=1

(n+
a− b+ c+ d

2(c+ d)
−
√
cd

c+ d
)−1− (n+

a− b+ c+ d

c+ d
+

√
cd

c+ d
)−1.

The sum of the areas is

(6) πFx,p(2) =
π

4cd

∞∑
n=1

((αβ+)−1 − (αβ−)−1 + (β+)−2 + (β−)−2.

where α =
√
cd

c+d , β± = n+ a−b+c+d
2(c+d) ±

√
cd

c+d

We now explore more general sequences in A∞. We will primarily be concerned
with the minimal exponent of these sequences. For computational convenience, we
will work below in the circle packing with initial Descartes configuration (0, 2, 2, 0).
This packing has long been studied in connection with the theory of Diophantine
approximation. We give some background on this connection in the following defi-
nitions.

The Stern-Brocot Tree Given 2 fractions a
b ,

c
d we define the mediant of the

fractions to be a+c
b+d . Consider the fractions 0

1 ,
1
0 . The mediant is 1

1 , the root of the
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Stern-Brocot tree. 1
1 has two children 1

2 and 2
1 formed by taking the mediant of

1
1 with 0

1 and 1
0 respectively. In general each node p

q of the tree has two offspring

which result from taking the mediant of pq with one of its two parents (see figure 3).

Each fraction p
q in the tree is in lowest possible terms, i.e. p, q are always relatively

prime. In fact the Stern-Brocot tree and positive rational numbers are in one-to-
one correspondence. There is also a deep connection between the Stern-Brocot tree
and continued fractions. If [a0; a1, . . . , an] is the continued fraction representation
of a rational number in the tree then its two offspring are [a0; a1, . . . , an + 1] and
[a0; a1, . . . , an − 1, 2]. Given any irrational number x there is a unique branch in
the Stern-Brocot tree that converges to x. [3] [12]

Figure 3. The Stern-Brocot Tree.

Fractions in the Stern-Brocot tree also correspond to certain circles, called Ford
circles, in the (0, 2, 2, 0) packing. The basis for this correspondence is explained by
the following simple lemma, which follows from Descartes’ equation.

Lemma 3.6. Suppose that mutually tangent circles of curvatures m2 and n2 are
also tangent to a line. If we add a new circle between the two circles and the line,
it has curvature (m+ n)2.

Ford Circles: For any two relatively prime integers m,n the circle with center
(mn ,

1
2n2 ) and radius 1

2n2 is a Ford circle. Every Ford circle is tangent to the real
line and no two Ford circles intersect except for points of tangency [4]. Ford circles
are a subset of the (0, 2, 2, 0) circle packing, and are the result of only using the
first three generators S1, S2, S3. If we identify one circle and one line in the initial
configuration as the parents 0

1 and 1
0 , then Ford circles correspond to fractions in

the Stern-Brocot tree. The point of tangency between a Ford circle and the real
line is precisely the Stern-Brocot fraction. The curvature of a Ford circle is twice
the square of the denominator of the Stern-Brocot fraction.

Proposition 3.7. There exists a sequence in A∞ with minimal exponent 0.

Proof. Consider the repeating sequence . . . S3S2S1S3S2S1 applied to the circle
packing (0, 2, 2, 0). This produces a sequence of Ford circles whose radii are 1

f2
n
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Figure 4. Ford Circles.

where fn = (1+
√

5)n−(1−
√

5)n

2n
√

5
is the nth Fibonacci number. It follows immediately

that the Apollonian sum
∑∞
n=1 f

−2s
n has minimal exponent s = 0. �

Theorem 3.8 (Graham et al [6]). When applied to an initial configuration (a, b, c, d, )
with a < 0 < b ≤ c ≤ d and a + b + c ≥ d, the curvatures from the sequence
. . . S4S3S2S1S4S3S2S1 grow faster than any other sequence and the curvatures from
the sequence . . . S4S3S4S3 grow slower than any other sequence.

Along with our above results, Theorem 3.8 shows that the minimal exponent of
any sequence must lie in the set [0, 1

2 ]. This leads to the natural question: can the

minimal exponent of a sequence be any element of [0, 1
2 ]? The following theorem

answers the question affirmatively.

Theorem 3.9. The minimal exponent map M : A∞ → [0, 1
2 ] is surjective.

We will prove the theorem by constructing sequences in the (0, 2, 2, 0) circle pack-
ing that have minimal exponent β ∈ (0, 1

2 ). The key will be to consider increasing
functions ϕ : N → N with sufficiently large growth rates. First we begin with a
technical lemma.



APOLLONIAN SUMS 9

Lemma 3.10. Let g(x) and h(x) be polynomials of degree 2 with positive coeffi-
cients. Set

(7) Fϕ(s) =

∞∑
n=1

1

Πn−1
m=0g(ϕ(m))s

ϕ(n)∑
k=0

1

h(k)s
.

If we let ϕ(n) = b2αnc for α ∈ (1,∞) then the minimal exponent of Fϕ is α−1
2α .

Proof. If s > 1
2 then the inner sum is bounded and the series clearly converges.

Thus we need only consider s ∈ (0, 1
2 ). For x ≥ 1 we have the trivial inequalitiy

γ1x
2 ≤ h(x) ≤ γ2x

2 where γ1 is the degree 2 coefficient of h and γ2 is the sum of the
coefficients of h. Estimating the inner sum with an integral we have the following
bounds:

(8)
∞∑
n=1

γ−s
2

1−2s (ϕ(n)1−2s − 1)

Πn−1
m=0g(ϕ(m))s

≤ Fϕ(s) ≤
∞∑
n=1

2
h(0)s +

γ−s
1

1−2s (ϕ(n)1−2s − 1)

Πn−1
m=0g(ϕ(m))s

.

The growth of the denominator and the restriction s ∈ (0, 1
2 ) makes it read-

ily apparent that the upper and lower bounds converge if and only if the series∑∞
n=1

ϕ(n)1−2s

Πn−1
m=0g(ϕ(m))s

converges. If β1 is the degree 2 coefficient of g and β2 is the

sum of the coefficients of g we get the bound
(9)
∞∑
n=1

ϕ(n)

β
s(n−1)
2 Πn

m=0ϕ(m)2s
≤
∞∑
n=1

ϕ(n)

ϕ(n)2sΠn−1
m=0g(ϕ(m))s

≤
∞∑
n=1

ϕ(n)

β
s(n−1)
1 Πn

m=0ϕ(m)2s
.

The lower bound converges if and only if the upper bound converges and con-
vergence is unaffected by replacing ϕ(n) with 2α

n

. We have now shown that

Fϕ converges if and only if
∑∞
n=1 β

−s(n−1)
2 2α

n(1−2s
∑n

m=0 α
m−n) converges. Since

limn→∞
∑n
m=0 α

m−n = α
α−1 it follows that Fϕ converges for s > α−1

2α and diverges

for s < α−1
2α as desired. �

Construction of an intermediate sequence: For any irrational number x ∈
(0, 1), the continued fraction of x defines a unique path in the Stern-Brocot tree
converging to x, which in turn defines a sequence of tangent Ford circles in the
(0, 2, 2, 0) packing. By choosing an appropriate irrational number we can get a
sequence with minimal exponent s ∈ (0, 1

2 ). Consider the irrational number x with
continued fraction [0; 1, ϕ(1), 1, ϕ(2), . . .] written:

(10) x =
1

1 +
1

ϕ(1) +
1

1 +
1

ϕ(2) +
1

. . .

The path converging to x in the Stern-Brocot tree is most easily described using
continued fractions as follows:
(11)
[0; 2], [0; 1, 2], [0; 1, 3] . . . [0; 1, ϕ(1)+1], [0; 1, ϕ(1), 2], [0; 1, ϕ(1), 1, 2] . . . [0; 1, ϕ(1), 1, ϕ(2)+1] . . .

Let Sx be this sequence of rational numbers. We denote the corresponding sequence
of circles by C(p, q) where p

q ∈ Sx and p, q are relatively prime. The curvature of



10SHAI CHESTER, SHARMA GOLDSON, MATTHEW JACOBS, IAN WHITEHEAD, STEPHANIE ZARRINDAST

C(p, q) is 2q2. Thus the Apollonian sum is given by Gϕ(s) = 2−s
∑

p
q∈Sx

1
q2s . Un-

fortunately this form is not very useful but we can find recursive formulas to make
the sum tractable.

Every continued fraction of the form [0; 1, ϕ(1), . . . 1, ϕ(m)] or of the form [0; 1, ϕ(1), . . . , ϕ(m)+
1] is a convergent of x. Let pn

qn
be the fractional representation of the nth con-

vergent with pn, qn relatively prime. Then it is a well known result from con-
tinued fractions that qn = anqn−1 + qn−2 where an is the nth entry in the con-
tinued fraction. In the case of the convergents of x, q2n+1 = q2n + q2n−1 and
q2n = ϕ(n)q2n−1 + q2n−2. Thus q2n+1 = (ϕ(n) + 1)q2n−1− q2n−3. Since the denom-
inators are strictly increasing, it follows that ϕ(n)q2n−1 ≤ q2n+1 ≤ (ϕ(n)+1)q2n−1.
Therefore Πn

m=1ϕ(m) ≤ q2n+1 ≤ Πn
m=1(ϕ(m) + 1). There are ϕ(n) + 1 circles be-

tween q2n−1 and q2n+1 counting q2n+1 but not q2n−1. The denominator of the kth

circle between q2n−1 and q2n+1 is given by (k + 1)q2n−1 + q2n−2 which is between
(k + 1)q2n−1 and (k + 2)q2n−1. Finally we have
(12)

2−s
∞∑
n=1

1

Πn−1
m=1(ϕ(m) + 1)2s

ϕ(n)∑
k=0

1

(k + 2)2s
≤ Gϕ(s) ≤ 2−s

∞∑
n=1

1

Πn−1
m=1ϕ(m)2s

ϕ(n)∑
k=0

1

(k + 1)2s
.

If we take ϕ(n) = b2αnc then Gϕ is bounded by sums satisfying Lemma 3.10. Thus
Gϕ has minimal exponent α−1

2α . This completes the proof of Theorem 3.9.

Using a slightly modified sequence we can prove a more precise result that does
not rely on the (0, 2, 2, 0) packing or continued fractions.

Theorem 3.11. Let D ⊂ A∞ be the set of sequences where all 4 generators appear
infinitely many times. Then the minimal exponent map M : D → [0, 1

2 ] is surjective.

Proof. Consider the sequence:

(13) x = . . . S4S3S2S1 . . . S2S1︸ ︷︷ ︸
ϕ(3)

S1S2S4S3 . . . S4S3︸ ︷︷ ︸
ϕ(2)

S4S3S2S1 . . . S2S1︸ ︷︷ ︸
ϕ(1)

∈ A∞

Set an to be the curvature of circle obtained after the nth repeat is broken. Set
bn to be the curvature of the circle immediately after an. Let the nth chain be all
of the circles including and after bn and before an+1. Denote the kth circle in the
nth chain by D(n, k) where 0 ≤ k ≤ ϕ(n). For compactness of notation we set
pn = D(n, ϕ(n)), qn = D(n, ϕ(n)− 1). By Decartes’ equation we get the following
formulas:

an = 2(pn−1 + qn−1 + pn−2)− qn−2(14)

D(n, 0) = bn = 2(an + pn−1 + qn−1)− pn−2

D(n, 1) = 2(qn−1 + bn + pn−1)− an
D(n, k) = 2(pn−1 + qn−1 +D(n, k − 1))−D(n, k − 2) (2 ≤ k ≤ ϕ(n)).

Iterating the expression for D(n, k) we obtain, for all (0 ≤ k ≤ ϕ(n)):

(15) D(n, k) = (k + 2)(k + 3)(qn−1 + pn−1) + (k + 3)pn−2 − (k + 2)qn−2.

We work with a bounded packing so that the curvatures of the circles are even-
tually strictly increasing. Therefore we have bounds for D(n, k): g1(k)pn−1 ≤
D(n, k) ≤ g2(k)pn−1 where g1(k) = k2 +5k+6 and g2(k) = 2k2 +11k+15. Applied
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inductively, this gives bounds for pn: Πn
m=2g1(ϕ(m))p1 ≤ pn ≤ Πn

m=2g2(ϕ(m))p1.
Hence g1(k)Πn−1

m=2g1(ϕ(m))p1 ≤ D(n, k) ≤ g2(k)Πn−1
m=2g2(ϕ(m))p1. The sum over

the sequence is given by Gϕ(s) =
∑∞
n=1( 1

asn
+
∑ϕ(n)
k=0

1
D(n,k)s ). The an grow expo-

nentially so we may ignore them. The rest of the sum is bounded by sums satisfying
Lemma 3.10. �

Theorem 3.12. Every periodic sequence on more than 2 generators has minimal
exponent 0.

Proof. Let x = . . . sim . . . si1sim . . . si1 be a periodic sequence and let Hx(s) be the
sum over the sequence. Let h(k, n) be the curvature of the (nm+k)th circle, where
1 ≤ k ≤ m and n ≥ 1. Since the sequence of circles lies in a bounded region,
the curvatures are eventually strictly increasing. Thus we know h(1, n) ≤ h(k, n)
for n sufficiently large. By Descartes’ equation we have h(1, n) = 2(h(m,n − 1) +
v(n) + u(n)) − w(n) where v, u, w correspond to the curvatures of some circles in
the packing. Since the sequence is over more than 2 generators we may assume
v(n) = h(c, n− 1) and w(n) = h(d, n− 1) for some 1 ≤ c, d ≤ m− 1 and c 6= d. Let
γ be the smallest curvature in the entire packing. Next we may choose N so large
that h(m,N) > 2γ and h(1, N) > 0. Then for n > N we have

h(1, n) = 2h(m,n− 1) + 2h(c, n− 1) + 2u(n)− h(d, n− 1)

≥ 2h(m,n− 1) + 2h(1, n− 1) + 2γ − h(m− 1, n− 1)

≥ h(m,n− 1) + 2h(1, n− 1) + 2γ

≥ 2h(1, n− 1)

. . .

≥ 2n−Nh(1, N).(16)

Finally,

Hx(s) ≤
N∑
n=1

m∑
k=1

1

h(k, n)s
+
∑
n>N

m

h(1, n)s

≤
N∑
n=1

m∑
k=1

1

h(k, n)s
+ h(1, N)−s

∑
n>N

m

2(n−N)s
<∞(17)

for all s > 0. Therefore Hx(s) has minimal exponent 0. �

4. Sums Over Subgroups

In this section we examine Apollonian sums over the collection of all circles
tangent to a fixed circle in a packing (the collection of Ford circles is one example).
In the Apollonian group, this corresponds to a subgroup generated by three of the
Si. We compute the sum explicitly in the case where the fixed circle is a line. Of
course, the collection of circles tangent to a line is unbounded, so we also fix two
tangent bounding circles, of curvatures m2 and n2, and look only at the circles
between these and the line. In the simplest case m = n = 1, the result is an elegant
Dirichlet series. In general it can be written in terms of Hurwitz zeta functions.
The minimal exponent of sums of this type is 1.

Proposition 4.1. Fix two tangent circles of curvatures m2 and n2, and a line
tangent to both circles at distinct points. Extend this triple to an Apollonian
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packing. Let C be the collection of circles between the two fixed circles and the
line, and tangent to the line. The Apollonian sum over this collection is given by

F (s) = m−2s

ζ(2s)

∑∞
k=1 ζ(2s, nmk)− ( mnk )2s.

Proof. Each circle in the packing is in one-to-one correspondence with a node in
the Stern-Brocot tree. Given (a, b) relatively prime there is a circle of curvature
(am+ bn)2. Thus

F (s) =
∑

(a,b)=1

1

(am+ bn)2s

=
1

ζ(2s)

∞∑
a=1

∞∑
b=1

1

(am+ bn)2s

=
m−2s

ζ(2s)

∞∑
k=1

ζ(2s,
n

m
k)− (

m

nk
)2s.(18)

�

Corollary 4.2. This sum, and hence general sums over three generators in the
Apollonian group, have minimal exponent 1.

A simpler form is possible when m,n are linearly dependent over Q. In this case,
we may rescale the packing to assume that m,n are relatively prime integers. We
need an elementary lemma on integer combinations of m and n.

Lemma 4.3. Given m,n ∈ N relatively prime let fm,n(c) = |{(a, b) ∈ N2 : am +
bn = c}|. If c = kmn+ j with 1 ≤ j ≤ mn then fm,n(c) = k+ fm,n(j). Futhermore
fm,n : {1, . . . ,mn} → {0, 1}.

Proof. Given a solution pair (x, y) every other solution is given by (x+ in, y− im)
where i ∈ Z. Now suppose that c ≤ mn. If there is a solution pair (x, y) satisfying
mx+ by = c and x, y > 0 it is clear that x ≤ n and y ≤ m. Therefore there can be
no other solution pairs satisfying the equation and satisfying x, y > 0. Therefore
when c < mn the answer is either 1 or 0. If the answer is 0 there still exists a
solution pair (x, y) where either x > 0 and −m < y ≤ 0 or −n < x ≤ 0 and
y > 0 since c is positive. In the general case we may write c = mnk + j where
k ≥ 0 and 1 ≤ j ≤ mn. Fixing j and letting k vary it is easy to see that each
time k increases by 1 the number of solutions increases by 1. This is equivalent to
fm,n(kmn+ j) = k + fm,n(j) where 0 < j ≤ mn. �

Remark: It should be stressed that f is in general not a group homomorphism,
and that f is never an extension of a character on (Z/mnZ)∗. f is a homomorphism
only in the special case where either m = 1 or n = 1 in which case f is the trivial
homomorphism.

Proposition 4.4. In the setup of Proposition 4.1, assume that m and n are coprime
integers. Then

(19) F (s) =
ζ(2s− 1)

mnζ(2s)
+

(mn)−2s

ζ(2s)

mn∑
j=1

ζ(2s,
j

mn
)(fm,n(j)− j

mn
).
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Proof. As above, we have F (s) = 1
ζ(2s)

∑∞
a=1

∑∞
b=1

1
(am+bn)2s . Now am + bn must

be an integer, and we write

F (s) =
1

ζ(2s)

∞∑
c=1

∑
am+bn=c

1

c2s

=
1

ζ(2s)

∞∑
k=0

mn∑
j=1

k + fm,n(j)

(kmn+ j)2s

=
ζ(2s− 1)

mnζ(2s)
+

(mn)−2s

ζ(2s)

mn∑
j=1

ζ(2s,
j

mn
)(fm,n(j)− j

mn
).(20)

�

Corollary 4.5. In the case m = n = 1, the sum is F (s) = ζ(2s−1)
ζ(2s) −1 =

∑∞
n=2

φ(n)
n2s

where φ denotes Euler’s totient function.

The latter equality comes from identifying Ford circles with rational numbers
between 0 and 1.

5. Sums Over Generations

We now turn to Apollonian sums over generations of circles in a packing. Given
an initial Descartes configuration with four mutually tangent circles, the circles
filling in the four interstices are said to be of generation one. The circles filling in
the next twelve available interstices are said to be of a generation two, and so on.
The Apollonian packing is union of all generations.

Figure 5. Building a packing generation by generation

Let Gn,P (s) denote the Apollonian sum over the nth generation of circles in a
packing P with fixed initial Descartes configuration. Each generation is a finite
collection of circles, so Gn,P (s) converges for all s. Thus instead of the minimal
exponent, we will focus on special values of the Apollonian sum, using recursive
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relations between successive generations. The values when s = 0,−1,−2, . . . can
be viewed as the moments structure of the distribution of curvatures in generation
n. By a noncommutative version of the central limit theorem, this distribution is
approximately log-normal for large n. [11]

Note that the number of circles in generation n is 4 · 3n−1, for n ≥ 1. This is
the value of Gn,P (0). We will study Gn,P (−1), deriving an explicit formula from
a recursive relationship between generations. Since −1 and P are fixed here, we
define gn = Gn,P (−1).

Theorem 5.1. In an Apollonian packing, the sum of the curvatures in generation

n is given by gn = − g09 ( α
βn+1 + ᾱ

β̄n+1 ) for n ≥ 1, where α = 91+31
√

13
26 , ᾱ = 91−31

√
13

26

and β = 4+
√

13
3 , β̄ = 4−

√
13

3 .

Proof. We first find a recursive formula for the sum of the curvatures in generation
n. The sum of the curvatures in an initial Descartes quadruple, (a, b, c, d), is given
by g0 = a+ b+ c+ d.

The four circles of generation one have curvatures 2(b+c+d)−a, 2(a+c+d)−b,
2(a+ b+ d)− c and 2(a+ b+ c)− d. So, their sum is g1 = 5g0.

To find the curvature sum for the 4 · 3n−1 circles in generation n, we view the
previous generations as a set of 4 · 3n−1 overlapping Descartes quadruples. This
yields recursive formulas:

g2 = 5(3g0 + g1)− g0

g3 = 5(6g0 + 3g1 + g2)− 3g0

g4 = 5(12g0 + 6g1 + 3g2 + g3)− (6g0 + 3g1)

g5 = 5(24g0 + 12g1 + 6g2 + 3g3 + g4)− (12g0 + 6g1 + 3g2)

...

gn = 27(

n−3∑
i=0

2n−(3+i)gi) + 15gn−2 + 5gn−1, for all n ≥ 3(21)

Define a generating function by

(22) A(x) =

∞∑
n=0

gnx
n = g0 + g1x+ g2x

2 + · · ·

The recursive formulas above imply that A(x) = g0( 2
3 + 1

3 ·
7x+1

3x2−8x+1 )

To recover the coefficients gn we decompose A(x) by partial fractions and rewrite
it as a sum of geometric series.

(23) A(x) = g0 −
g0

9
(
α

β2
+

ᾱ

β̄2
)x− g0

9
(
α

β3
+

ᾱ

β̄3
)x2 − g0

9
(
α

β4
+

ᾱ

β̄4
)x3 − · · ·

where α = 91+31
√

13
26 , ᾱ = 91−31

√
13

26 and β = 4+
√

13
3 , β̄ = 4−

√
13

3 .
Comparing the coefficients of (23) and (22), we find the closed form expression

for gn.

(24) gn = −g0

9
(
α

βn+1
+

ᾱ

β̄n+1
), for all n ≥ 1.

�
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A similar recursive relationship between generations exists for Gn,P (−2), the
sum of squares of the curvatures. This uses Descartes’ equation in a fundamental
way, suggesting that higher powers are substantially more difficult. Leaving that
topic aside, we now partition the all circles in a packing into four classes, which we
call colors.

We note that the Apollonian group does not allow for permutations of the entries
in a Descartes quadruple (a, b, c, d). In fact, the order of entries naturally divides
the set of circles in a packing into four classes. Another approach is to assign four
different colors to the circles of an initial Descartes configuration. This induces a
coloring of the entire packing, which is in fact the unique four-coloring of an asso-
ciated planar graph.

Given Apollonian packing P with initial configuration (a, b, c, d), partition the
set of circles in the packing into four classes, called colors:
(1) pink: the circle a, and circles of reduced form S1Si1 ...Sin
(2) blue: the circle b, and circles of reduced form S2Si1 ...Sin
(3) yellow: the circle c, and circles of reduced form S3Si1 ...Sin
(4) red: the circle d, and circles of reduced form S4Si1 ...Sin .
The reduced form of a circle refers to the shortest sequence of generators Si required
to reach it.

We will study blue circles, without loss of generality. Let Gn,P,blue(s) denote the
Apollonian sum over blue circles of generation n. We have Gn,P,blue(0) = 3n − 1
for n ≥ 1. We will now build off Theorem 5.1 to give an explicit formula for
Gn,P,blue(−1). For convenience, we denote this quantity bn.

Theorem 5.2. The sum of the curvatures of blue circles in generation n is:

(25) bn =
2g0

9

(( α
βn
)( (−3β2)b

n+1
2 c − 1

3β2 + 1

)
+
( ᾱ
β̄n
)( (−3β̄2)b

n+1
2 c − 1

3β̄2 + 1

))
+(−3)b

n+1
2 cb0

where α, ᾱ, β, and β̄ are as in the previous theorem. This is solely a function of
n, g0, and b0, not of the other initial curvatures.

Proof. We first find a recursive formula for bn using the same technique as in
Theorem 5.1. We show the first few generations bi to demonstrate the derivation
of this formula.

b0 = b

b1 = 2a− b+ 2c+ 2d = 2(g0 − b0)− b0
b2 = 4(g1 − b1) + 2(g0 − b0)− 3b0

b3 = 8(g0 − b0) + 4(g1 − b1) + 2(g2 − b2)− 6b0 − 3b1
...

bn =

n−1∑
i=0

2n−i(gi − bi)− 3

n−2∑
i=0

2n−2−ibi(26)

Rewriting bn−1 according to this expression, substituting, and simplifying, we
obtain bn = 2gn−1 − 3bn−2 for n ≥ 2. For n = 1, we have b1 = 2g0 − 3b0. A
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Figure 6. A packing with coloring partially illustrated.

continued expansion of the bi terms yields the sum:

(27) bn = 2

bn−1
2 c∑

k=0

(−3)kgn−1−2k + (−3)b
n+1
2 cb0.

We now use Theorem 5.1 to obtain

(28) bn =
−2g0

9

bn−1
2 c∑

k=0

(−3)k(
α

βn−2k
+

ᾱ

β̄n−2k
) + (−3)b

n+1
2 cb0

where α, ᾱ, β, and β̄ are as above. Computing the summation and simplifying
gives the theorem.

�
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