SPECIAL NUMBER THEORY TALK

DATE: Tuesday, September 13

TIME: 4:00 p.m.

Room: 528 Mathematics Building

SPEAKER: Samit Dasgupta (UC Santa Cruz)

TITLE: The *p*-adic *L*-functions of evil Eisenstein series

Let f be a newform of weight k+2 on $\Gamma_1(N)$, and let Abstract: $p \nmid N$ be a prime. For each root α of the Hecke polynomial of f at p, there is a corresponding p-stabilization f_{α} on $\Gamma_1(N) \cap \Gamma_0(p)$ with U_p eigenvalue equal to α . The construction of p-adic L-functions associated to such forms f_{α} has been much studied. The non-critical case (when $\operatorname{ord}_{p}(\alpha) < k+1$) was handled in the 1970s via interpolation of the classical L-function in work of Mazur, Swinnerton-Dyer, Manin, Visik, and Amice-Vélu. Recently, certain critical cases were handled by Pollack and Stevens, and the remaining cases were finished off by Bellaiche. Many years prior to Bellaiche's proof of their existence, Stevens had conjectured a factorization formula for the *p*-adic *L*-functions of evil (i.e. critical) Eisenstein series based on computational evidence. In this talk we describe a proof of Steven's factorization formula. A key element of the proof is the theory of distribution-valued partial modular symbols. This is joint work with Joël Bellaiche.