$C^{2, \alpha}$ REGULARITY OF FLAT FREE BOUNDARIES FOR THE THIN ONE-PHASE PROBLEM.

D. DE SILVA AND O. SAVIN

Abstract

We prove $C^{2, \alpha}$ regularity of sufficiently flat free boundaries, for the thin one-phase problem in which the free boundary occurs on a lower dimensional subspace. This problem appears also as a model of a one-phase free boundary problem in the context of the fractional Laplacian $(-\Delta)^{1 / 2}$.

1. Introduction

Let $g(x, s)$ be a continuous non-negative function in the ball $B_{1} \subset \mathbb{R}^{n+1}=$ $\mathbb{R}^{n} \times \mathbb{R}$, which vanishes on a subset of $\mathbb{R}^{n} \times\{0\}$ and it is even in the s variable. We consider the following free boundary problem

$$
\left\{\begin{array}{l}
\Delta g=0, \quad \text { in } B_{1}^{+}(g):=B_{1} \backslash\{(x, 0): g(x, 0)=0\} \tag{1.1}\\
\frac{\partial g}{\partial U}=1, \quad \text { on } F(g):=\partial_{\mathbb{R}^{n}}\left\{x \in \mathcal{B}_{1}: g(x, 0)>0\right\} \cap \mathcal{B}_{1}
\end{array}\right.
$$

where

$$
\begin{equation*}
\frac{\partial g}{\partial U}\left(x_{0}\right):=\lim _{t \rightarrow 0^{+}} \frac{g\left(x_{0}+t \nu\left(x_{0}\right), 0\right)}{\sqrt{t}}, \quad x_{0} \in F(g) \tag{1.2}
\end{equation*}
$$

with $\nu\left(x_{0}\right)$ the normal to $F(g)$ at x_{0} pointing toward $\{x: g(x, 0)>0\}$ and $\mathcal{B}_{r} \subset \mathbb{R}^{n}$ the n-dimensional ball of radius r (centered at 0).

If $F(g)$ is C^{2} then it can be shown (see Section 7) that any function g which is harmonic in $B_{1}^{+}(g)$ has an asymptotic expansion at a point $x_{0} \in F(g)$,

$$
g(x, s)=\alpha\left(x_{0}\right) U\left(\left(x-x_{0}\right) \cdot \nu\left(x_{0}\right), s\right)+o\left(\left|x-x_{0}\right|^{1 / 2}+s^{1 / 2}\right)
$$

Here $U(t, s)$ is the real part of \sqrt{z} which in the polar coordinates

$$
t=r \cos \theta, \quad s=r \sin \theta, \quad r \geq 0, \quad-\pi \leq \theta \leq \pi
$$

is given by

$$
\begin{equation*}
U(t, s)=r^{1 / 2} \cos \frac{\theta}{2} \tag{1.3}
\end{equation*}
$$

Then, the limit in (1.2) represents the coefficient $\alpha\left(x_{0}\right)$ in the expansion above (which justifies our notation)

$$
\frac{\partial g}{\partial U}\left(x_{0}\right)=\alpha\left(x_{0}\right)
$$

and our free boundary condition requires that $\alpha \equiv 1$ on $F(g)$.
Solutions to our free boundary problem (1.1) are critical points to the energy functional

$$
E(g):=\int_{B_{1}}|\nabla g|^{2} d x d s+\frac{\pi}{2} \mathcal{H}^{n}\left(\{g>0\} \cap \mathcal{B}_{1}\right)
$$

If the second term is replaced by $\mathcal{H}^{n+1}(\{g>0\})$, we obtain the classical one-phase free boundary problem (see for example [AC].) In our case the free boundary occurs on the lower dimensional subspace $\mathbb{R}^{n} \times\{0\}$ and for this reason we refer to (1.1) as to the thin one-phase free boundary problem.

This free boundary problem was first considered by Caffarelli, Roquejoffre and Sire CafRS as a model of a one-phase Bernoulli type free boundary problem in the context of the fractional Laplacian. It is relevant in applications when turbulence or long-range interactions are present, for example in flame propagation and also in the propagation of surfaces of discontinuities. For further information on this model see CafRS and the references therein.

In this paper we are interested in the question of regularity for the free boundary $F(g)$. Concerning this issue the authors of [CafRS] proved that in dimension $n=2$, a Lipschitz free boundary is C^{1}. In [DR, the first author and Roquejoffre showed that in any dimension if the free boundary $F(g)$ is sufficiently flat then it is $C^{1, \alpha}$.

This paper is the first of a series of papers, which investigate the regularity of $F(g)$ and in particular the question of whether Lipschitz free boundaries are smooth. This basic question was answered positively in the case of minimal surfaces by De Giorgi [DG and by Caffarelli [1] for the standard one-phase free boundary problem.

Our strategy to obtain the regularity of Lipschitz free boundaries is to use a Weiss-type monotonicity formula W combined with flatness results and ad hoc Schauder type estimates near the free boundary. To implement this method we need to obtain first $C^{2, \alpha}$ estimates for flat free boundaries, which we achieve in this paper. Unlike the case of minimal surfaces and of the standard one-phase problem, $C^{2, \alpha}$ estimates do not seem to follow easily from $C^{1, \alpha}$. It appears that $C^{2, \alpha}$ is the critical regularity needed to obtain C^{∞} smoothness of the free boundary, as well as the regularity needed to implement our blow-up analysis.

The following is the main result of this paper (see Section 2 for the precise definition of viscosity solution to (1.1)).

Theorem 1.1. There exists $\bar{\epsilon}>0$ small depending only on n, such that if g is a viscosity solution to (1.1) satisfying

$$
\left\{x \in \mathcal{B}_{1}: x_{n} \leq-\bar{\epsilon}\right\} \subset\left\{x \in \mathcal{B}_{1}: g(x, 0)=0\right\} \subset\left\{x \in \mathcal{B}_{1}: x_{n} \leq \bar{\epsilon}\right\}
$$

then $F(g)$ is a $C^{2, \alpha}$ graph in $\mathcal{B}_{\frac{1}{2}}$ for every $\alpha \in(0,1)$ with $C^{2, \alpha}$ norm bounded by a constant depending on α and n.

The proof of Theorem 1.1 follows the lines of the flatness theorem in $\overline{\mathrm{DR}}$, which is inspired by the regularity theory developed by the second author in \underline{S}. In this case the proof is more technical since we need to approximate the free boundary quadratically. To do so, we introduce a family of approximate solutions $V_{\mathcal{S}, a, b}$ which have the same role as quadratic polynomials in the regularity theory of elliptic equations. Such family will be used also in a subsequent paper to obtain boundary Schauder type estimates for solutions to our problem.

In the last section of this paper we also prove some useful general facts about viscosity solutions g to our free boundary problem (1.1), such as $C^{1 / 2}$-optimal regularity, asymptotic expansion near regular points of the free boundary and compactness.

The paper is organized as follows. In Section 2 we recall notation, definitions and some basic results from (DR, including the linearized problem associated to
(1.1). Section 3 is devoted to the construction of the quadratic approximate solutions $V_{\mathcal{S}, a, b}$. In Section 4 we prove a Harnack type inequality for solutions to (1.1). In Section 5 we establish the improvement of flatness result via a compactness argument which makes crucial use of the Harnack inequality of Section 4. Our argument reduces the problem to studying the regularity of solutions to the linearized problem. This is pursued in Section 6. We conclude the paper with Section 7 where we provide some general facts about viscosity solutions to (1.1).

2. Definitions and basic lemmas

In this section we recall notation, definitions and some necessary results from DR.
2.1. Basic facts. Throughout the paper, constants which depend only on the dimension n will be called universal. In general, small constants will be denoted by c, c_{i} and large constants by C, C_{i} and they may change from line to line in the body of the proofs.

A point $X \in \mathbb{R}^{n+1}$ will be denoted by $X=(x, s) \in \mathbb{R}^{n} \times \mathbb{R}$, and sometimes $x=\left(x^{\prime}, x_{n}\right)$ with $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right)$.

A ball in \mathbb{R}^{n+1} with radius r and center X is denoted by $B_{r}(X)$ and for simplicity $B_{r}=B_{r}(0)$. Also \mathcal{B}_{r} denotes the n-dimensional ball $B_{r} \cap\{s=0\}$.

Let $v \in C\left(B_{1}\right)$ be a non-negative function. We associate to v the following sets:

$$
\begin{aligned}
& B_{1}^{+}(v):=B_{1} \backslash\{(x, 0): v(x, 0)=0\} \subset \mathbb{R}^{n+1} ; \\
& \mathcal{B}_{1}^{+}(v):=B_{1}^{+}(v) \cap \mathcal{B}_{1} \subset \mathbb{R}^{n} ; \\
& F(v):=\partial_{\mathbb{R}^{n}} \mathcal{B}_{1}^{+}(v) \cap \mathcal{B}_{1} \subset \mathbb{R}^{n} .
\end{aligned}
$$

Often subsets of \mathbb{R}^{n} are embedded in \mathbb{R}^{n+1}, as it will be clear from the context.
We consider the thin one-phase free boundary problem

$$
\begin{cases}\Delta g=0, & \text { in } B_{1}^{+}(g) \tag{2.1}\\ \frac{\partial g}{\partial U}=1, & \text { on } F(g)\end{cases}
$$

where

$$
\frac{\partial g}{\partial U}\left(x_{0}\right):=\lim _{t \rightarrow 0^{+}} \frac{g\left(x_{0}+t \nu\left(x_{0}\right), 0\right)}{\sqrt{t}}, \quad X_{0}=\left(x_{0}, 0\right) \in F(g) .
$$

Here $\nu\left(x_{0}\right)$ denotes the unit normal to $F(g)$, the free boundary of g, at x_{0} pointing toward $\mathcal{B}_{1}^{+}(g)$.

We now recall the notion of viscosity solutions to (2.1), introduced in DR.
Definition 2.1. Given g, v continuous, we say that v touches g by below (resp. above) at $X_{0} \in B_{1}$ if $g\left(X_{0}\right)=v\left(X_{0}\right)$, and

$$
g(X) \geq v(X) \quad(\text { resp. } g(X) \leq v(X)) \quad \text { in a neighborhood } O \text { of } X_{0} .
$$

If this inequality is strict in $O \backslash\left\{X_{0}\right\}$, we say that v touches g strictly by below (resp. above).
Definition 2.2. We say that $v \in C\left(B_{1}\right)$ is a (strict) comparison subsolution to (2.1) if v is a non-negative function in B_{1} which is even with respect to $s=0$ and it satisfies
(i) v is C^{2} and $\Delta v \geq 0 \quad$ in $B_{1}^{+}(v)$;
(ii) $F(v)$ is C^{2} and if $x_{0} \in F(v)$ we have

$$
v\left(x_{0}+t \nu\left(x_{0}\right), 0\right)=\alpha\left(x_{0}\right) \sqrt{t}+o(\sqrt{t}), \quad \text { as } t \rightarrow 0^{+}
$$

with

$$
\alpha\left(x_{0}\right) \geq 1
$$

where $\nu\left(x_{0}\right)$ denotes the unit normal at x_{0} to $F(v)$ pointing toward $\mathcal{B}_{1}^{+}(v)$;
(iii) Either v is not harmonic in $B_{1}^{+}(v)$ or $\alpha\left(x_{0}\right)>1$ at all $x_{0} \in F(v)$.

Similarly one can define a (strict) comparison supersolution.
Definition 2.3. We say that g is a viscosity solution to (2.1) if g is a continuous non-negative function in B_{1} which is even with respect to $s=0$ and it satisfies
(i) $\Delta g=0 \quad$ in $B_{1}^{+}(g)$;
(ii) Any (strict) comparison subsolution (resp. supersolution) cannot touch g by below (resp. by above) at a point $X_{0}=\left(x_{0}, 0\right) \in F(g)$.

Remark 2.4. We remark that if g is a viscosity solution to (2.1) in B_{λ}, then

$$
g_{\lambda}(X)=\lambda^{-1 / 2} g(\lambda X), \quad X \in B_{1}
$$

is a viscosity solution to (2.1) in B_{1}.
Finally, we state for completeness the boundary Harnack inequality which will be often used throughout the paper. This version follows from the boundary Harnack inequality proved in CFMS.
Theorem 2.5 (Boundary Harnack Inequality). Let v be harmonic in $B_{1}^{+}(v)$ and let $F(v)$ be a Lipschitz graph in the e_{n}-direction (pointing towards the positive phase) with $0 \in F(v)$. If w is harmonic in $B_{1}^{+}(w)=B_{1}^{+}(v)$, then

$$
\frac{w}{v} \leq C \frac{w}{v}\left(\frac{1}{2} e_{n}\right) \quad \text { in } B_{3 / 4}
$$

with C depending only on n and on the Lipschitz constant of $F(v)$.
2.2. The function \tilde{g}. Here and henceforth we denote by P the half-hyperplane

$$
P:=\left\{X \in \mathbb{R}^{n+1}: x_{n} \leq 0, s=0\right\}
$$

and by

$$
L:=\left\{X \in \mathbb{R}^{n+1}: x_{n}=0, s=0\right\} .
$$

Also, throughout the paper we call $U(X):=U\left(x_{n}, s\right)$, where U is the function defined in (1.3).

Let g be a continuous non-negative function in \bar{B}_{ρ}. As in [DR, we define the multivalued map \tilde{g} which associate to each $X \in \mathbb{R}^{n+1} \backslash P$ the set $\tilde{g}(X) \subset \mathbb{R}$ via the formula

$$
\begin{equation*}
U(X)=g\left(X-w e_{n}\right), \quad \forall w \in \tilde{g}(X) \tag{2.2}
\end{equation*}
$$

We write $\tilde{g}(X)$ to denote any of the values in this set.
This change of variables has the same role as the partial Hodograph transform for the standard one-phase problem. Our free boundary problem becomes a problem
with fixed boundary for \tilde{g}, and the limiting values of \tilde{g} on L give the free boundary of g as a graph in the e_{n} direction.

Recall that if g satisfies the ϵ-flatness assumption

$$
\begin{equation*}
U\left(X-\epsilon e_{n}\right) \leq g(X) \leq U\left(X+\epsilon e_{n}\right) \quad \text { in } B_{\rho}, \text { for } \epsilon>0 \tag{2.3}
\end{equation*}
$$

then $\tilde{g}(X) \neq \emptyset$ for $X \in B_{\rho-\epsilon} \backslash P$ and $|\tilde{g}(X)| \leq \epsilon$, hence we can associate to g a possibly multi-valued function \tilde{g} defined at least on $B_{\rho-\epsilon} \backslash P$ and taking values in $[-\epsilon, \epsilon]$ which satisfies

$$
\begin{equation*}
U(X)=g\left(X-\tilde{g}(X) e_{n}\right) \tag{2.4}
\end{equation*}
$$

Moreover if g is strictly monotone in the e_{n}-direction in $B_{\rho}^{+}(g)$, then \tilde{g} is singlevalued.

We recall the following lemmas from [DR].
Lemma 2.6. Let g, v be non-negative continuous functions in B_{λ} with v strictly increasing in the e_{n}-direction in $B_{\lambda}^{+}(v)$. Assume that g and v satisfy the flatness assumption (2.3) in B_{λ} for $\epsilon>0$ small. If

$$
v \leq g \quad \text { in } B_{\lambda}
$$

then

$$
\tilde{v} \leq \tilde{g} \quad \text { on } B_{\lambda-\epsilon} \backslash P
$$

Viceversa, if

$$
\tilde{v} \leq \tilde{g} \quad \text { on } B_{\sigma} \backslash P
$$

for some $0<\sigma<\lambda-\epsilon$, then

$$
v \leq g \quad \text { on } B_{\sigma-\epsilon} .
$$

Lemma 2.7. Let g, v be respectively a solution and a subsolution to (2.1) in B_{2}, with v strictly increasing in the e_{n}-direction in $B_{2}^{+}(v)$. Assume that g and v satisfy the flatness assumption (2.3) in B_{2} for $\epsilon>0$ small. If,

$$
\begin{equation*}
\tilde{v}+\sigma \leq \tilde{g} \quad \text { in }\left(B_{3 / 2} \backslash \bar{B}_{1 / 2}\right) \backslash P \tag{2.5}
\end{equation*}
$$

for some $\sigma>0$, then

$$
\begin{equation*}
\tilde{v}+\sigma \leq \tilde{g} \quad \text { in } B_{3 / 2} \backslash P \tag{2.6}
\end{equation*}
$$

Finally, given a Lipschitz function ϕ defined on $B_{\lambda}(\bar{X})$, with values in $[-1,1]$, then for all $\epsilon>0$ small there exists a unique function φ_{ϵ} defined at least on $B_{\lambda-\epsilon}(\bar{X})$ such that

$$
\begin{equation*}
U(X)=\varphi_{\epsilon}\left(X-\epsilon \phi(X) e_{n}\right), \quad X \in B_{\lambda}(\bar{X}) \tag{2.7}
\end{equation*}
$$

that is

$$
\tilde{\varphi_{\epsilon}}=\epsilon \phi .
$$

Moreover such function φ_{ϵ} is increasing in the e_{n}-direction.
If g satisfies the flatness assumption (2.3) in B_{1} and ϕ is as above then (say $\left.\lambda<1 / 4, \bar{X} \in B_{1 / 2},\right)$

$$
\begin{equation*}
\tilde{\varphi}_{\epsilon} \leq \tilde{g} \quad \text { in } B_{\lambda}(\bar{X}) \backslash P \Rightarrow \varphi_{\epsilon} \leq g \quad \text { in } B_{\lambda-\epsilon}(\bar{X}) \tag{2.8}
\end{equation*}
$$

The following Proposition will be used in the compactness argument for the proof of the improvement of flatness in Section 6.

Proposition 2.8. Let ϕ be a smooth function in $B_{\lambda}(\bar{X}) \subset \mathbb{R}^{n+1} \backslash P$. Define (for $\epsilon>0$ small) the function φ_{ϵ} as above by

$$
\begin{equation*}
U(X)=\varphi_{\epsilon}\left(X-\epsilon \phi(X) e_{n}\right) \tag{2.9}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\Delta \varphi_{\epsilon}=\epsilon \Delta\left(U_{n} \phi\right)+O\left(\epsilon^{2}\right), \quad \text { in } B_{\lambda / 2}(\bar{X}) \tag{2.10}
\end{equation*}
$$

with the function in $O\left(\epsilon^{2}\right)$ depending on $\|\phi\|_{C^{5}}$ and λ.
Proof. For notional simplicity we drop the subindex ϵ in the definition of φ_{ϵ}. From formula (2.9) and Taylor's theorem, we have that

$$
\begin{equation*}
U(X)=\varphi(X)-\epsilon \varphi_{n}(X) \phi(X)+\epsilon^{2} \Psi(X), \quad \text { in } B_{\lambda / 2}(\bar{X}) \tag{2.11}
\end{equation*}
$$

with $\|\Psi\|_{C^{3}\left(B_{\lambda / 2}(\bar{X})\right)} \leq C$ and C depending on $\|\phi\|_{C^{5}}$ and λ. Thus,

$$
U_{n}(X)=\varphi_{n}(X)+O(\epsilon)
$$

Combining this formula for $\varphi_{n}(X)$ and (2.11) we obtain

$$
U(X)=\varphi(X)-\epsilon U_{n}(X) \phi(X)+O\left(\epsilon^{2}\right)
$$

Hence, using that U is harmonic,

$$
0=\Delta U(X)=\Delta \varphi(X)-\Delta\left(\epsilon U_{n} \phi\right)(X)+O\left(\epsilon^{2}\right)
$$

as desired.
We remark that in fact the function in $O\left(\epsilon^{2}\right)$ only depends on λ if we choose ϵ small enough depending on $\|\phi\|_{C^{5}}$.
2.3. The linearized problem. We recall here the linearized problem associated to (2.1). Here and later U_{n} denotes the x_{n}-derivative of the function U. Recall that

$$
P:=\left\{X \in \mathbb{R}^{n+1}: x_{n} \leq 0, s=0\right\}, \quad L:=\left\{X \in \mathbb{R}^{n+1}: x_{n}=0, s=0\right\}
$$

Given $h \in C\left(B_{1}\right)$ and $X_{0}=\left(x_{0}^{\prime}, 0,0\right) \in B_{1} \cap L$, we call

$$
\left|\nabla_{r} h\right|\left(X_{0}\right):=\lim _{\left(x_{n}, s\right) \rightarrow(0,0)} \frac{h\left(x_{0}^{\prime}, x_{n}, s\right)-h\left(x_{0}^{\prime}, 0,0\right)}{r}, \quad r^{2}=x_{n}^{2}+s^{2}
$$

Once the change of unknowns (2.2) has been done, the linearized problem associated to (2.1) is

$$
\left\{\begin{array}{l}
\Delta\left(U_{n} h\right)=0, \quad \text { in } B_{1} \backslash P \tag{2.12}\\
\left|\nabla_{r} h\right|=0, \quad \text { on } B_{1} \cap L
\end{array}\right.
$$

Definition 2.9. We say that h is a solution to (2.12) if $h \in C\left(B_{1}\right), h$ is even with respect to $\{s=0\}$ and it satisfies
(i) $\Delta\left(U_{n} h\right)=0 \quad$ in $B_{1} \backslash P$;
(ii) h cannot be touched by below (resp. by above) at any $X_{0}=\left(x_{0}^{\prime}, 0,0\right) \in$ $B_{1} \cap L$, by a continuous function ϕ which satisfy

$$
\begin{aligned}
& \phi(X)=\phi\left(X_{0}\right)+a\left(X_{0}\right) \cdot\left(x^{\prime}-x_{0}^{\prime}\right)+b\left(X_{0}\right) r+O\left(\left|x^{\prime}-x_{0}^{\prime}\right|^{2}+r^{3 / 2}\right) \\
& \quad \text { with } b\left(X_{0}\right)>0\left(\text { resp. } b\left(x_{0}\right)<0\right)
\end{aligned}
$$

In Section 6, we will prove a quadratic expansion for solutions to the linearized problem which yields the following corollary.

Corollary 2.10. Let h be a solution to (2.12) such that $|h| \leq 1$. Given any $\alpha \in(0,1)$, there exists η_{0} depending on α, such that h satisfies

$$
\left|h(X)-\left(h(0)+\xi_{0} \cdot x^{\prime}+\frac{1}{2}\left(x^{\prime}\right)^{T} M_{0} x^{\prime}-\frac{a_{0}}{2} r^{2}-b_{0} r x_{n}\right)\right| \leq \frac{1}{4} \eta_{0}^{2+\alpha} \quad \text { in } B_{\eta_{0}},
$$

with $r^{2}=x_{n}^{2}+s^{2}$, for some $a_{0}, b_{0} \in \mathbb{R}, \xi_{0} \in \mathbb{R}^{n-1}, M_{0} \in S^{(n-1) \times(n-1)}$ with

$$
\left|\xi_{0}\right|,\left|a_{0}\right|,\left|b_{0}\right|,\left\|M_{0}\right\| \leq C, \quad C \text { universal }
$$

and

$$
a_{0}+b_{0}-\operatorname{tr} M_{0}=0 .
$$

3. A family of functions.

In this section we introduce a family of functions $V_{\mathcal{S}, a, b}$ which approximate our solution quadratically. These functions will be often used as comparison subsolutions/supersolutions. We establish here some of their basic properties, including their behavior under the change of coordinates $V \rightarrow \tilde{V}$ (see Proposition 3.5).

We start by presenting some basic properties of the solution U defined in the introduction. Recall that

$$
U(t, s):=\rho^{1 / 2} \cos \frac{\beta}{2},
$$

where

$$
t=\rho \cos \beta, \quad s=\rho \sin \beta, \quad \rho \geq 0, \quad-\pi \leq \beta \leq \pi .
$$

We will use the following properties of the function U :
(i) $\Delta U=0, \quad U>0 \quad$ in $\mathbb{R}^{n+1} \backslash P$.
(ii) $U_{t}=\frac{1}{2} \rho^{-1 / 2} \cos \frac{\beta}{2}=\frac{1}{2 \rho} U$ and $U_{t}>0$ in $\mathbb{R}^{n+1} \backslash P$.

Since U_{t} is positive harmonic in $\mathbb{R}^{2} \backslash\{(t, 0), \quad t \leq 0\}$, homogenous of degree $-1 / 2$ and vanishes continuously on $\{(t, 0), \quad t<0\}$ one can see from boundary Harnack inequality (or by direct computation) that values of U_{t} at nearby points with the same second coordinate are comparable in diadic rings. Precisely we have

$$
\begin{equation*}
\frac{U_{t}\left(t_{1}, s\right)}{U_{t}\left(t_{2}, s\right)} \leq C \quad \text { if } \quad\left|t_{1}-t_{2}\right| \leq \frac{1}{2}\left|\left(t_{2}, s\right)\right| . \tag{3.1}
\end{equation*}
$$

Next we introduce the family $V_{\mathcal{S}, a, b}$. For any $a, b \in \mathbb{R}$ we define the following family of (two-dimensional) functions (given in polar coordinates (ρ, β))

$$
\begin{equation*}
v_{a, b}(t, s):=\left(1+\frac{a}{4} \rho+\frac{b}{2} t\right) \rho^{1 / 2} \cos \frac{\beta}{2}, \tag{3.2}
\end{equation*}
$$

that is

$$
v_{a, b}(t, s)=\left(1+\frac{a}{4} \rho+\frac{b}{2} t\right) U(t, s)=U(t, s)+o\left(\rho^{1 / 2}\right) .
$$

Given a surface $\mathcal{S}=\left\{x_{n}=h\left(x^{\prime}\right)\right\} \subset \mathbb{R}^{n}$, we call $\mathcal{P}_{\mathcal{S}, X}$ the 2D plane passing through $X=(x, s)$ and perpendicular to \mathcal{S}, that is the plane containing X and generated by the s-direction and the normal direction from $(x, 0)$ to \mathcal{S}.

We define the family of functions

$$
\begin{equation*}
V_{\mathcal{S}, a, b}(X):=v_{a, b}(t, s), \quad X=(x, s), \tag{3.3}
\end{equation*}
$$

with $t=\rho \cos \beta, s=\rho \sin \beta$ respectively the first and second coordinate of X in the plane $\mathcal{P}_{\mathcal{S}, X}$. In other words, t is the signed distance from x to \mathcal{S} (positive above \mathcal{S} in the x_{n}-direction.)

If

$$
\mathcal{S}:=\left\{x_{n}=\frac{1}{2}\left(x^{\prime}\right)^{T} M x^{\prime}+\xi^{\prime} \cdot x^{\prime}\right\}
$$

for some $M \in S^{(n-1) \times(n-1)}, \xi^{\prime} \in \mathbb{R}^{n-1}$ we use the notation

$$
\begin{equation*}
V_{M, \xi^{\prime}, a, b}(X):=V_{\mathcal{S}, a, b}(X) . \tag{3.4}
\end{equation*}
$$

This will be the case throughout most of the paper.
Definition 3.1. For $\delta>0$ small, we define the following classes of functions

$$
\mathcal{V}_{\delta}:=\left\{V_{M, \xi^{\prime}, a, b}:\|M\|,\left|\xi^{\prime}\right|,|a|,|b| \leq \delta\right\}
$$

and

$$
\mathcal{V}_{\delta}^{0}:=\left\{V_{M, \xi^{\prime}, a, b} \in \mathcal{V}_{\delta}: a+b-\operatorname{tr} M=0\right\}
$$

Most of the times we will work with functions in the class \mathcal{V}_{δ}, since we deal with the flat case. Notice that if we rescale $V=V_{M, \xi^{\prime}, a . b}$ that is

$$
V_{\lambda}(X)=\lambda^{-1 / 2} V(\lambda X), \quad X \in B_{1}
$$

then it easily follows from our definition that

$$
V_{\lambda}=V_{\lambda M, \xi^{\prime}, \lambda a, \lambda b}
$$

In the next proposition we provide a condition for a function $V \in \mathcal{V}_{\delta}$ to be a subsolution/supersolution.

Proposition 3.2. Let $V=V_{M, \xi^{\prime}, a, b} \in \mathcal{V}_{\delta}$, with $\delta \leq \delta_{0}$ universal. There exists a universal constant $C_{0}>0$ such that if

$$
\begin{equation*}
a+b-\operatorname{tr} M \geq C_{0} \delta^{2} \tag{3.5}
\end{equation*}
$$

then V is a comparison subsolution to (2.1) in B_{2}.
Proof. Clearly from our formula for $v_{a, b}$ the function V satisfies the free boundary condition of Definition 2.2 with $\alpha\left(x_{0}\right) \equiv 1$. We need to check that $\Delta V(X)>0$ at all $X \in B_{2}^{+}(V)$.

Since that $V(X)$ depends only on (t, s) and

$$
\Delta_{x} t=-\kappa(x)
$$

where $\kappa(x)$ is the sum of the principal curvatures of the parallel surface to S (in \mathbb{R}^{n}) passing through x, we compute that

$$
\begin{equation*}
\Delta V(X)=\Delta_{(t, s)} v_{a, b}-\left(\partial_{t} v_{a, b}\right) \kappa(x) \tag{3.6}
\end{equation*}
$$

From our formula for $v_{a, b}$, using polar coordinates we get that

$$
\begin{equation*}
\Delta_{(t, s)} v_{a, b}=\frac{1}{2}(a+b) \rho^{-1 / 2} \cos \frac{\beta}{2}=(a+b) U_{t} \tag{3.7}
\end{equation*}
$$

Also, since $\rho \leq 2$,

$$
\begin{equation*}
\left|\partial_{t} v_{a, b}-U_{t}\right| \leq(|a|+|b|) \rho^{1 / 2} \cos \frac{\beta}{2} \leq 8 \delta U_{t} \tag{3.8}
\end{equation*}
$$

Finally we use that $\kappa_{i}(x)$ the principal curvatures at x are given by,

$$
\begin{equation*}
\kappa_{i}(x)=\frac{\kappa_{i}\left(x^{*}\right)}{1-t \kappa_{i}\left(x^{*}\right)} \tag{3.9}
\end{equation*}
$$

where x^{*} is the projection of x onto S. Since $\left|\xi^{\prime}\right|,\|M\| \leq \delta$ we obtain that

$$
\left|\kappa_{i}\left(x^{*}\right)\right| \leq C \delta, \quad\left|\kappa\left(x^{*}\right)-\operatorname{tr} M\right| \leq C \delta^{3}
$$

for C universal, which in view of (3.9) give

$$
\begin{equation*}
|\kappa(x)-\operatorname{tr} M| \leq C \delta^{2} \tag{3.10}
\end{equation*}
$$

From (3.6) combined with (3.7), (3.8) and (3.10) we get that

$$
\begin{equation*}
\left|\Delta V(X)-(a+b-\operatorname{tr} M) U_{t}\right| \leq \frac{1}{2} C_{0} \delta^{2} U_{t} \tag{3.11}
\end{equation*}
$$

for a C_{0} universal. It follows that if

$$
a+b-\operatorname{tr} M \geq C_{0} \delta^{2}
$$

then $\Delta V(X)>0$ as desired.

Next, we estimate V_{n} and ΔV outside a small cone with axis L.
Proposition 3.3. Let $V=V_{M, \xi^{\prime}, a, b} \in \mathcal{V}_{\delta}$ with $\delta \leq \delta_{0}$ universal, then

$$
\begin{equation*}
c \leq \frac{V_{n}}{U_{n}} \leq C, \quad \text { in } B_{2} \backslash\left(P \cup\left\{\left|\left(x_{n}, s\right)\right| \leq 10 \delta\left|x^{\prime}\right|\right\}\right) \tag{3.12}
\end{equation*}
$$

If $V \in \mathcal{V}_{\delta}^{0}$ then

$$
\begin{equation*}
|\Delta V(X)| \leq C \delta^{2} U_{n}(X) \quad \text { in } B_{2} \backslash\left(P \cup\left\{\left|\left(x_{n}, s\right)\right| \leq 10 \delta\left|x^{\prime}\right|\right\}\right) \tag{3.13}
\end{equation*}
$$

Proof. From our formula

$$
V_{n}(X)=\partial_{t} v_{a, b}(t, s) \frac{\partial t}{\partial x_{n}}
$$

where t represents the signed distance from x to \mathcal{S}. Since $\nabla_{x} t$ is the unit vector at x that has the direction of the normal from x to \mathcal{S}, it makes an angle of order δ with respect to e_{n}. Hence since

$$
\frac{\partial t}{\partial x_{n}}=\nabla_{x} t \cdot e_{n}
$$

we get

$$
\begin{equation*}
1 \geq \frac{\partial t}{\partial x_{n}} \geq 1-C \delta^{2} \tag{3.14}
\end{equation*}
$$

and we obtain

$$
\partial_{t} v_{a, b}(t, s) \geq V_{n}(X) \geq \frac{1}{2} \partial_{t} v_{a, b}(t, s)
$$

From (3.8) we see that $\partial_{t} v_{a, b} \sim U_{t}$ and we obtain that

$$
\begin{equation*}
2 \partial_{t} U(t, s) \geq V_{n}(X) \geq \frac{1}{4} \partial_{t} U(t, s) \tag{3.15}
\end{equation*}
$$

Thus to obtain our claim we need to replace t with x_{n} in the inequality above.
Since in $B_{2|x|}$ the surface \mathcal{S} is in a $4 \delta|x|$ neighborhood of $x_{n}=0$ we find that $\left|t-x_{n}\right| \leq 4 \delta|x|$. If X belongs to the domain in (3.12) then

$$
\left|\left(x_{n}, s\right)\right| \geq 8 \delta|x| \geq 2\left|t-x_{n}\right|
$$

and we obtain from (3.1)

$$
\begin{equation*}
c \leq \frac{U_{t}(t, s)}{U_{t}\left(x_{n}, s\right)} \leq C \tag{3.16}
\end{equation*}
$$

which together with (3.15) gives the desired conclusion (3.12).
Now (3.13) follows immediately. Indeed by formula (3.11) we have that

$$
|\Delta V(X)| \leq C \delta^{2} U_{t}(t, s)
$$

which combined with (3.16) gives the desired bound.
Remark 3.4. We remark that if $V \in \mathcal{V}_{\delta}^{0}$, then the rescaling $V_{\lambda}(X)=\lambda^{-1 / 2} V(\lambda X)$ with $\lambda \leq 1$, satisfies

$$
\begin{equation*}
c \leq \frac{\left(V_{\lambda}\right)_{n}}{U_{n}} \leq C, \quad\left|\Delta V_{\lambda}(X)\right| \leq C \delta^{2} U_{n}(X) \tag{3.17}
\end{equation*}
$$

in the dilation ball of factor $1 / \lambda$

$$
B_{2 / \lambda} \backslash\left(P \cup\left\{\left|\left(x_{n}, s\right)\right| \leq 10 \delta\left|x^{\prime}\right|\right\}\right)
$$

Indeed

$$
\Delta V_{\lambda}(X)=\lambda^{3 / 2} \Delta V(\lambda X), \quad U_{n}(X)=\lambda^{1 / 2} U_{n}(\lambda X), \quad\left(V_{\lambda}\right)_{n}(X)=\lambda^{1 / 2} V_{n}(\lambda X)
$$

Now we study the behavior of $V \in \mathcal{V}_{\delta}$ under the transformation $V \rightarrow \tilde{V}$. This will be quite useful in the rest of the paper.

Proposition 3.5. Let $V=V_{M, \xi^{\prime}, a, b} \in \mathcal{V}_{\delta}$, with $\delta \leq \delta_{0}$ universal. Then V is strictly monotone increasing in the e_{n}-direction in $B_{2}^{+}(V)$. Moreover, \tilde{V} satisfies the following estimate in $B_{2} \backslash P$

$$
\left|\tilde{V}(X)-\gamma_{V}(X)\right| \leq C_{1} \delta^{2}, \quad \gamma_{V}(X)=\frac{a}{2} r^{2}+b r x_{n}-\frac{1}{2}\left(x^{\prime}\right)^{T} M x^{\prime}-\xi^{\prime} \cdot x^{\prime}
$$

with $r=\sqrt{x_{n}^{2}+s^{2}}$ and C_{1} a universal constant.
Proof. First we show that $v_{a, b}$ satisfies

$$
\begin{equation*}
U\left(t+\gamma_{a, b}-C \delta^{2}, s\right) \leq v_{a, b}(t, s) \leq U\left(t+\gamma_{a, b}+C \delta^{2}, s\right) \tag{3.18}
\end{equation*}
$$

where $\rho^{2}=t^{2}+s^{2}$ and $\gamma_{a, b}$ is the following expression depending on t and s :

$$
\gamma_{a, b}(t, s):=\frac{a}{2} \rho^{2}+b \rho t
$$

Indeed since (see properties of U listed at the beginning of this action)

$$
\left|U_{t t}\right| \leq C \rho^{-1} U_{t}
$$

we have that if $|\mu| \leq \rho / 2$ then

$$
\left|U(t+\mu, s)-\left(U(t, s)+\mu U_{t}(t, s)\right)\right| \leq \mu^{2}\left|U_{t t}\left(t^{\prime}, s\right)\right| \leq C \mu^{2} \rho^{-1} U_{t}(t, s)
$$

where in the last inequality we used (3.1). Thus, since $U_{t}=U /(2 \rho)$,

$$
\left(1+\frac{\mu}{2 \rho}+C \frac{\mu^{2}}{\rho^{2}}\right) U(t, s) \geq U(t+\mu, s) \geq\left(1+\frac{\mu}{2 \rho}-C \frac{\mu^{2}}{\rho^{2}}\right) U(t, s)
$$

Choosing

$$
\mu=\tilde{\mu} \pm 4 C \frac{\tilde{\mu}^{2}}{\rho}
$$

we obtain that

$$
U\left(t+\tilde{\mu}+4 C \frac{\tilde{\mu}^{2}}{\rho}, s\right) \geq\left(1+\frac{\tilde{\mu}}{2 \rho}\right) U(t, s) \geq U\left(t+\tilde{\mu}-4 C \frac{\tilde{\mu}^{2}}{\rho}, s\right)
$$

provided that $|\tilde{\mu} / \rho|<c$, with c sufficiently small. Since

$$
v_{a, b}=\left(1+\frac{a}{4} \rho+\frac{b}{2} t\right) U
$$

we can apply the inequality above with

$$
\tilde{\mu}=\frac{a}{2} \rho^{2}+b t \rho,
$$

hence $|\tilde{\mu}| / \rho \leq C \delta$ and obtain the claim.
When t is the signed distance from x to the surface \mathcal{S} we have

$$
t=0 \quad \text { on } \quad \mathcal{S}:=\left\{x_{n}=h\left(x^{\prime}\right):=\frac{1}{2} x^{T} M x^{\prime}+\xi^{\prime} \cdot x^{\prime}\right\}
$$

and by (3.14)

$$
1 \geq \frac{\partial t}{\partial x_{n}} \geq 1-C \delta^{2} \quad \text { in } B_{1}
$$

thus, by integrating this inequality on the segment $\left(x^{\prime}, h\left(x^{\prime}\right)\right),\left(x^{\prime}, x_{n}\right)$ we get

$$
\left|t-\left(x_{n}-h\left(x^{\prime}\right)\right)\right| \leq C \delta^{2}
$$

Since in B_{1}, the surface \mathcal{S} and $x_{n}=0$ are within distance δ from each other we have $\left|t-x_{n}\right| \leq C \delta$ and hence

$$
\left|\gamma_{a, b}(t, s)-\gamma_{a, b}\left(x_{n}, s\right)\right| \leq\left\|\nabla v_{a, b}\right\|_{L^{\infty}}\left|t-x_{n}\right| \leq C \delta^{2}
$$

From the last two inequalities we have that

$$
\left|\left(t+\gamma_{a, b}(t, s)\right)-\left(x_{n}+\gamma_{V}(X)\right)\right| \leq C \delta^{2}
$$

with

$$
\gamma_{V}(X)=\gamma_{a, b}\left(x_{n}, s\right)-\frac{1}{2} x^{T} M x^{\prime}-\xi^{\prime} \cdot x^{\prime}
$$

Using this fact and (3.18) (and the monotonicity of U in the e_{n} direction) we obtain

$$
U\left(X+\left(\gamma_{V}(X)-C \delta^{2}\right) e_{n}\right) \leq V(X) \leq U\left(X+\left(\gamma_{V}(X)+C \delta^{2}\right) e_{n}\right)
$$

and the estimate for \tilde{V} is proved.
Finally, we remark that the monotonicity of V follows from (3.15).
Remark 3.6. Notice that from the last inequality in the proof above, we obtain that if $V \in \mathcal{V}_{\delta}$, then V satisfies the 4δ-flatness assumption in B_{1} (see also (2.3)):

$$
U\left(X-4 \delta e_{n}\right) \leq V(X) \leq U\left(X+4 \delta e_{n}\right)
$$

This could be also checked easily directly from the definition of V.
We conclude this section with by comparing the functions V corresponding to two nearby surfaces.

Lemma 3.7. Let $\mathcal{S}_{i}, i=1,2$ be surfaces with curvature bounded by 2. Let

$$
V_{i}=V_{\mathcal{S}_{i}, a_{i}, b_{i}}, \quad\left|a_{i}\right|,\left|b_{i}\right| \leq 2, \quad i=1,2
$$

Assume that,

$$
\mathcal{S}_{i} \cap B_{2 \sigma}=\left\{x_{n}=h_{i}\left(x^{\prime}\right)\right\}, \quad \sigma \leq c
$$

with h_{i} Lipschitz graphs, $h_{i}(0)=0,\left|\nabla h_{i}\right| \leq 1$ and c universal. If

$$
\left|a_{1}-a_{2}\right|,\left|b_{1}-b_{2}\right| \leq \epsilon,\left\|h_{1}-h_{2}\right\|_{L^{\infty}} \leq \epsilon \sigma^{2}
$$

for some small $\epsilon \leq c$, then

$$
V_{1}(X) \leq V_{2}\left(X+C \epsilon \sigma^{2} e_{n}\right) \quad \text { in } B_{\sigma}
$$

Proof. After a rescaling of factor $1 / \sigma$, we need to prove our lemma for $\sigma=1$ and with the curvature of S_{i}, a_{i}, b_{i} and ϵ smaller than c universal.

First we prove that for $0<\lambda \leq 1$,

$$
v_{a_{1}, b_{1}}(t, s) \leq v_{a_{2}, b_{2}}\left(t+C \epsilon \lambda^{2}, s\right), \quad \lambda \leq \rho=|(t, s)| \leq 2 \lambda
$$

By (3.15), $\partial_{t} v_{a, b}$ is proportional to $\partial_{t} U$ in the disk of radius 2. Since on the segment with endpoints (t, s) and $\left(t+C \epsilon \lambda^{2}, s\right)$ all the values of $\partial_{t} U$ are comparable (see (3.1)) we obtain (using $2 \rho U_{t}=U$)

$$
\begin{aligned}
v_{a_{2}, b_{2}}\left(t+C \epsilon \lambda^{2}, s\right) & \geq v_{a_{2}, b_{2}}(t, s)+C \epsilon \lambda^{2} U_{t}(t, s) \\
& \geq U\left(1+\frac{a_{2}}{4} \rho+\frac{b_{2}}{2} t+C \epsilon \frac{\lambda^{2}}{\rho}\right) \\
& \geq U\left(1+\frac{a_{1}}{4} \rho+\frac{b_{1}}{2} t\right) \\
& \geq v_{a_{1}, b_{1}}(t, s),
\end{aligned}
$$

and our claim is proved.
Since $v_{a_{2}, b_{2}}$ is increasing in the first coordinate, we obtain that

$$
v_{a_{1}, b_{1}}(t, s) \leq v_{a_{2}, b_{2}}(t+C \epsilon, s), \quad|(t, s)| \leq 1
$$

On the other hand, from the hypotheses on h_{i} we see that in B_{1}

$$
t_{1}+C \epsilon \leq \bar{t}_{2}
$$

where \bar{t}_{2} is the distance to $\mathcal{S}_{2}-C^{\prime} \epsilon e_{n}$, for some C^{\prime} large depending on the C above. Hence in B_{1} we have

$$
V_{1}(X)=v_{a_{1}, b_{1}}\left(t_{1}, s\right) \leq v_{a_{2}, b_{2}}\left(t_{1}+C \epsilon, s\right) \leq v_{a_{2}, b_{2}}\left(\bar{t}_{2}, s\right)=V_{2}\left(X+C^{\prime} \epsilon e_{n}\right)
$$

4. Harnack Inequality

In this section we state and prove a Harnack type inequality for solutions to our free boundary problem (2.1). This will allow us to obtain some compactness of flat solutions after the transformation $g \rightarrow \tilde{g}$ (see Corollary 4.2) which is a crucial ingredient in Theorem 1.1.

Theorem 4.1 (Harnack inequality). There exist $\bar{\epsilon}>0$ small and $\bar{C}>0$ large universal, such that if g solves (2.1) and it satisfies

$$
\begin{equation*}
V\left(X+a_{0} e_{n}\right) \leq g(X) \leq V\left(X+b_{0} e_{n}\right) \quad \text { in } B_{\rho}\left(X^{*}\right) \subset B_{1} \tag{4.1}
\end{equation*}
$$

with $V=V_{M, \xi^{\prime}, a, b} \in \mathcal{V}_{\delta}^{0}$, and

$$
\bar{C} \delta^{2} \leq \frac{b_{0}-a_{0}}{\rho} \leq \bar{\epsilon}
$$

with $\left|a_{0}\right|,\left|b_{0}\right| \leq 1$, then

$$
\begin{equation*}
V\left(X+a_{1} e_{n}\right) \leq g(X) \leq V\left(X+b_{1} e_{n}\right) \quad \text { in } B_{\bar{\eta} \rho}\left(X^{*}\right) \tag{4.2}
\end{equation*}
$$

with

$$
a_{0} \leq a_{1} \leq b_{1} \leq b_{0}, \quad b_{1}-a_{1}=(1-\bar{\eta})\left(b_{0}-a_{0}\right)
$$

for a small universal constant $\bar{\eta} \in(0,1 / 2)$.

In the particular case when $V=U$, this statement was proved in $D \mathrm{DR}$. Our proof follows the same lines as the one in [DR] but it requires a more careful analysis since the function V is no longer a precise solution.

From this statement we get the desired corollary to be used in the proof of our main result. Precisely, assume g satisfies (4.1) in B_{1} with $a_{0}=-\epsilon, b_{0}=\epsilon$ for some small $\epsilon \ll \bar{\epsilon}$, and δ such that $\bar{C} \delta^{2} \leq \epsilon$. Notice that from Remark 3.6, the functions V and g are $(4 \delta+\epsilon)$-flat in B_{1}.

Then at any point $X^{*} \in B_{1 / 2}$ we can apply Harnack inequality repeatedly for a sequence of radii $\rho_{m}=\frac{1}{2} \bar{\eta}^{m}$ and obtain

$$
V\left(X+a_{m} e_{n}\right) \leq g(X) \leq V\left(X+b_{m} e_{n}\right) \quad \text { in } B_{\frac{1}{2} \bar{\eta}^{m}}\left(X^{*}\right)
$$

with

$$
\begin{equation*}
b_{m}-a_{m}=\left(b_{0}-a_{0}\right)(1-\bar{\eta})^{m}=2 \epsilon(1-\bar{\eta})^{m} \tag{4.3}
\end{equation*}
$$

for all m 's, $m \geq 1$ such that

$$
\begin{equation*}
4 \epsilon \frac{(1-\bar{\eta})^{m-1}}{\bar{\eta}^{m-1}} \leq \bar{\epsilon} \tag{4.4}
\end{equation*}
$$

This implies that for all such m 's, the function \tilde{g} satisfies

$$
\begin{equation*}
\tilde{V}+a_{m} \leq \tilde{g} \leq \tilde{V}+b_{m}, \quad \text { in } B_{\frac{1}{2} \bar{\eta}^{m}-4 \delta-\epsilon}\left(X^{*}\right) \backslash P \tag{4.5}
\end{equation*}
$$

with a_{m}, b_{m} as in (4.3). Define the following (possibly multivalued) function

$$
\begin{equation*}
\tilde{g}_{\epsilon, V}(X):=\frac{\tilde{g}(X)-\tilde{V}(X)}{\epsilon}, \quad X \in B_{1-4 \delta-\epsilon} \backslash P \tag{4.6}
\end{equation*}
$$

and notice that

$$
\left|\tilde{g}_{\epsilon, V}\right| \leq 1
$$

In view of (4.5) we then get that in $B_{\frac{1}{4} \bar{\eta}^{m}}\left(X^{*}\right) \backslash P$

$$
\begin{equation*}
\text { osc } \tilde{g}_{\epsilon, V} \leq 2(1-\bar{\eta})^{m} \tag{4.7}
\end{equation*}
$$

provided that

$$
\begin{equation*}
4 \delta+\epsilon \leq \epsilon^{1 / 2} \leq \bar{\eta}^{m} / 4 \tag{4.8}
\end{equation*}
$$

If $\epsilon \leq \bar{\epsilon} \bar{\eta}^{2 m_{0}}$ for some nonnegative integer m_{0} then our inequalities above (4.4), (4.8) and hence also (4.5) hold for all $m \leq m_{0}$. We thus obtain the following corollary.
Corollary 4.2. Let g solve (2.1) and satisfy for $\epsilon \leq \bar{\epsilon}$

$$
V\left(X-\epsilon e_{n}\right) \leq g(X) \leq V\left(X+\epsilon e_{n}\right) \quad \text { in } B_{1}
$$

with

$$
V=V_{M, \xi^{\prime}, a, b} \in \mathcal{V}_{\delta}^{0}, \quad \bar{C} \delta^{2} \leq \epsilon
$$

for $\bar{\epsilon}, \bar{C}>0$ universal constants. If

$$
\epsilon \leq \bar{\epsilon} \bar{\eta}^{2 m_{0}}
$$

for some nonnegative integer m_{0} (with $\bar{\eta}>0$ small universal), then the function $\tilde{g}_{\epsilon, V}$ defined in (4.6) satisfies

$$
a_{\epsilon}(X) \leq \tilde{g}_{\epsilon, V}(X) \leq b_{\epsilon}(X), \quad \text { in } B_{1 / 2} \backslash P
$$

with

$$
b_{\epsilon}-a_{\epsilon} \leq 2(1-\bar{\eta})^{m_{0}}
$$

and $a_{\epsilon}, b_{\epsilon}$ having a modulus of continuity bounded by the Hölder function αt^{β} for α, β depending only on $\bar{\eta}$.

The proof of Harnack inequality will follow from the Proposition below.
Proposition 4.3. There exist $\bar{\epsilon}, \bar{\delta}>0$ and $\bar{C}>0$ universal, such that if g solves (2.1) and it satisfies

$$
\begin{equation*}
V\left(X-\epsilon e_{n}\right) \leq g(X) \leq V\left(X+\epsilon e_{n}\right) \quad \text { in } B_{1}, \quad \text { for } 0<\epsilon \leq \bar{\epsilon} \tag{4.9}
\end{equation*}
$$

with

$$
V=V_{M, \xi^{\prime}, a, b} \in \mathcal{V}_{\delta}^{0}, \quad \delta \leq \bar{\delta}, \quad \bar{C} \delta^{2} \leq \epsilon
$$

then either

$$
g(X) \leq V\left(X+(1-\eta) \epsilon e_{n}\right) \quad \text { in } B_{\eta}
$$

or

$$
g \geq V\left(X-(1-\eta) \epsilon e_{n}\right) \quad \text { in } B_{\eta}
$$

for a small universal constant $\eta \in(0,1)$.
First we show that if $g \geq V$ and they separate of order ϵ at one point, then they separate also of order ϵ away from a neighborhood of $L=\left\{x_{n}=0, s=0\right\}$. This follows from the boundary Harnack inequality. Below are the details.
Lemma 4.4. If g solves (2.1) and it satisfies

$$
\begin{gather*}
g(X) \geq V\left(X-\epsilon e_{n}\right) \quad \text { in } B_{1} \tag{4.10}\\
g(\bar{X}) \geq V(\bar{X}) \quad \text { at some } \bar{X} \in B_{\frac{1}{8}}\left(\frac{1}{4} e_{n}\right), \tag{4.11}
\end{gather*}
$$

with $V=V_{M, \xi^{\prime}, a, b} \in \mathcal{V}_{\delta}^{0}, \bar{C} \delta^{2} \leq \epsilon$ for $\bar{C}>0$ universal, then

$$
\begin{equation*}
g(X) \geq V\left(X-(1-\tau) \epsilon e_{n}\right) \quad \text { in } \mathcal{C} \tag{4.12}
\end{equation*}
$$

with

$$
\mathcal{C}:=\left\{\left(x^{\prime}, x_{n}, s\right): \frac{d}{2} \leq\left|\left(x_{n}, s\right)\right| \leq \frac{1}{2},\left|x^{\prime}\right| \leq \frac{1}{2}\right\}, \quad d=\frac{1}{8 \sqrt{n-1}}
$$

and τ a small universal constant $\tau \in(0,1)$.
Proof. We have

$$
V\left(X-(1-\tau) \epsilon e_{n}\right)=V\left(X-\epsilon e_{n}\right)+\tau \epsilon V_{n}\left(X+\lambda \epsilon e_{n}\right)
$$

for some λ with $|\lambda|<1$. Hence by (3.1),(3.12) for ϵ small enough and $X \in \mathcal{C}$

$$
\begin{aligned}
V\left(X-(1-\tau) \epsilon e_{n}\right) & \leq V\left(X-\epsilon e_{n}\right)+C \tau \epsilon U_{n}\left(X+\lambda \epsilon e_{n}\right) \\
& \leq V\left(X-\epsilon e_{n}\right)+C_{1} \tau \epsilon U_{n}(X) .
\end{aligned}
$$

Thus, if $h(X):=g(X)-V\left(X-\epsilon e_{n}\right)$ we need to show that

$$
\begin{equation*}
h \geq c_{1} \epsilon U_{n}, \quad \text { in } \mathcal{C} \tag{4.13}
\end{equation*}
$$

and then choose $\tau=c_{1} / C_{1}$.
To obtain (4.13), notice that by a similar computation as the one above in view of (4.11) and (3.1), (3.12) we get that for ϵ small enough

$$
\begin{equation*}
h(\bar{X}) \geq V(\bar{X})-V\left(\bar{X}-\epsilon e_{n}\right) \geq c U_{n}(\bar{X}) \epsilon \geq c_{2} \epsilon \tag{4.14}
\end{equation*}
$$

Also, by (4.10) we have

$$
h \geq 0 \quad \text { in } B_{1} .
$$

Finally, by (3.13)

$$
|\Delta h| \leq C \delta^{2} U_{n} \leq C_{2} \delta^{2}, \quad \text { in } \widetilde{\mathcal{C}} \backslash P
$$

where $\widetilde{\mathcal{C}} \supset \supset \mathcal{C}$ is the $d / 4$-neighborhood of \mathcal{C}.
Thus in view of (4.14) and Harnack inequality we have that (for \bar{C} large enough)

$$
\begin{equation*}
h \geq c_{2} \epsilon-C \delta^{2} \geq c_{3} \epsilon, \quad \text { in } B_{1 / 8}\left(\frac{1}{4} e_{n}\right) \tag{4.15}
\end{equation*}
$$

Denote by

$$
D:=\widetilde{\mathcal{C}} \backslash\left(B_{1 / 8}\left(\frac{1}{4} e_{n}\right) \cup P\right)
$$

and let q_{1}, q_{2} satisfy in D

$$
\begin{equation*}
\Delta q_{1}=0, \quad \Delta q_{2}=-1 \tag{4.16}
\end{equation*}
$$

with boundary conditions respectively

$$
q_{1}=0 \quad \text { on } \partial \widetilde{\mathcal{C}} \cup P, \quad q_{1}=1 \quad \text { on } \partial B_{1 / 8}\left(\frac{1}{4} e_{n}\right)
$$

and

$$
q_{2}=0 \quad \text { on } \partial D
$$

By boundary Harnack inequality, q_{1} is comparable to the distance function s in a neighborhood of $P \cap \mathcal{C} \subset \subset \widetilde{\mathcal{C}}$. Since q_{2} is Lipschitz continuous in a neighborhood of $P \cap \mathcal{C}$, we then obtain

$$
\begin{equation*}
q_{1} \geq c_{4} q_{2} \quad \text { in } \mathcal{C} \backslash B_{1 / 8}\left(\frac{1}{4} e_{n}\right) \tag{4.17}
\end{equation*}
$$

with $c_{4}>0$ universal. By the maximum principle,

$$
h \geq q:=c_{3} \epsilon q_{1}-C_{2} \delta^{2} q_{2} \quad \text { in } D
$$

since $h \geq q$ on ∂D and $\Delta h \leq \Delta q$ in D. Hence, by (4.17) we get that (for \bar{C} large enough)

$$
h \geq \epsilon \frac{c_{3}}{2} q_{1} \geq c_{5} \epsilon U_{n}, \quad \text { in } \mathcal{C} \backslash B_{1 / 8}\left(\frac{1}{4} e_{n}\right)
$$

where in the last inequality we used that (by boundary Harnack inequality) q_{1} and U_{n} are comparable. This inequality together with 4.15) gives the desired claim (4.13).

We are now ready to present the proof of Proposition 4.3.
Proof of Proposition 4.3. Assume that

$$
\begin{equation*}
g(\bar{X})-V(\bar{X}) \geq 0, \quad \bar{X}=\frac{1}{2} e_{n} \tag{4.18}
\end{equation*}
$$

Then in view of assumption (4.9) from Lemma 4.4, after the change of variables $g \rightarrow \tilde{g}$ we get that

$$
\begin{equation*}
\tilde{g}(X) \geq \tilde{V}(X)+\tau \epsilon-\epsilon \quad \text { in } \mathcal{C}^{\prime} \backslash P \tag{4.19}
\end{equation*}
$$

with

$$
\mathcal{C}^{\prime}:=\left\{\left(x^{\prime}, x_{n}, s\right): d \leq\left|\left(x_{n}, s\right)\right| \leq \frac{1}{4},\left|x^{\prime}\right| \leq \frac{1}{2}\right\}, \quad d=\frac{1}{8 \sqrt{n-1}}
$$

Denote by

$$
W(X):=V_{M+\frac{c}{n-1} \epsilon I, \xi^{\prime}, a, b+2 c \epsilon}(X) \in \mathcal{V}_{\delta+\epsilon}
$$

with c small to be made precise later. Then in view of Proposition 3.5 we have

$$
\begin{equation*}
-2 C_{1}(\delta+\epsilon)^{2} \leq(\tilde{V}-\tilde{W})+c \epsilon\left(2 r x_{n}-\frac{1}{2(n-1)}\left|x^{\prime}\right|^{2}\right) \leq 2 C_{1}(\delta+\epsilon)^{2} \tag{4.20}
\end{equation*}
$$

First we choose c small depending on τ such that

$$
\tilde{V} \geq \tilde{W}-\frac{\tau}{2} \epsilon
$$

where we used that $\bar{C} \delta^{2} \leq \epsilon \leq \bar{\epsilon}$ with $\bar{C} \geq C(\tau)$ and $\bar{\epsilon}$ small enough. Then, if \bar{C} is sufficiently large depending on c,

$$
\begin{equation*}
\tilde{V} \geq \tilde{W}+\tau^{*} \epsilon, \quad \text { on }\left\{\left|\left(x_{n}, s\right)\right| \leq d,\left|x^{\prime}\right|=\frac{1}{2}\right\} \backslash P \tag{4.21}
\end{equation*}
$$

for some $\tau^{*}>0$ small, say $\tau^{*}<\tau / 2$. These combined with (4.19) give

$$
\begin{equation*}
\tilde{g}(X) \geq \widetilde{W}(X)+\tau^{*} \epsilon-\epsilon \quad \text { in }\left(\mathcal{C}^{\prime} \cup\left\{\left|\left(x_{n}, s\right)\right| \leq d,\left|x^{\prime}\right|=\frac{1}{2}\right\}\right) \backslash P \tag{4.22}
\end{equation*}
$$

Moreover, if \bar{C} is large enough we get that W satisfies (3.5) and hence W is a subsolution. Thus from Lemma 2.7 and the inequality above we conclude that

$$
\begin{equation*}
\tilde{g}(X) \geq \widetilde{W}(X)+\tau^{*} \epsilon-\epsilon \quad \text { in }\left\{\left|\left(x_{n}, s\right)\right| \leq d,\left|x^{\prime}\right| \leq \frac{1}{2}\right\} \backslash P . \tag{4.23}
\end{equation*}
$$

Finally, from (4.20) we see that there is a small neighborhood around the origin $B_{\eta} \subset\left\{\left|\left(x_{n}, s\right)\right| \leq d,\left|x^{\prime}\right| \leq \frac{1}{2}\right\}$ (η small universal depending on the constants above, $\left.\eta<\tau^{*} / 2\right)$ such that

$$
\tilde{W} \geq \tilde{V}-\frac{\tau^{*}}{2} \epsilon, \quad \text { in } B_{2 \eta} \backslash P
$$

Hence, from (4.23) we conclude that

$$
\tilde{g} \geq \tilde{V}+\eta \epsilon-\epsilon \quad \text { in } \quad B_{2 \eta} \backslash P
$$

for some small universal constant η, and the lemma is proved after the change of variable $\tilde{g} \rightarrow g$.

We conclude this section with the proof of Theorem4.1.
Proof of Theorem 4.1. After a translation of the origin we may assume that we satisfy our flatness hypothesis (4.1) in $B_{\rho}\left(X^{*}\right) \subset B_{2}$ with

$$
\left(x^{*}\right)^{\prime}=0, \quad a_{0}+b_{0}=0, \quad V \in \mathcal{V}_{2 \delta}^{0}
$$

We dilate the picture by a factor of $2 / \rho$ and work with the rescalings

$$
g_{\rho}(X)=\left(\frac{\rho}{2}\right)^{-1 / 2} g\left(\frac{\rho}{2} X\right), \quad V_{\rho}(X)=\left(\frac{\rho}{2}\right)^{-1 / 2} V\left(\frac{\rho}{2} X\right)
$$

which are defined in a ball of radius 2 included in $B_{4 / \rho}$. Notice that, if $V \in \mathcal{V}_{2 \delta}^{0}$ then $V_{\rho} \in \mathcal{V}_{2 \delta}^{0}$.

After dropping the subindex ρ for simplicity of notation, we may assume that the flatness condition (4.1) holds in some ball $B_{2}\left(X^{*}\right) \subset \mathbb{R}^{n+1}$, with $V \in \mathcal{V}_{2 \delta}^{0}$,

$$
a_{0}=-\epsilon, \quad b_{0}=\epsilon, \quad\left(x^{*}\right)^{\prime}=0
$$

and

$$
\bar{C} \delta^{2} \leq \epsilon \leq \bar{\epsilon}
$$

We need to prove the conclusion (4.2) in a ball $B_{2 \bar{\eta}}\left(X^{*}\right)$.

We distinguish three cases depending on whether X^{*} is close to L, close to P, or far from P.

In Case 2 and Case 3 we will use the following properties from Remark 3.4.

$$
\begin{equation*}
c \leq \frac{V_{n}}{U_{n}} \leq C, \quad|\triangle V| \leq C \delta^{2} U_{n} \quad \text { in } \quad B_{2}\left(X^{*}\right) \backslash\left(P \cup\left\{\left|\left(x_{n}, s\right)\right| \leq 20 \delta\left|x^{\prime}\right|\right\}\right) \tag{4.24}
\end{equation*}
$$

Below η is the universal constant from Proposition 4.3.
Case 1. $\left|X^{*}\right|<\eta / 4$.
In this case, since $B_{1} \subset B_{2}\left(X^{*}\right)$ we follow under the assumptions of Proposition 4.3. Hence we can conclude that for any $\bar{\eta} \leq \eta / 4$ in $B_{2 \bar{\eta}}\left(X^{*}\right) \subset B_{\eta}$ either

$$
g(X) \leq V\left(X+(1-\eta) \epsilon e_{n}\right)
$$

or

$$
g(X) \geq V\left(X-(1-\eta) \epsilon e_{n}\right)
$$

and our conclusion is satisfied for all $\bar{\eta} \leq \eta / 4$.
Case 2. $\left|X^{*}\right| \geq \eta / 4$, and $B_{\frac{\eta}{32}}\left(X^{*}\right) \cap P=\emptyset$.
In this case, if $\bar{\epsilon}$ is small enough then it follows from (4.24) that the function

$$
h(X):=g(X)-V\left(X-\epsilon e_{n}\right) \geq 0
$$

satisfies

$$
|\Delta h| \leq C \delta^{2} U_{n} \quad \text { in } B:=B_{\frac{\eta}{64}}\left(X^{*}\right)
$$

Notice also that by Harnack inequality

$$
\begin{equation*}
\frac{U_{n}(X)}{U_{n}(Y)} \leq C \quad \text { for } X, Y \in B \tag{4.25}
\end{equation*}
$$

with C universal. Assume that

$$
g\left(X^{*}\right) \geq V\left(X^{*}\right)
$$

Then, in view of (4.24) and (4.25)

$$
h\left(X^{*}\right)=g\left(X^{*}\right)-V\left(X^{*}-\epsilon e_{n}\right) \geq c \epsilon U_{n}\left(X^{*}\right)
$$

Hence by Harnack inequality, (4.25) and the condition $\bar{C} \delta^{2} \leq \epsilon$

$$
h \geq c \epsilon U_{n}\left(X^{*}\right)-C \delta^{2}\left\|U_{n}\right\|_{L^{\infty}(B)} \geq c^{\prime} \epsilon U_{n}\left(X^{*}\right) \quad \text { in } B_{\frac{\eta}{128}}\left(X^{*}\right)
$$

Thus, using (4.24) we have that for τ small enough

$$
h \geq c^{\prime} \epsilon \sup _{B} V_{n} \geq V\left(X-(1-\tau) \epsilon e_{n}\right)-V\left(X-\epsilon e_{n}\right) \quad \text { in } B_{\frac{\eta}{128}}\left(X^{*}\right)
$$

from which our desired conclusion follows with any $\bar{\eta}$ such that $2 \bar{\eta} \leq \min \{\eta / 128, \tau\}$.
Case 3. $\left|X^{*}\right| \geq \eta / 4$ and $B_{\frac{\eta}{32}\left(X^{*}\right)} \cap P \neq \emptyset$.
In this case we argue similarly as in the previous case but we need to make use of the boundary Harnack inequality.

Assume that $X^{*} \in\{s>0\}$ and call $X_{0}^{*}=\left(x^{*}, 0\right)$ the projection of X^{*} onto $\{s=0\}$. If $\bar{\epsilon}$ is small enough then it follows from (4.24) that the function

$$
h(X):=g(X)-V\left(X-\epsilon e_{n}\right) \geq 0
$$

satisfies

$$
|\Delta h| \leq C \delta^{2} U_{n} \quad \text { in } B:=B_{\frac{\eta}{8}}\left(X_{0}^{*}\right) \cap\{s>0\}
$$

for a universal constant C. Denote by $Y^{*}=X_{0}^{*}+\frac{\eta}{16} e_{n}$ and assume that

$$
g\left(Y^{*}\right) \geq V\left(Y^{*}\right)
$$

As in the previous case, by Harnack inequality

$$
\begin{equation*}
h \geq c \epsilon U_{n}\left(Y^{*}\right) \quad \text { in } B_{\frac{\eta}{32}}\left(Y^{*}\right) \tag{4.26}
\end{equation*}
$$

Now we argue similarly as in Lemma 4.4
Denote by

$$
D:=\left(B_{\eta / 8}\left(X_{0}^{*}\right) \backslash B_{\eta / 32}\left(Y^{*}\right)\right) \cap\{s>0\}
$$

Let q_{1}, q_{2} satisfy in D

$$
\Delta q_{1}=0, \quad \Delta q_{2}=-1
$$

with boundary conditions respectively,

$$
q_{1}=1 \quad \text { on } \partial B_{\eta / 32}\left(Y^{*}\right), \quad q_{1}=0 \quad \text { on } \partial\left(B_{\eta / 8}\left(X_{0}^{*}\right) \cap\{s>0\}\right)
$$

and

$$
q_{2}=0 \quad \text { on } \partial D
$$

By the maximum principle, in view of (4.26) we obtain that

$$
h \geq c \epsilon U_{n}\left(Y^{*}\right) q_{1}-C \delta^{2} q_{2} \quad \text { in } D
$$

Moreover,

$$
q_{1} \geq c q_{2} \quad \text { in } D \cap B_{\eta / 16}\left(X_{0}^{*}\right)
$$

Hence using that $\bar{C} \delta^{2} \leq \epsilon$ we get

$$
h(X) \geq c^{\prime} \epsilon U_{n}\left(Y^{*}\right) q_{1}(X) \geq c \epsilon U_{n}(X) \quad \text { in } B_{\eta / 16}\left(X_{0}^{*}\right) \cap\{s>0\}
$$

where in the last inequality we used that $U_{n}\left(Y^{*}\right) q_{1}$ is comparable to U_{n} in view of boundary Harnack inequality.

Now we use (3.1) and (4.24) to conclude

$$
\begin{aligned}
h(X) & =h\left(x, x_{n+1}\right) \geq c \epsilon \sup _{B_{\frac{\eta}{8}}\left(X_{0}^{*}\right)} U_{n}\left(y, x_{n+1}\right) \geq c \epsilon \sup _{B_{\frac{\eta}{8}}\left(X_{0}^{*}\right)} V_{n}\left(y, x_{n+1}\right) \\
& \geq V\left(X-(1-\tau) \epsilon e_{n}\right)-V\left(X-\epsilon e_{n}\right) \quad \text { in } B_{\frac{\eta}{16}}\left(X_{0}^{*}\right) \supset B_{\frac{\eta}{32}}\left(X^{*}\right) .
\end{aligned}
$$

Then our desired statement holds for $\bar{\eta} \leq \min \{\tau / 2, \eta / 64\}$.

5. Improvement of flatness.

In this section we prove our main Theorem 1.1. We start with the following quadratic improvement of flatness proposition. We show that if a solution g stays in a $\lambda^{2+\alpha}$ neighborhood of a function $V \in \mathcal{V}_{1}^{0}$ in a ball B_{λ} then in $B_{\eta \lambda}, g$ is in a $(\lambda \eta)^{2+\alpha}$ neighborhood of another function V in the same class.
Proposition 5.1. Given $\alpha \in(0,1)$, there exist $\lambda_{0}, \eta_{0} \in(0,1)$ and $C>0$ large depending on α and n, such that if g solves (2.1), $0 \in F(g)$ and g satisfies

$$
\begin{equation*}
V\left(X-\lambda^{2+\alpha} e_{n}\right) \leq g(X) \leq V\left(X+\lambda^{2+\alpha} e_{n}\right), \quad \text { in } B_{\lambda} \text { with } 0<\lambda \leq \lambda_{0} \tag{5.1}
\end{equation*}
$$

for $V=V_{M, 0, a, b} \in \mathcal{V}_{1}^{0}$, then in a possibly different system of coordinates denoted by $\bar{E}=\left\{\bar{e}_{1}, \ldots, \bar{e}_{n}, \bar{e}_{n+1}\right\}$,

$$
\begin{equation*}
\bar{V}\left(X-\left(\eta_{0} \lambda\right)^{2+\alpha} \bar{e}_{n}\right) \leq g(X) \leq \bar{V}\left(X+\left(\eta_{0} \lambda\right)^{2+\alpha} \bar{e}_{n}\right), \quad \text { in } B_{\eta_{0} \lambda} \tag{5.2}
\end{equation*}
$$

for some $\bar{V}=V_{\overline{\mathcal{S}}, \bar{a}, \bar{b}}$ (defined in (3.3)) with \bar{S} given in the \bar{E} coordinates by

$$
\overline{\mathcal{S}}=\left\{\bar{x}_{n}=\frac{1}{2}\left(\bar{x}^{\prime}\right)^{T} \bar{M} \bar{x}^{\prime}\right\}
$$

and

$$
\|\bar{M}-M\|,|\bar{a}-a|,|\bar{b}-b| \leq C \lambda^{\alpha}, \quad \bar{a}+\bar{b}-\operatorname{tr} \bar{M}=0
$$

Moreover, for any $\sigma \in(0,1]$, the surfaces $\overline{\mathcal{S}}$ and \mathcal{S} separate in B_{σ} at most $C\left(\lambda^{\alpha} \sigma^{2}+\right.$ $\left.\lambda^{1+\alpha} \sigma\right)$.

Proof. Let η_{0}, C be the constants in Corollary 2.10.
The proof is by compactness. Assume that no such λ_{0} exists, then we can find a sequence of λ_{k} 's, tending to $0, g_{k}$ and V_{k} satisfying (5.1) for which (5.2) fails. We rescale g_{k} and V_{k}. For simplicity of notation we drop the dependence on k and denote

$$
g_{\lambda}(X)=\lambda^{-1 / 2} g(\lambda X), \quad V_{\lambda}(X)=\lambda^{-1 / 2} V(\lambda X), \quad X \in B_{1}
$$

Notice that

$$
V_{\lambda}=V_{\lambda M, 0, \lambda a, \lambda b} \in \mathcal{V}_{\lambda}^{0}
$$

and

$$
V_{\lambda}\left(X-\lambda^{1+\alpha} e_{n}\right) \leq g_{\lambda}(X) \leq V_{\lambda}\left(X+\lambda^{1+\alpha} e_{n}\right) \quad \text { in } B_{1} .
$$

Let

$$
\epsilon=\lambda^{1+\alpha}, \quad \delta=\lambda
$$

and define

$$
\begin{equation*}
w_{\lambda}:=\frac{\tilde{g}_{\lambda}-\gamma_{V_{\lambda}}}{\epsilon} \tag{5.3}
\end{equation*}
$$

Thus by Proposition 3.5

$$
w_{\lambda}=\frac{\tilde{g}_{\lambda}-\tilde{V}_{\lambda}}{\epsilon}+\frac{\tilde{V}_{\lambda}-\gamma_{V_{\lambda}}}{\epsilon}=\widetilde{\left(g_{\lambda}\right)_{\epsilon, \tilde{V}_{\lambda}}}+O\left(\frac{\delta^{2}}{\epsilon}\right)
$$

and hence by Corollary 4.2 we get that w_{λ} converges uniformly to a Holder continuous function w_{0} as k tends to ∞ (and $\lambda \rightarrow 0$), with $w_{0}(0)=0$ and $\left|w_{0}\right| \leq 1$.

We claim that w_{0} is a viscosity solution of the linearized problem

$$
\left\{\begin{array}{l}
\Delta\left(U_{n} w_{0}\right)=0, \quad \text { in } B_{1 / 2} \backslash P \tag{5.4}\\
\left|\nabla_{r} w_{0}\right|=0, \quad \text { on } B_{1 / 2} \cap L
\end{array}\right.
$$

We start by showing that $U_{n} w_{0}$ is harmonic in $B_{1 / 2} \backslash P$.
Let $\tilde{\varphi}$ be a smooth function which touches w_{0} strictly from below at $X_{0} \in B_{1 / 2} \backslash P$. We need to show that

$$
\begin{equation*}
\Delta\left(U_{n} \tilde{\varphi}\right)\left(X_{0}\right) \leq 0 \tag{5.5}
\end{equation*}
$$

Since w_{λ} converges uniformly to w_{0} in $B_{1 / 2} \backslash P$ we conclude that there exist a sequence of constants $c_{\lambda} \rightarrow 0$ and a sequence of points $X_{\lambda} \in B_{1 / 2} \backslash P, X_{\lambda} \rightarrow X_{0}$ such that $\tilde{\psi}_{\lambda}:=\epsilon\left(\tilde{\varphi}+c_{\lambda}\right)+\gamma_{\tilde{V}_{\lambda}}$ touches \tilde{g}_{λ} by below at X_{λ} for a sequence of λ 's tending to 0 .

Define the function ψ_{λ} by the following identity

$$
\begin{equation*}
\psi_{\lambda}\left(X-\tilde{\psi}_{\lambda}(X) e_{n}\right)=U(X) \tag{5.6}
\end{equation*}
$$

Then according to (2.8) ψ_{λ} touches g_{λ} from below at $Y_{\lambda}=X_{\lambda}-\tilde{\psi}_{\lambda}\left(X_{\lambda}\right) e_{n} \in$ $B_{1}^{+}\left(g_{\lambda}\right)$. Thus, since g_{λ} satisfies (2.1) in B_{1} it follows that

$$
\begin{equation*}
\Delta \psi_{\lambda}\left(Y_{\lambda}\right) \leq 0 \tag{5.7}
\end{equation*}
$$

In a neighborhood of $X_{0}, \gamma_{V_{\lambda}} / \lambda$ has bounded C^{k} norms (depending on $\left|X_{0}\right|$) hence $\tilde{\psi}_{\lambda} / \lambda$ has also bounded C^{k} norms. By Proposition 2.8

$$
\begin{aligned}
\Delta \psi_{\lambda} & =\lambda \Delta\left(U_{n}\left(\tilde{\psi}_{\lambda} / \lambda\right)\right)+O\left(\lambda^{2}\right) \\
& =\Delta\left(U_{n} \tilde{\psi}_{\lambda}\right)+O\left(\lambda^{2}\right) \\
& =\Delta\left(U_{n}\left(\epsilon \tilde{\varphi}+\gamma_{\tilde{V}_{\lambda}}\right)\right)\left(X_{\lambda}\right)+O\left(\lambda^{2}\right) \\
& =\epsilon \Delta\left(U_{n} \tilde{\varphi}\right)+O\left(\lambda^{2}\right)
\end{aligned}
$$

where we have used that

$$
\Delta\left(U_{n} \gamma_{V_{\lambda}}\right)=0
$$

This can be checked either explicitly or by using Theorem 6.1
In conclusion

$$
\epsilon \Delta\left(U_{n} \tilde{\varphi}\right)\left(Y_{\lambda}\right)+O\left(\lambda^{2}\right) \leq 0
$$

We divide by $\epsilon=\lambda^{1+\alpha}$ and let $\lambda \rightarrow 0$. Using that $Y_{\lambda} \rightarrow X_{0}$ we obtain

$$
\Delta\left(U_{n} \tilde{\varphi}\right)\left(X_{0}\right) \leq 0
$$

as desired.
Next we need to show that

$$
\left|\nabla_{r} w_{0}\right|\left(X_{0}\right)=0, \quad X_{0}=\left(x_{0}^{\prime}, 0,0\right) \in B_{1 / 2} \cap L
$$

in the viscosity sense of Definition 2.9.
We argue by contradiction. Assume for simplicity (after a translation) that there exists a function ϕ which touches w_{0} by below at 0 with $\phi(0)=0$ and such that

$$
\phi(X)=\xi^{\prime} \cdot x^{\prime}+\beta r+O\left(\left|x^{\prime}\right|^{2}+r^{3 / 2}\right)
$$

with

$$
\beta>0
$$

Then we can find constants σ, \tilde{r} small and A large such that the polynomial

$$
q(X)=\xi^{\prime} \cdot x^{\prime}-\frac{A}{2}\left|x^{\prime}\right|^{2}+2 A(n-1) x_{n} r
$$

touches ϕ by below at 0 in a tubular neighborhood $N_{\bar{r}}=\left\{\left|x^{\prime}\right| \leq \tilde{r}, r \leq \tilde{r}\right\}$ of 0 , with

$$
\phi-q \geq \sigma>0, \quad \text { on } N_{\tilde{r}} \backslash N_{\tilde{r} / 2}
$$

This implies that

$$
\begin{equation*}
w_{0}-q \geq \sigma>0, \quad \text { on } N_{\tilde{r}} \backslash N_{\tilde{r} / 2} \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{0}(0)-q(0)=0 \tag{5.9}
\end{equation*}
$$

In particular, by continuity near the origin we can find a point X^{*} such that

$$
\begin{equation*}
w_{0}\left(X^{*}\right)-q\left(X^{*}\right) \leq \frac{\sigma}{8}, \quad X^{*} \in N_{\tilde{r}} \backslash P \text { close to } 0 \tag{5.10}
\end{equation*}
$$

Now, let us define

$$
W_{\lambda}:=V_{\lambda M+A \epsilon I,-\epsilon \xi^{\prime}, \lambda a, \lambda b+2 \epsilon A(n-1)} \in \mathcal{V}_{2 \delta}
$$

Then in view of Proposition 3.5 we have

$$
\widetilde{W}_{\lambda}=\epsilon q+\widetilde{\gamma}_{V_{\lambda}}+O\left(\delta^{2}\right)
$$

and moreover, W_{λ} is a subsolution to our problem since $\epsilon \gg \delta^{2}$.
Thus, from the uniform convergence of w_{λ} to w_{0} and (5.8) we get that (for all λ small)

$$
\begin{equation*}
\frac{\tilde{g}_{\lambda}-\widetilde{W}_{\lambda}}{\epsilon}=w_{\lambda}-q+O\left(\frac{\delta^{2}}{\epsilon}\right) \geq \frac{\sigma}{2} \quad \text { in }\left(N_{\tilde{r}} \backslash N_{\tilde{r} / 2}\right) \backslash P . \tag{5.11}
\end{equation*}
$$

Similarly, from the uniform convergence of w_{λ} to w_{0} and (5.10) we get that for k large

$$
\begin{equation*}
\frac{\left(\tilde{g}_{\lambda}-\widetilde{W}_{\lambda}\right)\left(X^{*}\right)}{\epsilon} \leq \frac{\sigma}{4}, \quad \text { at } X^{*} \in N_{\tilde{r}} \backslash P \tag{5.12}
\end{equation*}
$$

On the other hand, it follows from Lemma 2.7 and (5.11) that

$$
\frac{\tilde{g}_{\lambda}-\widetilde{W}_{\lambda}}{\epsilon} \geq \frac{\sigma}{2} \quad \text { in } N_{\tilde{r}} \backslash P
$$

which contradicts (5.12).
In conclusion w_{0} solves the linearized problem. Hence, by Corollary [2.10 since $w_{0}(0)=0, w_{0}$ satisfies
(5.13) $-\frac{1}{4} \eta_{0}^{2+\alpha} \leq w_{0}(X)-\left(\xi_{0} \cdot x^{\prime}+\frac{1}{2} x^{\prime T} M_{0} x^{\prime}-\frac{a_{0}}{2} r^{2}-b_{0} x_{n} r\right) \leq \frac{1}{4} \eta_{0}^{2+\alpha} \quad$ in $B_{4 \eta_{0}}$, for some $\eta_{0} \in(0,1)$ universal and with

$$
a_{0}+b_{0}-\operatorname{tr} M_{0}=0, \quad\left|\xi_{0}\right|,\left\|M_{0}\right\|,\left|a_{0}\right|,\left|b_{0}\right| \leq C
$$

From the uniform convergence of w_{λ} to w_{0}, we get that for all k large enough

$$
\begin{equation*}
-\frac{1}{2} \eta_{0}^{2+\alpha} \leq w_{\lambda}(X)-\frac{\tilde{T}_{\lambda}-\gamma_{\tilde{V}_{\lambda}}}{\epsilon} \leq \frac{1}{2} \eta_{0}^{2+\alpha} \quad \text { in } B_{4 \eta_{0}} \backslash P \tag{5.14}
\end{equation*}
$$

with

$$
T_{\lambda}:=V_{\lambda M-\epsilon M_{0},-\epsilon \xi_{0}, \lambda a-\epsilon a_{0}, \lambda b-\epsilon b_{0}}
$$

In conclusion, from the definition (5.3) of w_{λ}, we get

$$
\begin{equation*}
\tilde{T}_{\lambda}-\frac{\epsilon}{2} \eta_{0}^{2+\alpha} \leq \tilde{g}_{\lambda} \leq \tilde{T}_{\lambda}+\frac{\epsilon}{2} \eta_{0}^{2+\alpha} \tag{5.15}
\end{equation*}
$$

or

$$
T_{\lambda}\left(X-\frac{\epsilon}{2} \eta_{0}^{2+\alpha} e_{n}\right) \leq g_{\lambda}(X) \leq T_{\lambda}\left(X+\frac{\epsilon}{2} \eta_{0}^{2+\alpha} e_{n}\right) \quad \text { in } B_{2 \eta_{0}}
$$

We rescale g_{λ} back from the ball B_{1} to B_{λ} and obtain

$$
\begin{equation*}
T\left(X-\frac{\epsilon \lambda}{2} \eta_{0}^{2+\alpha} e_{n}\right) \leq g(X) \leq T\left(X+\frac{\epsilon \lambda}{2} \eta_{0}^{2+\alpha} e_{n}\right) \quad \text { in } B_{2 \lambda \eta_{0}} \tag{5.16}
\end{equation*}
$$

with

$$
T=V_{\mathcal{S}_{T}, a_{T}, b_{T}}
$$

for

$$
\begin{gathered}
\mathcal{S}_{T}:=\left\{x_{n}=\frac{1}{2}\left(x^{\prime}\right)^{T} M_{T} x^{\prime}+\xi_{T} \cdot x^{\prime}\right\} \\
M_{T}:=M-\frac{\epsilon}{\lambda} M_{0}, \quad \xi_{T}:=-\epsilon \xi_{0}, \quad a_{T}:=a-\frac{\epsilon}{\lambda} a_{0}, \quad b_{T}:=b-\frac{\epsilon}{\lambda} b_{0}
\end{gathered}
$$

Next we show that in a different system of coordinates, called \bar{E}, the function T can be approximated by $V_{M_{T}, 0, a_{T}, b_{T}}$.

Assume for simplicity that ξ_{T} points in the e_{1} direction. Then we choose an orthogonal system of coordinates $\bar{E}:=\left\{\bar{e}_{1}, \bar{e}_{2}, \ldots, \bar{e}_{n+1}\right\}$ with

$$
\bar{e}_{i}=e_{i}, \quad \text { if } i \neq 1, n
$$

and \bar{e}_{n} normal to S_{T} at 0 .
Notice that the \bar{E} system of coordinates is obtained from the standard one after an orthogonal transformation of norm bounded by $C\left|\xi_{T}\right|$ which is smaller than $C \epsilon$.

A point in this system on coordinates is denoted by \bar{X}. We let,

$$
\overline{\mathcal{S}}:=\left\{\bar{x}_{n}=\frac{1}{2}\left(\bar{x}^{\prime}\right)^{T} M_{T} \bar{x}^{\prime}\right\}
$$

and we write $\overline{\mathcal{S}}$ as a graph in the e_{n} direction, that is

$$
\overline{\mathcal{S}}:=\left\{x_{n}=h\left(x^{\prime}\right)\right\} .
$$

We claim that in a ball of radius σ the distance (in the e_{n} direction) between \mathcal{S}_{T} and $\overline{\mathcal{S}}$ in B_{σ} is less that $C \epsilon \sigma^{2}$, for any $0<\sigma \leq 1$.

Indeed, since $\bar{x}=O x$ with O orthogonal and $\|O-I\| \leq C \epsilon$, we obtain by implicit differentiation

$$
\left\|D_{x^{\prime}}^{2} h-M_{T}\right\|_{L^{\infty}\left(B_{1}\right)} \leq C \epsilon, \quad \nabla_{x^{\prime}} h(0)=\xi_{T}
$$

Thus in $B_{2 \eta_{0} \lambda}$ we have that the surfaces

$$
S_{T} \pm \frac{\epsilon}{2} \lambda \eta_{0}^{2+\alpha} e_{n}
$$

lie between

$$
\bar{S} \pm \epsilon \lambda \eta_{0}^{2+\alpha} \bar{e}_{n}
$$

since $C \epsilon\left(\eta_{0} \lambda\right)^{2} \ll \frac{\epsilon}{2} \lambda \eta_{0}^{2+\alpha}$.
In view of this inclusion, using that $v_{a_{T}, b_{T}}(t, s)$ is monotone in t, we obtain from (5.16) the desired conclusion (5.2) with $\bar{M}=M_{T}, \bar{a}=a_{T}, \bar{b}=b_{T}$.

Since the distance between \mathcal{S}_{T} and S in B_{σ} is less than $C\left(\frac{\epsilon}{\lambda} \sigma^{2}+\epsilon \sigma\right)$ the proof is finished.

We can now prove our main Theorem [1.1] In fact we show that under our flatness assumption, a solution g can be approximated in a $C^{2, \alpha}$ fashion by a function $V \in \mathcal{V}_{C}^{0}$.

Theorem 5.2. There exists $\bar{\epsilon}>0$ small universal such that if g solves (2.1) in B_{1} with

$$
\begin{equation*}
\left\{x \in \mathcal{B}_{1}: x_{n} \leq-\bar{\epsilon}\right\} \subset\left\{x \in \mathcal{B}_{1}: g(x, 0)=0\right\} \subset\left\{x \in \mathcal{B}_{1}: x_{n} \leq \bar{\epsilon}\right\} \tag{5.17}
\end{equation*}
$$

then in an appropriate system of coordinates denoted by \bar{e}_{i}

$$
V\left(\bar{X}-C \lambda^{2+\alpha} \bar{e}_{n}\right) \leq g(\bar{X}) \leq V\left(\bar{X}+C \lambda^{2+\alpha} \bar{e}_{n}\right) \quad \text { in } B_{\lambda}, \quad \text { for all } 0<\lambda<1 / C
$$

for some $V=V_{M_{0}, 0, a_{0}, b_{0}} \in \mathcal{V}_{C}^{0}$, with C depending on n and α. In particular, $F(g) \cap \mathcal{B}_{1 / 2}$ is a $C^{2, \alpha}$ graph in the e_{n} direction for any $\alpha \in(0,1)$.

Proof. It suffices to prove the theorem for any fixed $\alpha \in(0,1)$ for some $\bar{\epsilon}(\alpha), C(\alpha)$ depending on α. The dependence of $\bar{\epsilon}$ on α can be easily removed by fixing $\bar{\epsilon}:=\bar{\epsilon}(\bar{\alpha})$, say with $\bar{\alpha}=1 / 2$. Then by the conclusion (5.2) for $\bar{\alpha}$, appropriate rescalings of g satisfy the flatness assumption (5.17) also for $\bar{\epsilon}(\alpha)$ for any $\alpha \in(0,1)$.

By Lemma 7.9 the rescaling

$$
g_{\mu}(X)=\mu^{-\frac{1}{2}} g(\mu X)
$$

satisfies

$$
U\left(X-\tau^{2+\alpha} e_{n}\right) \leq g_{\mu}(X) \leq U\left(X+\tau^{2+\alpha} e_{n}\right) \quad \text { in } B_{1}
$$

provided that $\bar{\epsilon}, \mu$ are chosen small depending on $\tau \leq \lambda_{0}$, with λ_{0} the universal constant in Proposition 5.1 and τ small universal to be made precise later. Thus g_{μ} satisfies in B_{τ} the hypotheses of Proposition 5.1 with $M=0, a=0, b=0$. Then we can apply Proposition 5.1 repeatedly for all $\tau_{k}:=\tau \eta_{0}^{k}$ since by choosing τ small enough we can guarantee that $\sum_{k} C \tau_{k}^{\alpha} \leq 1$ and hence the corresponding M_{k}, a_{k}, b_{k} have always norm less than 1 . Thus we obtain

$$
\begin{equation*}
V_{\mathcal{S}_{k}, a_{k}, b_{k}}\left(X-\tau_{k}^{2+\alpha} e_{n}^{k}\right) \leq g_{\mu}(X) \leq V_{\mathcal{S}_{k}, a_{k}, b_{k}}\left(X+\tau_{k}^{2+\alpha} e_{n}^{k}\right) \quad \text { in } B_{\tau_{k}} \tag{5.18}
\end{equation*}
$$

Using that \mathcal{S}_{k} and \mathcal{S}_{k+1} separate (in the e_{n}-direction) in B_{σ} at most $C\left(\tau_{k}^{\alpha} \sigma^{2}+\right.$ $\tau_{k}^{1+\alpha} \sigma$) we conclude that as $k \rightarrow \infty$, the paraboloids \mathcal{S}_{k} converge uniformly in B_{1} to a limit parabolid \mathcal{S}_{*}. Moreover, \mathcal{S}_{*} also separates from S_{k} in B_{σ} by at most $C\left(\tau_{k}^{\alpha} \sigma^{2}+\tau_{k}^{1+\alpha} \sigma\right)$ in the e_{n}^{*} direction where e_{n}^{*} is the normal to S_{*} at the origin. Finally, as $k \rightarrow \infty, a_{k} \rightarrow a_{*}, b_{k} \rightarrow b_{*}$, with

$$
\left|a_{k}-a_{*}\right|,\left|b_{k}-b_{*}\right| \leq C \tau_{k}^{\alpha}
$$

Now notice that in $B_{2 \tau_{k}}$, the paraboloids S_{k} and S_{*} separate at most $C \tau_{k}^{2+\alpha}$, thus we can apply Lemma 3.7 and use the inequality (5.18) to obtain

$$
V_{\mathcal{S}_{*}, a_{*}, b_{*}}\left(X-C \tau_{k}^{2+\alpha} e_{n}^{*}\right) \leq g_{\mu}(X) \leq V_{\mathcal{S}_{*}, a_{*}, b_{*}}\left(X+C \tau_{k}^{2+\alpha} e_{n}^{*}\right), \quad \text { in } B_{\tau_{k}}
$$

Rescaling back we obtain the desired claim.

6. The regularity of the linearized problem

We recall that the linearized problem associated to (2.1) is

$$
\left\{\begin{array}{l}
\Delta\left(U_{n} h\right)=0, \quad \text { in } B_{1} \backslash P \tag{6.1}\\
\left|\nabla_{r} h\right|=0, \quad \text { on } B_{1} \cap L
\end{array}\right.
$$

where

$$
\left|\nabla_{r} h\right|\left(X_{0}\right):=\lim _{\left(x_{n}, s\right) \rightarrow(0,0)} \frac{h\left(x_{0}^{\prime}, x_{n}, s\right)-h\left(x_{0}^{\prime}, 0,0\right)}{r}, \quad r^{2}=x_{n}^{2}+s^{2}
$$

In this section we obtain a second order expansion near the origin for a solution h to (6.1).

Theorem 6.1. Let h be a solution to (6.1) such that $|h| \leq 1$. Then h satisfies

$$
\begin{equation*}
\left|h(X)-\left(h(0)+\xi_{0} \cdot x^{\prime}+\frac{1}{2}\left(x^{\prime}\right)^{T} M_{0} x^{\prime}-\frac{a_{0}}{2} r^{2}-b_{0} r x_{n}\right)\right| \leq C|X|^{3} \tag{6.2}
\end{equation*}
$$

for some $a_{0}, b_{0}, \xi_{0}, M_{0}$ with $\left|\xi_{0}\right|,\left|a_{0}\right|,\left|b_{0}\right|,\left\|M_{0}\right\| \leq C, C$ universal and

$$
a_{0}+b_{0}-\operatorname{tr} M_{0}=0
$$

Proof. This proof is a refinement of Theorem 8.1 in [DR] where the authors obtained a first order expansion for h, in particular

$$
\begin{equation*}
\left|h(X)-h\left(X_{0}\right)\right|=O\left(\left|X-X_{0}\right|\right), \quad X_{0} \in L \tag{6.3}
\end{equation*}
$$

Also in $[\mathrm{DR}]$ it is shown that h and its derivatives of all orders in the x^{\prime} direction are Holder continuous with norm controlled by a universal constant in $B_{1 / 2}$ (see Corollary 8.7.)

We wish to prove that

$$
\begin{equation*}
\left|h\left(x^{\prime}, x_{n}, x\right)-h\left(x^{\prime}, 0,0\right)+\frac{a\left(x^{\prime}\right)}{2} r^{2}+b\left(x^{\prime}\right) x_{n} r\right| \leq C r^{3}, \quad\left(x^{\prime}, 0,0\right) \in B_{1 / 2} \cap L \tag{6.4}
\end{equation*}
$$

with C universal and $h(\cdot, 0,0), a, b$ smooth functions of x^{\prime}.
The function h solves

$$
\Delta\left(U_{n} h\right)=0 \quad \text { in } B_{1} \backslash P
$$

and since U_{n} is independent on x^{\prime} we can rewrite this equation as

$$
\begin{equation*}
\Delta_{x_{n}, s}\left(U_{n} h\right)=-U_{n} \Delta_{x^{\prime}} h \tag{6.5}
\end{equation*}
$$

Moreover, since $\Delta_{x^{\prime}} h$ solves the same linear problem as h then any estimate for h also holds for $\Delta_{x^{\prime}} h$.

For each fixed x^{\prime}, we investigate the 2-dimensional problem

$$
\Delta\left(U_{t} h\right)=U_{t} f, \quad \text { in } B_{1 / 2} \backslash\{t \leq 0, s=0\} \subset \mathbb{R}^{2}
$$

with $h, f \in C^{0, \beta}$. Without loss of generality, for a fixed x^{\prime} we may assume $h\left(x^{\prime}, 0,0\right)=0$. Thus in view of (6.3), the function

$$
H:=U_{t} h
$$

is continuous in $B_{1 / 2} \subset \mathbb{R}^{2}$ and satisfies

$$
\Delta H=U_{t} f \quad \text { in } B_{1 / 2} \backslash\{t \leq 0, s=0\}, \quad H=0 \quad \text { on } B_{1 / 2} \cap\{t \leq 0, s=0\}
$$

Now, we consider the holomorphic transformation $z \rightarrow \frac{1}{2} z^{2}$

$$
\Phi:(\zeta, y) \rightarrow(t, s)=\left(\frac{1}{2}\left(\zeta^{2}-y^{2}\right), \zeta y\right)
$$

which maps $B_{1} \cap\{\zeta>0\}$ into $B_{1 / 2} \backslash\{t \leq 0, s=0\}$ and call

$$
\tilde{h}(\zeta, y)=h(t, s), \quad \tilde{f}(\zeta, y)=f(t, s), \quad \tilde{H}(\zeta, y)=H(t, s)
$$

with $(\tilde{r}, \tilde{\theta})$, the polar coordinates in the (ζ, y) plane. Then, easy computations show that

$$
\begin{equation*}
\Delta \tilde{H}=\zeta \tilde{f} \quad \text { in } B_{1} \cap\{\zeta>0\}, \quad \tilde{H}(\zeta, y)=\frac{\zeta}{\tilde{r}^{2}} \tilde{h} \tag{6.6}
\end{equation*}
$$

and

$$
\tilde{H}=0 \quad \text { on }\{\zeta=0\}
$$

Since the right-hand side is in $C^{0, \beta}$ and \tilde{h}, \tilde{f} have the same regularity, we conclude from repeatedly applying Lemma 6.2 below that $\tilde{h}, \tilde{f} \in C^{\infty}$ with

$$
\|\tilde{f}\|_{C^{k, \beta}\left(B_{1 / 2}^{+}\right)},\|\tilde{h}\|_{C^{k, \beta}\left(B_{1 / 2}^{+}\right)} \leq C(k, \beta)
$$

Notice that we can reflect \tilde{H} oddly and \tilde{h}, \tilde{f} evenly across $\{\zeta=0\}$ and the resulting functions will still solve (6.6) in B_{1}. Moreover from our assumptions, \tilde{f} and \tilde{h} are even with respect to y. Thus, we conclude that the Taylor polynomials for \tilde{f}, \tilde{h}
around the origin, are polynomials in ζ^{2}, y^{2}. Now we use the Taylor expansion for \tilde{H} around 0 , which is odd with respect to ζ and even in y, that is

$$
\tilde{H}(\zeta, y)=\zeta\left(d_{0}+d_{1} \zeta^{2}+d_{2} y^{2}+O\left(\tilde{r}^{4}\right)\right)
$$

with

$$
6 d_{1}+2 d_{2}=\tilde{f}(0)=f(0)
$$

Thus,

$$
\tilde{h}(\zeta, y)=\tilde{\zeta}^{2}\left(d_{0}+d_{1} \zeta^{2}+d_{2} y^{2}+O\left(\tilde{r}^{4}\right)\right)
$$

In terms of the (t, s) coordinates this means that

$$
\begin{gathered}
h(t, s)=2 r\left(d_{0}+2 d_{1} r\left(\cos \frac{\theta}{2}\right)^{2}+2 d_{2} r\left(\sin \frac{\theta}{2}\right)^{2}\right)+O\left(r^{3}\right)= \\
=2 r\left(d_{0}+\left(d_{1}+d_{2}\right) r+\left(d_{1}-d_{2}\right) t\right)+O\left(r^{3}\right) \\
=2 d_{0} r-\frac{a}{2} r^{2}-b t r+O\left(r^{3}\right)
\end{gathered}
$$

In conclusion,

$$
\left|h(X)-h\left(x^{\prime}, 0,0\right)-2 d_{0}\left(x^{\prime}\right) r+\frac{a\left(x^{\prime}\right)}{2} r^{2}+b\left(x^{\prime}\right) x_{n} r\right| \leq C r^{3} \quad \text { in } B_{1 / 2}
$$

with C universal,

$$
\|a\|_{L^{\infty}\left(\left\{\left|x^{\prime}\right| \leq 1 / 2\right\}\right)},\|b\|_{L^{\infty}\left(\left\{\left|x^{\prime}\right| \leq 1 / 2\right\}\right)} \leq C,
$$

and

$$
a+b=\Delta_{x^{\prime}} h\left(x^{\prime}, 0,0\right)
$$

Since h solves (6.1) we must also have $d_{0}\left(x^{\prime}\right)=0$ and hence

$$
\left|h(X)-h\left(x^{\prime}, 0,0\right)+\frac{a\left(x^{\prime}\right)}{2} r^{2}+b\left(x^{\prime}\right) x_{n} r\right| \leq C r^{3}, \quad \text { in } B_{1 / 2}
$$

Notice that a, b are smooth functions of x^{\prime} with all order derivatives bounded by appropriate universal constants. Indeed due to the linearity of the problem it is easy to see that $D_{x^{\prime}}^{\beta} a, D_{x^{\prime}}^{\beta} b$ are the corresponding a and b for $D_{x^{\prime}}^{\beta} h$. Writing the Taylor expansions at 0 for $h\left(x^{\prime}, 0,0\right)$ up to order 2 and a, b up to order 1 with $a_{0}=a(0), b_{0}=b(0)$ we get

$$
\left|h(X)-\left(h(0)+\xi_{0} \cdot x^{\prime}+\frac{1}{2}\left(x^{\prime}\right)^{T} M_{0} x^{\prime}-\frac{a_{0}}{2} r^{2}-b_{0} x_{n} r\right)\right| \leq C|X|^{3}
$$

In our proof above we used the following easy lemma.
Lemma 6.2. Let $\tilde{H}=\tilde{H}(\zeta, y)$ be a function defined on $\overline{B_{1}^{+}} \subset \mathbb{R}^{2}$, which vanishes continuously on $\{\zeta=0\}$. If $\tilde{H} \in C^{k, \alpha}\left(\overline{B_{1}^{+}}\right), k \in \mathbb{N}, \alpha \in(0,1]$, then $\zeta^{-1} \tilde{H} \in$ $C^{k-1, \alpha}\left(\overline{B_{1}^{+}}\right)$, and

$$
\left\|\zeta^{-1} \tilde{H}\right\|_{C^{k-1, \alpha}} \leq\|\tilde{H}\|_{C^{k, \alpha}}
$$

Proof. Since $\tilde{H}(0, y)=0$ we see that

$$
\zeta^{-1} \tilde{H}(\zeta, y)=\int_{0}^{1} \tilde{H}_{\zeta}(t \zeta, y) d t
$$

and the lemma follows easily by taking derivatives in the equality above.

7. Basic properties of a solution g.

We collect here some useful general facts about solutions g to our free boundary problem (2.1), such as $C^{1 / 2}$-optimal regularity, asymptotic expansion near regular points of the free boundary and compactness.

First we recall some notation. Let $v \in C\left(B_{1}\right)$ be a non-negative function. We denote by

$$
B_{1}^{+}(v):=B_{1} \backslash\{(x, 0): v(x, 0)=0\} \subset \mathbb{R}^{n+1}
$$

and by

$$
F(v):=\partial_{\mathbb{R}^{n}}\left(B_{1}^{+}(v) \cap \mathcal{B}_{1}\right) \cap \mathcal{B}_{1} \subset \mathbb{R}^{n}
$$

Also, we denote by P the half-hyperplane

$$
P:=\left\{X \in \mathbb{R}^{n+1}: x_{n} \leq 0, s=0\right\}
$$

Given a C^{2} surface \mathcal{S} in \mathbb{R}^{n-1}, we often work with functions of the form $V=$ $V_{\mathcal{S}, a, b}$ (see Definition 3.3). We remark that we can still apply the boundary Harnack inequality with V in a neighborhood of \mathcal{S} since in this set V is comparable with a harmonic function H with $F(H)=\mathcal{S}$.

Indeed, after a dilation we may assume that $V=V_{\mathcal{S}, a, b} \in \mathcal{V}_{\delta}$, that is the curvatures of \mathcal{S} in B_{2} and $|a|,|b|$ are bounded by δ small, universal. Let

$$
V_{1}:=V_{\mathcal{S}, a-2 n \delta, b}, \quad V_{2}:=V_{\mathcal{S}, a+2 n \delta, b}
$$

and notice that V_{1} is a supersolution and V_{2} is a subsolution in B_{1} (see Proposition (3.2). Also

$$
1 / 2 V_{2} \leq V \leq 2 V_{1} \leq 2 V_{2}
$$

hence there exists H between $1 / 2 V_{2}$ and $2 V_{1}$, with $1 / 4 V \leq H \leq 4 V, H$ harmonic in $\{H>0\}$ and $F(H)=\mathcal{S}$.

We obtain the following version of the boundary Harnack inequality.
Lemma 7.1. Let $V:=V_{\mathcal{S}, a, b} \in \mathcal{V}_{\delta_{0}}$, for some small δ_{0} universal and with $0 \in$ \mathcal{S}. Let $w \in C\left(\bar{B}_{1}\right)$ be a non-negative function which is harmonic in $B_{1}^{+}(w)$. If $B_{1}^{+}(V) \subset B_{1}^{+}(w)$ then

$$
w \geq c w\left(\frac{1}{2} e_{n}\right) V, \quad \text { in } B_{1 / 2}
$$

If $B_{1}^{+}(V) \subset B_{1}^{+}(w)$ then

$$
w \leq C\|w\|_{L^{\infty}\left(B_{1}\right)} V, \quad \text { in } B_{1 / 2}
$$

Proof. Let \bar{w} be the harmonic function in $B_{3 / 4}^{+}(V)$ with boundary value w on $\partial B_{3 / 4}$ and $\bar{w}=0$ where $\{V=0\}$.

If $B_{1}^{+}(V) \subset B_{1}^{+}(w)$ then in view of the observation above we can apply the boundary Harnack inequality with V and conclude that

$$
w \geq \bar{w} \geq c \bar{w}\left(\frac{1}{2} e_{n}\right) V, \quad \text { in } B_{1 / 2}
$$

On the other hand,

$$
\bar{w}\left(\frac{1}{2} e_{n}\right) \geq c \inf _{B_{1 / 4}\left(\frac{3}{4} e_{n}\right) \cap \partial B_{3 / 4}} \bar{w} .
$$

Using that w and \bar{w} coincide on $\partial B_{3 / 4}$ together with Harnack inequality we obtain our desired estimate.

If $B_{1}^{+}(V) \subset B_{1}^{+}(w)$ then

$$
w \leq \bar{w} \leq C \bar{w}\left(\frac{1}{2} e_{n}\right) V, \quad \text { in } B_{1 / 2}
$$

On the other hand,

$$
\bar{w}\left(\frac{1}{2} e_{n}\right) \leq\|\bar{w}\|_{L^{\infty}\left(B_{3 / 4}\right)}=\|w\|_{L^{\infty}\left(B_{3 / 4}\right)}
$$

which yields our conclusion.

An immediate consequence is the following useful lemma.
Lemma 7.2. Let $V=V_{\mathcal{S} a, b} \in \mathcal{V}_{\delta_{0}}$ be a subsolution in B_{1}, for some small universal δ_{0} and with $0 \in S$. If w is harmonic in $B_{1}^{+}(w)$ and $B_{1}^{+}(V) \subset B_{1}^{+}(w)$ and

$$
w \geq V-\epsilon \quad \text { in } B_{1}
$$

then

$$
w \geq(1-C \epsilon) V \quad \text { in } B_{1 / 2}
$$

Proof. Let $q: B_{3 / 4} \rightarrow \mathbb{R}$ be the harmonic function in $B_{3 / 4} \cap B_{1}^{+}(V)$ which has boundary values $q=1$ on $\partial B_{3 / 4}$ and $q=0$ on the set where $V=0$. From our hypotheses on w and the maximum principle we obtain

$$
w \geq V-\epsilon q \quad \text { in } \quad B_{3 / 4}
$$

On the other hand by Lemma 7.1, since $B_{3 / 4}^{+}(V)=B_{3 / 4}^{+}(q)$ we have $q \leq C V$ in $B_{1 / 2}$, which together with the inequality above implies the desired result.

Remark 7.3. From the proof of Lemma 7.2 we see that if the hypotheses on w hold only outside of the ball $B_{1 / 8}$, i.e

$$
w \geq V-\epsilon \quad \text { on } \quad B_{1} \backslash B_{1 / 8}, \quad w \text { harmonic in } \quad B_{1}^{+}(V) \backslash B_{1 / 8}
$$

then the conclusion holds in the shell $B_{3 / 4} \backslash B_{1 / 4}$.
Next we prove optimal $C^{1 / 2}$ regularity for viscosity solutions.
Lemma $7.4\left(C^{1 / 2}\right.$-Optimal regularity). Assume g solves (2.1) in B_{1} and $0 \in F(g)$. Then

$$
g(x, 0) \leq C|d(x)|^{1 / 2} \quad \text { in } \mathcal{B}_{1 / 2}
$$

where $d(x)$ represents the distance from x to $F(g)$. Also

$$
\|g\|_{C^{1 / 2}\left(B_{1 / 2}\right)} \leq C\left(1+g\left(\frac{1}{2} e_{n+1}\right)\right)
$$

Proof. The first assertion follows in a standard way from the free boundary condition. By scaling, we need to show that if g is defined in $B_{2}, 0 \in F(g)$ and $\mathcal{B}_{1}\left(e_{n}\right) \subset B_{2}^{+}(g)$ then $u\left(e_{n}\right) \leq C$ for some large C universal.

By a rescaled version of Lemma 7.1 and Harnack inequality we have that in a neighborhood of 0 ,

$$
g \geq c g\left(e_{n}\right) V_{\mathcal{S}, 2 n, 0}, \quad \mathcal{S}=\partial \mathcal{B}_{1}\left(e_{n}\right)
$$

with $V_{S, 2 n, 0}$ a subsolution near 0 . The free boundary condition gives $1 \geq c g\left(e_{n}\right)$ which provides a bound for $g\left(e_{n}\right)$.

For the second inequality we write

$$
g=g_{0}+g_{1} \quad \text { in } D:=B_{3 / 4} \cap\{s>0\}
$$

with g_{0}, g_{1} harmonic in D and satisfying the following boundary conditions

$$
\begin{aligned}
& g_{0}=g \quad \text { on }\{s=0\} \cap \partial D, \quad g_{0}=0 \quad \text { on }\{s>0\} \cap \partial D, \\
& g_{1}=0 \quad \text { on }\{s=0\} \cap \partial D, \quad g_{1}=g \quad \text { on }\{s>0\} \cap \partial D .
\end{aligned}
$$

From our estimate for g on $\{s=0\}$, we obtain

$$
\left\|g_{0}\right\|_{C^{1 / 2}\left(B_{1 / 2} \cap D\right)} \leq C\|g\|_{C^{1 / 2}\left(\mathcal{B}_{3 / 4}\right)} \leq C
$$

which together with the bound

$$
\left\|g_{1}\right\|_{C^{1 / 2}\left(B_{1 / 2} \cap D\right)} \leq C g_{1}\left(\frac{1}{2} e_{n+1}\right) \leq C g\left(\frac{1}{2} e_{n+1}\right)
$$

gives the desired conclusion.

Next we prove that if $F(g)$ admits a tangent ball at 0 either from the positive or from the zero phase, then g has an asymptotic expansion of order $o\left(|X|^{1 / 2}\right)$. This expansion also justifies our definition of viscosity solution to the free boundary problem (2.1). We remark however that this expansion holds also for an arbitrary harmonic function w which does not necessarily satisfy the free boundary condition.
Lemma 7.5 (Expansion at regular points from one side). Let $w \in C^{1 / 2}\left(B_{1}\right)$ be 1/2-Holder continuous, $w \geq 0$, with w harmonic in $B_{1}^{+}(w)$. If

$$
0 \in F(w), \quad \mathcal{B}_{1 / 2}\left(1 / 2 e_{n}\right) \subset B_{1}^{+}(w)
$$

then

$$
w=\alpha U+o\left(|X|^{1 / 2}\right), \quad \text { for some } \alpha>0
$$

The same conclusion holds for some $\alpha \geq 0$ if

$$
\mathcal{B}_{1 / 2}\left(-1 / 2 e_{n}\right) \subset\{w=0\}
$$

Proof. We define

$$
\alpha:=\inf _{\nu \notin P} \liminf _{t \rightarrow 0^{+}} \frac{w}{U}(t \nu)
$$

First we notice that $\alpha>0$. Indeed, by a rescaled version of Lemma 7.1

$$
w \geq c w\left(\frac{1}{2} e_{n}\right) V_{\mathcal{S}, 0,0}, \quad \mathcal{S}=\partial \mathcal{B}_{\frac{1}{2}}\left(\frac{1}{2} e_{n}\right)
$$

near the origin, for some $c>0$. This implies that $\alpha \geq c w\left(\frac{1}{2} e_{n}\right)>0$.
Assume by contradiction that the conclusion of the lemma does not hold with this choice of α. Then there exist $\delta_{1}>0$ and a sequence of points $y_{k} \rightarrow 0$ such that

$$
\begin{equation*}
\left|w\left(y_{k}\right)-\alpha U\left(y_{k}\right)\right| \geq \delta_{1}\left|y_{k}\right|^{1 / 2} \tag{7.1}
\end{equation*}
$$

Since w is $1 / 2$-Holder continuous on B_{1}, the rescalings

$$
w_{k}(x):=\left|y_{k}\right|^{-\frac{1}{2}} w\left(\left|y_{k}\right| x\right)
$$

are uniformly $1 / 2$ Holder continuous and after passing to a subsequence we can assume that w_{k} converge uniformly on compact sets to a limiting function $w_{*} \in$ $C\left(\mathbb{R}^{n}\right)$. We obtain

$$
w_{*} \geq \alpha U, \quad \Delta w_{*}=0 \quad \text { in } \mathbb{R}^{n} \backslash P
$$

and in view of (7.1) there exists a point $y_{*},\left|y_{*}\right|=1$ such that

$$
w_{*}\left(y_{*}\right) \geq \alpha U\left(y_{*}\right)+\delta_{1} .
$$

Using boundary Harnack inequality we find

$$
\begin{equation*}
w_{*} \geq \alpha\left(1+\delta_{2}\right) U \quad \text { in } B_{1}, \tag{7.2}
\end{equation*}
$$

for some $\delta_{2}>0$ small. Now we let

$$
V=V_{\frac{\delta_{2}}{2 n} I, 0, \delta_{2}, 0}
$$

and we notice that V is subharmonic in B_{1} (by Proposition (3.2) and satisfies

$$
\begin{aligned}
& V(X)=v_{\delta_{2}, 0}(t, s)=\left(1+\frac{\delta_{2}}{4} \rho\right) U(t, s) \\
& \leq\left(1+\frac{\delta_{2}}{2}\right) U(t, s) \leq\left(1+\frac{\delta_{2}}{2}\right) U\left(x_{n}, s\right)
\end{aligned}
$$

Thus (7.2) gives,

$$
\begin{equation*}
w_{*} \geq \alpha\left(1+\frac{\delta_{2}}{4}\right) V \quad \text { in } B_{1} \tag{7.3}
\end{equation*}
$$

From the existence of a tangent ball at the origin included in $\{w>0\}$ we see that for all large k, w_{k} is harmonic in the set where $\{V>0\}$. Thus we conclude from (7.3) that in B_{1}

$$
w_{k} \geq \alpha\left(1+\frac{\delta_{2}}{4}\right) V-\epsilon_{k}, \quad \text { for some } \quad \epsilon_{k} \rightarrow 0
$$

By Lemma 7.2 we find that for all large k,

$$
w_{k} \geq\left(1-C \frac{\epsilon_{k}}{\alpha}\right) \alpha\left(1+\frac{\delta_{2}}{4}\right) V \geq \alpha\left(1+\frac{\delta_{2}}{8}\right) V \quad \text { in } B_{1 / 2}
$$

This implies that for any $\nu \notin P$

$$
\liminf _{t \rightarrow 0^{+}} \frac{w}{U}(t \nu)=\liminf _{t \rightarrow 0^{+}} \frac{w_{k}}{U}(t \nu) \geq \alpha\left(1+\frac{\delta_{2}}{8}\right)
$$

which contradicts the minimality of α.
Remark 7.6. If we assume that $F(w)$ admits a uniform tangent ball from its 0 side at all points in $\mathcal{B}_{1 / 2}$ then the hypothesis $w \in C^{1 / 2}\left(B_{1 / 4}\right)$ is satisfied and therefore w has an expansion at all points in $F(w) \cap \mathcal{B}_{1 / 4}$. Indeed, by Lemma 7.1 we know that

$$
w \leq C\|w\|_{L^{\infty}} V_{\partial \mathcal{B}_{r}\left(x_{0}\right), 0,0}
$$

with $\partial \mathcal{B}_{r}\left(x_{0}\right)$ a tangent sphere to $F(w)$ from the 0 side, and this implies

$$
w(x) \leq C\|w\|_{L^{\infty}} \operatorname{dist}(x,\{w=0\})^{1 / 2}, \quad \forall x \in B_{1 / 4}
$$

which gives $w \in C^{1 / 2}\left(B_{1 / 4}\right)$.
In general, the term $o\left(|X|^{1 / 2}\right)$ in the expansion for w can be improved in $o(U)$ in the non-tangential direction to $F(w)$. For example assume that $0 \in F(w) \in C^{2}$ and e_{n} is the normal to $F(w)$ at 0 which points towards the positive phase. Then the non-tangential limit

$$
\lim _{x \in \mathcal{C}, x \rightarrow 0} \frac{w}{U}=\alpha
$$

where $\mathcal{C} \subset \mathbb{R}^{n} \backslash P$ is a cone whose closure does not contain $L=\left\{x_{n}=0, s=0\right\}$.

Indeed, by Lemma 7.5 and Remark 7.6 we have that $w=\alpha U+o\left(|X|^{1 / 2}\right)$. Now the limit above follows by applying boundary Harnack inequality for U and w in the sets $\mathcal{C}_{1} \cap\left(B_{r} \backslash B_{r / 2}\right)$ for all r small, where

$$
\mathcal{C}_{1}:=\left\{\left|x^{\prime}\right|>\mu\left|\left(x_{n}, s\right)\right|\right\}
$$

is such that $\overline{\mathcal{C}} \subset \mathcal{C}_{1} \cup\{0\}$.
Remark 7.7. In the definition of viscosity solutions for our free boundary problem (see Definition 2.3) we can restrict the test functions only to the class of subsolutions and supersolutions of the form $c V_{\mathcal{S}, a, b}$.

Precisely we say that g is a solution to (2.1) if

1) $\Delta g=0$ in $B_{1}^{+}(g)$;
2) for any point $X_{0} \in F(g)$ there exists no $V_{\mathcal{S}, a, b}$ such that in a neighborhood of $X_{0}, V_{\mathcal{S}, a, b}$ is a subsolution and

$$
g \geq \alpha V_{S, a, b}, \quad \text { for some } \alpha>1
$$

with \mathcal{S} touching strictly $F(g)$ at X_{0} from the positive side.
Analogously there is no supersolution $V_{\mathcal{S}, a, b}$ such that

$$
g \leq \alpha V_{S, a, b}, \quad \text { for some } \alpha<1
$$

and \mathcal{S} touches strictly $F(g)$ at X_{0} from the 0 side.
In order to prove this statement we need to show that if we can touch g by below at a point $X_{0} \in F(g)$ with a comparison subsolution v as in Definition 2.2, then we can touch also with a subsolution $\alpha V_{\mathcal{S}, a, b}$ as above. A similar statement holds for supersolutions.

Assume for simplicity that $X_{0}=0, e_{n}$ is normal to $F(v)$ at 0 and $g \geq v$ in \bar{B}_{1}. Let \bar{v} be the harmonic replacement for v in $B_{1}^{+}(v)$. In view of of Remark 7.6

$$
\bar{v}=\alpha U+o\left(|X|^{1 / 2}\right), \quad \text { for some } \alpha \geq 1
$$

We claim that $\alpha>1$. Indeed, $\bar{v}-v \geq 0$ is superharmonic in $B_{1}^{+}(v)$ and vanishes continuously on $\{v=0\} \cap B_{1}$. If $\bar{v}-v \equiv 0$, then our claim follows from the definition of a comparison subsolution. Otherwise, by the boundary Harnack inequality

$$
\bar{v}-v \geq \sigma \bar{v}
$$

in a neighborhood of the origin, for some $\sigma>0$. Thus $\bar{v} \geq v /(1-\sigma)$ near the origin and again the claim follows from the expansion of v at the origin.

The rescalings $v_{k}=r_{k}^{-1 / 2} v\left(r_{k} x\right)$ converge uniformly on compact sets to αU, with $\alpha>1$. As in the proof of Lemma 7.5 we obtain that there exists δ small such that for all large k,

$$
v_{k} \geq V:=(1+\delta) V_{\frac{\delta}{2 n} I, 0, \delta, 0}
$$

and $F(V)$ touches strictly $F\left(v_{k}\right)$ at the origin from the positive side. Rescaling back we obtain the desired conclusion.

Next we prove a compactness result for viscosity solutions to (2.1) whose free boundaries converge in the Hausdorff distance.

Proposition 7.8 (Compactness). Assume g_{k} solve (2.1) and converge uniformly to g_{*} in B_{1}, and $\left\{g_{k}=0\right\}$ converges in the Hausdorff distance to $\left\{g_{*}=0\right\}$. Then g_{*} solves (2.1) as well.

Proof. Clearly g_{*} is harmonic in $B_{1}^{+}\left(g_{*}\right)$. In view of Remark 7.7 we need to check say that if $0 \in F\left(g_{*}\right)$ there exists no subsolution $V_{M, 0, a, b}$ such that in a neighborhood of 0 ,

$$
g_{*} \geq \alpha V_{M, 0, a, b}, \quad \text { for some } \alpha>1
$$

and $F(V)$ touches strictly $F\left(g_{*}\right)$ at 0 from the positive side. A similar statement can be checked also for supersolutions.

Assume by contradiction that such a $V=V_{M, 0, a, b}$ exists. Then after a dilation we may assume that $V \in \mathcal{V}_{\delta}$ for some small δ and V is a subsolution in B_{1}.

For any $\epsilon>0$ there exists $\sigma>0$ such that for all $|t| \leq \sigma$ and all large k 's

$$
W_{t}(X):=\alpha V\left(X+t e_{n}\right) \leq g_{k}-\epsilon \quad \text { in } B_{1}
$$

and

$$
F\left(W_{-\sigma}\right) \subset B_{1}^{+}\left(g_{k}\right), \quad F\left(W_{t}\right) \backslash B_{1 / 8} \subset B_{1}^{+}\left(g_{k}\right)
$$

By Lemma 7.2 and Remark 7.3 we obtain that

$$
g_{k} \geq(1-C \epsilon) W_{-\sigma} \quad \text { in } B_{1 / 2}
$$

and

$$
g_{k} \geq(1-C \epsilon) W_{t} \quad \text { in } B_{3 / 4} \backslash B_{1 / 4}, \text { for all }|t| \leq \sigma
$$

By choosing ϵ small (depending on α) we see that the functions W_{t} are strict subsolutions to our free boundary problem, and hence the inequality above can be extended in the interior (see Lemma 2.7) i.e.,

$$
g_{k} \geq(1-C \epsilon) W_{t} \quad \text { in } B_{1 / 2}
$$

Writing this for $t=\sigma$ we see that $\left\{g_{k}=0\right\}$ stays outside a neighborhood of the origin and we contradict the convergence in the Hausdorff distance to $\left\{g_{*}=0\right\}$.

We conclude this section by showing that our flatness assumption on the free boundary $F(g)$, implies closeness of g and U.

Lemma 7.9. Assume g solves (2.1). Given any $\delta>0$ there exist $\bar{\epsilon}>0$ and $\mu>0$ depending on δ such that if

$$
\begin{equation*}
\left\{x \in \mathcal{B}_{1}: x_{n} \leq-\bar{\epsilon}\right\} \subset\left\{x \in \mathcal{B}_{1}: g(x, 0)=0\right\} \subset\left\{x \in \mathcal{B}_{1}: x_{n} \leq \bar{\epsilon}\right\} \tag{7.4}
\end{equation*}
$$

then

$$
U\left(X-\mu \delta e_{n}\right) \leq g(X) \leq U\left(X+\mu \delta e_{n}\right) \quad \text { in } B_{\mu}
$$

Proof. The proof is by compactness. Assume by contradiction that a sequence of functions g_{k} satisfies the hypotheses with $\bar{\epsilon}_{k} \rightarrow 0$ but the conclusion does not hold.

Notice that by Harnack inequality $g_{k}\left(e_{n+1} / 2\right)$ is bounded be a multiple of $g_{k}\left(e_{n} / 2\right)$ which in view of Lemma 7.4 is bounded by a universal constant. Hence by the second claim in Lemma 7.4 the g_{k} 's have uniformly bounded $C^{1 / 2}$ norms on compact subsets of B_{1}. After passing to a subsequence we can assume that g_{k} converges uniformly on compact sets of B_{1} to a function g_{*} with

$$
\begin{equation*}
\triangle g_{*}=0 \quad \text { in } B_{1} \backslash P, \quad g_{*}=0 \quad \text { on } P \cap B_{1} \tag{7.5}
\end{equation*}
$$

By Remark 7.6, g_{*} is $C^{1 / 2}$. Moreover, the derivatives of g_{*} in the x^{\prime} direction satisfy again (7.5) and we obtain

$$
\left\|D_{x^{\prime}}^{\beta} g_{*}\right\|_{C^{1 / 2}\left(B_{1 / 2}\right)} \leq C(\beta)
$$

Now we can separate the variables and write

$$
\Delta_{x_{n}, s} g_{*}=-\Delta_{x^{\prime}} g_{*}
$$

and we can argue as in Theorem 6.1 to obtain

$$
\left|g_{*}(X)-\alpha U(X)\right| \leq C|X|^{3 / 2}
$$

with C universal.
We now want to apply Proposition 7.8 to conclude that g_{*} solves (2.1) and hence $\alpha=1$. To do so, we must guarantee that $g_{*}>0$ in $B_{1} \backslash P$. Otherwise $g_{*} \equiv 0$ and hence $\left\|g_{k}\right\|_{L^{\infty}\left(B_{1 / 2}\right)} \rightarrow 0$. Let $\mathcal{B}_{k}:=\mathcal{B}_{1 / 8}\left(x_{k}\right)$ be a ball tangent to $F\left(g_{k}\right)$ from the zero side at some point $y_{k} \in B_{1 / 8}$. Then, since $\left\|g_{k}\right\|_{L^{\infty}\left(B_{1 / 2}\right)} \rightarrow 0$, we have by Lemma 7.1

$$
g_{k} \leq \sigma_{k} V_{\partial B_{k}, 0,0}, \quad \text { with } \sigma_{k} \rightarrow 0
$$

This contradicts the free boundary condition for g_{k} at y_{k}.
In conclusion, g_{*} solves (2.1) and

$$
\left|g_{*}(X)-U(X)\right| \leq C|X|^{3 / 2}
$$

with C universal.
Rescaling we find

$$
\left|g_{k, \mu}(X)-U(X)\right| \leq C \mu \quad \text { in } B_{2}, \quad \text { with } \quad g_{k, \mu}(X):=\mu^{-1 / 2} g_{k}(\mu X)
$$

Thus

$$
g_{k, \mu}(X) \geq U(X)-C \mu \geq U\left(X-\bar{\epsilon}_{k} \mu^{-1} e_{n}\right)-C \mu
$$

Now we use that $F\left(g_{k, \mu}\right) \subset\left\{\left|x_{n}\right| \leq \bar{\epsilon}_{k} \mu^{-1}\right\}$ and obtain by Lemma 7.2 that in B_{1}

$$
g_{k, \mu} \geq(1-C \mu) U\left(X-\bar{\epsilon}_{k} \mu^{-1} e_{n}\right) \geq U\left(X-\left(\bar{\epsilon}_{k} \mu^{-1}+C \mu\right) e_{n}\right)
$$

where the last inequality follows once more from boundary Harnack inequality. A similar inequality bounds $g_{k, \mu}$ by above. We choose μ small depending on δ and obtain that $g_{k, \mu}$ satisfies the conclusion of the theorem

$$
U\left(X-\delta e_{n}\right) \leq \mu^{-1 / 2} g_{k}(\mu X) \leq U\left(X+\delta e_{n}\right)
$$

and we reach a contradiction.

References

[AC] Alt H.W., Caffarelli L.A., Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math 325 (1981),105-144.
[C1] Caffarelli L.A., A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are $C^{1, \alpha}$, Rev. Mat. Iberoamericana 3 (1987), no.2, 139-162.
[CFMS] Caffarelli L. A., Fabes E., Mortola S., Salsa S., Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J. 30 (1981), no. 4, 621640.
[CafRS] Caffarelli L.A., Roquejoffre J-M., Sire Y., Variational problems with free boundaries for the fractional Laplacian, J. European Math. Soc., 12 (2010), 1151-1179.
[DG] De Giorgi, E., Sulla differenziabilit e l'analiticit delle estremali degli integrali multipli regolari, (Italian) Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 319572543.
[DR] De Silva D., Roquejoffre J-M., Regularity in a one-phase free boundary problem for the fractional Laplacian. Preprint 2010. Submitted.
[S] Savin O., Small perturbation solutions for elliptic equations, Comm. Partial Differential Equations, 32 (2007), 557-578.
[W] Weiss, G. S., Partial regularity for weak solutions of an elliptic free boundary problem, Comm. Partial Differential Equations 23 (1998), no. 3-4, 439455.

Department of Mathematics, Barnard College, Columbia University, New York, NY 10027

E-mail address: desilva@math.columbia.edu
Department of Mathematics, Columbia University, New York, NY 10027
E-mail address: savin@math.columbia.edu

