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MONGE-AMPÉRE EQUATIONS

PANAGIOTA DASKALOPOULOS∗ AND OVIDIU SAVIN∗∗

Abstract. We study interior C1,α regularity of viscosity solutions of the par-

abolic Monge-Ampére equation

ut = b(x, t) (detD2u)p,

with exponent p > 0 and with coefficients b which are bounded and measurable.

We show that when p is less than the critical power 1
n−2

then solutions become

instantly C1,α in the interior. Also, we prove the same result for any power

p > 0 at those points where either the solution separates from the initial data,

or where the initial data is C1,β .

1. Introduction

In this paper we investigate interior regularity of viscosity solutions of the par-

abolic Monge-Ampére equation

(1.1) ut = b(x, t) (detD2u)p,

with exponent p > 0 and with coefficients b which are bounded measurable and

satisfy

(1.2) λ ≤ b(x, t) ≤ Λ

for some fixed constants λ > 0 and Λ < ∞. We assume that the function u is

convex in x and increasing in t.

Equations of the form of (1.1) appear in geometric evolution problems and in

particular in the motion of a convex n-dimensional hyper-surface Σnt embedded in

Rn+1 under Gauss curvature flow with exponent p, namely the equation

(1.3)
∂P

∂t
= Kp N

where each point P moves in the inward direction N to the surface with velocity

equal to the p-power of its Gaussian curvature K. If we express the surface Σn(t)
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locally as a graph xn+1 = u(x, t), with x ∈ Ω ⊂ Rn, then the function u satisfies

the parabolic Monge-Ampére equation

(1.4) ut =
(detD2u)p

(1 + |∇u|2)
(n+2)p−1

2

.

Since any convex solution satisfies locally the bound |∇u| ≤ C, equation (1.4)

becomes of the form (1.1).

The case p = 1 corresponds to the well studied Gauss curvature flow which was

first introduced by W. Firey in [9] as a model for the wearing process of stones. It

follows from the work of Tso [15] that uniformly strictly convex hyper-surfaces will

become instantly C∞ smooth and they remain smooth up to their vanishing time T .

However, convex surfaces which are not necessarily uniformly strictly convex, may

not become instantly strictly convex and smooth (c.f. [12], [5]) and their regularity

poses an interesting problem that we will investigate in this paper.

Equations of the form (1.3) for different powers of p > 0 were studied by B.

Andrews in [1] (see also in [6]). He showed that when p ≤ 1/n any convex hyper-

surface will become instantly strictly uniformly convex and smooth.

It can be seen from radially symmetric examples that, when p > 1/n, surfaces

evolving by (1.3) or (1.1) may have a flat side that persists for some time before

it disappears. These surfaces are of class C1,γp with γp := p
np−1 . Since γp < 1 if

p > 1
n−1 , solutions which are not strictly convex fail, in general, to be of class C1,1

in this range of exponents. In particular, solutions to the Gauss curvature flow

(p = 1) with flat sides are no better than C1, 1
n−1 while the flat sides persist. The

C1,α regularity of solutions of (1.3) for any p > 0 will be addressed in this work.

In dimension n = 2, the regularity for the Gauss curvature flow (p = 1) is

well understood. It follows from the work of B. Andrews in [2] that, in this case,

all surfaces become instantly of class C1,1 and remain so up to a time when they

become strictly convex and therefore smooth, before they contract to a point. Also,

it follows from the works of the first author with Hamilton [7] and Lee [8] that C1,1

is the optimal regularity here, as can be seen from evolving surfaces Σ2
t in R3 with

flat sides. The optimal regularity of surfaces with flat sides and interfaces was

further discussed in [7, 8].

We mention that C1,α and W 2,p interior estimates were established by Gutiérrez

and Huang in [11] for equations similar to (1.1) for p = −1 and by Huang and Lu

for p = 1
n . However, their work requires uniform convexity of the initial data and

strict monotonicity of the function on the lateral boundary.
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If w is a solution to the Monge-Ampére equation

detD2w = 1, x ∈ Ω ⊂ Rn,

then u(x, t) = w(x) + t solves equation (1.1) with b ≡ 1 for any p. The question of

regularity for the Monge-Ampére equation is closely related to the strict convexity

of w. Strict convexity does not always hold in the interior as it can be seen from

a classical example due to Pogorelov [14]. However, Caffarelli [3] showed that if

the convex set D where w coincides with a tangent plane contains at least a line

segment then all extremal points of D must lie on ∂Ω. We prove the parabolic

version of this result for solution of (1.1). Our result says that, if at a time t the

convex set D where u equals a tangent plane contains at least a line segment then,

either the extremal points of D lie on ∂Ω or u(·, t) coincides with the initial data on

D (see Theorem 5.3). The second behavior occurs for example in those solutions

with flat sides. In other words, a line segment in the graph of u at time t either

originates from the boundary data at time t or from the initial data.

We prove a similar result for angles instead of line segments, which is crucial for

our estimates. We show that if at a time t the solution u admits a tangent angle

from below then either the set where u coincides with the edge of the angle has all

extremal points on ∂Ω or the initial data has the same tangent angle from below

(see Theorem 6.1).

The C1,α regularity is closely related to understanding whether or not solutions

separate instantly away from the edges of a tangent angle of the initial data. It

turns out that when p > 1
n−2 the set where u coincides with the edge of the angle

may persist for some time (see Proposition 4.8), hence C1 regularity does not hold

in this case without further hypotheses. If p < 1
n−2 we prove that, at any time t

after the initial time, solutions are C1,α in the interior of any section of u(·, t) which

is included in Ω (see Theorem 8.1). For the critical exponent p = 1
n−2 we show

that solutions are C1 with a logarithmic modulus of continuity for the gradient (see

Theorem 8.2).

In the case of any power p > 0 we prove C1,α estimates at all points (x, t) where

u separates from the initial data (see Theorem 8.4). Also, if we assume that the

initial data is C1,β in some direction e then we show that the solution is C1,α in

the same direction e for all later times (see Theorem 8.3).

In particular, our methods can be applied for solutions with flat sides. If the

initial data has a flat side D ⊂ Rn, then solutions are C1,α for all later times in the
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interior of D. A similar statement holds for solutions that contain edges of tangent

angles: they are C1,α along the direction of the edge for all later times. To be more

precise we state these results below.

Theorem 1.1. Let u be a viscosity solution of (1.1) in Ω× [0, T ] with u(x, 0) ≥ 0

in Ω, u(x, 0) ≥ 1 on ∂Ω. There exists α > 0 depending on n, λ,Λ, p such that

a) u(x, t) is C1,α in x at all points (x, t) with x an interior point of the set

{u(x, 0) = 0} and u(x, t) < 1.

b) If u(x, 0) ≥ |xn| then u(x, t) is C1,α in the x′ variables at all points ((x′, 0), t)

with x′ an interior point of the set {x′ : u((x′, 0), 0) = 0} and u(x, t) < 1.

We finally remark that the equations (1.1) for negative and positive powers are

in some sense dual to each other. Indeed, if u is a solution of (1.1) and u∗(ξ, t) is

the Legendre transform of u(·, t) then

u∗t = −b̃(ξ, t)(detD2u∗)−p, λ ≤ b̃(ξ, t) ≤ Λ.

The paper is organized as follows. In section 2 we introduce the notation and

some geometric properties of sections of convex functions. In sections 3 we derive

estimates for subsolutions and supersolutions. In section 4 we discuss the separation

of solutions away from constant solutions such as planes and angles. In sections 5

and 6 we discuss the geometry of lines and angles. In section 7 and 8 we quantify

the results of section 6 and prove the main theorems concerning C1,α regularity.

2. Preliminaries

We use the standard notation Br(x0) := {x ∈ Rn : |x− x0| < r} to denote the

open ball of radius r and center x0, and we write shortly Br for Br(0). Also, given a

point x = (x1, · · · , xn) ∈ Rn, we denote by x′ the point x′ = (x1, · · · , xn−1) ∈ Rn−1.

Throughout the paper we refer to positive constants depending on n, λ, Λ and

p as universal constants. We denote them by abuse of notation as c for small

constants and C for large constants, although their values change from line to line.

If a constant depends on universal constants and other parameters d, δ etc. then

we denote them by c(d, δ), C(d, δ).

We use the following definition to say that a function is C1,α in a pointwise sense.

Definition 2.1. A function w is C1,α at a point x0 if there exists a linear function

l(x) and a constant C such that

|w(x)− l(x)| ≤ C|x− x0|1+α.
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A function is C1,α in a set D if it is C1,α at each x ∈ D.

A function is C1,α at a point x0 in the direction e if it is C1,α at x0 when

restricted to the line x0 + se, s ∈ R.

Next we introduce the notion of a section. We denote by Sh(x, t) ⊂ Rn a section

at height h of the function u at the point (x, t) defined by

Sh(x, t) := { y ∈ Ω : u(y, t) ≤ u(x, t) + ph · (y − x) + h },

for some ph ∈ Rn. Sometimes, in order to simplify the notation, we denote such

sections as Sh, Sh(t) whenever there is no possibility of confusion.

We define the notion of d-balanced convex set with respect to a point.

Definition 2.2 (d-balanced convex set). A convex set S with 0 ∈ S is called d-

balanced with respect to the origin, if there exists a linear transformation A (which

maps the origin into the origin) such that

B1 ⊂ AS ⊂ Bd.

Clearly, the notion of d-balanced set around 0 is invariant under linear transfor-

mations. Next we recall

John’s lemma Every convex set in Rn is Cn-balanced with respect to its center

of mass, with Cn depending only on n.

It is often convenient to consider sections at a point x that have x as center of

mass. We denote such sections by Th(x, t) instead of Sh(x, t). The existence of

centered sections is due to Caffarelli [4].

Theorem. [Centered sections] Let w be a convex function defined on a bounded

convex domain Ω. For each x0 ∈ Ω, and h > 0 there exists a centered h-section

Th(x0) at x0

Th(x0) := {w(x) < w(x0) + h+ ph · (x− x0) }
(for some ph ∈ Rn) which has x0 as its center of mass.

The following simple observations follow from the definition of d-balanced sets

and will be used throughout the paper.

Remark 2.3. Assume that the h-section of w,

Sh(x0) = {w(x) < w(x0) + h+ ph · (x− x0)},

is d-balanced around x0. Then,

−d h < w(x)− (w(x0) + h+ ph · (x− x0)) < 0, in Sh(x0).
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Also, if we assume w ≥ 0 and w(x0) = 0, then w(x) ≤ d h for all x ∈ Sh(x0).

Next lemma proves the existence of certain balanced sections which are com-

pactly included in the domain of definition. It says that if we have a d-balanced

section Sh which is compactly included in Ω, then we can find Cnd-balanced sections

for all smaller heights than h that are included in Sh.

Lemma 2.4. (a) Assume that w is a convex function defined on a set Ω ⊂ Rn
with w(0) = 0 such that S1 := {x : w(x) < 1} ⊂⊂ Ω is d-balanced around 0. Then,

there exists a constant Cn > 0 depending only on n, such that for every h < 1 we

can find a section Sh at height h with Sh ⊂ S1 and Sh is Cnd-balanced around 0.

(b) Let us denote by r(x) the volume of the maximal ellipsoid centered at x that

is included in S1. Then, there exists a number Cn > 0 such that the section Sh in

part (a) is either Cn-balanced around 0 or r(x∗) ≥ 2 r(0) where x∗ is the center of

mass of Sh.

Proof. a) For h < 1 fixed, consider the section Sh at height h that has 0 as its

center of mass. If Sh ⊂ S1 we have nothing to prove. Assume not and let’s say

Sh = {w(x) < h+ α en · x }, for some α > 0.

We decrease the slope α continuously till we obtain the section Sh,t := {w <

h+ t en · x } for which the set

{ (x, xn+1) : x ∈ Sh,t, xn+1 = h+ t en · x }

becomes tangent to the hyper-plane xn+1 = 1 at a point (x0, 1). We will show that

Sh,t satisfies (a) and (b).

Clearly Sh,t ⊂ S1. At the point x0 we have x0 ∈ ∂S1 and

S1 ⊂ {(x− x0) · en ≤ 0 }.

Since S1 is d-balanced, we may assume that B1 ⊂ S1 ⊂ Bd hence 1 ≤ x0 · en. Also,

Sh ∩ {xn = 0} = Sh,t ∩ {xn = 0}, hence the section Sh,t is already Cn-balanced in

x′ := (x1, · · · , xn−1) around 0.

Since t ≤ α, the center of mass x∗ of Sh,t satisfies x∗ ·en ≤ 0. This together with

x0 · en ≥ 1 and x0 ∈ ∂Sh,t ⊂ B̄d, implies that Sh,t is Cnd-balanced around 0 in all

the directions.
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b) If we assume that

(2.1) −x∗ · en ≤ C0(n)x0 · en

then we obtain that Sh,t is C(n,C0(n)) balanced with respect to 0. Assume now

that (2.1) doesn’t hold and denote by E the maximum volume ellipsoid centered

at 0 which is included in S1. After an affine transformation we have the following:

E = B1 ⊂ S1, Sh,t ⊂ { (x− x0) · en ≤ 0 }, x0 ∈ ∂Sh,t

and

−x∗ · en > C0(n)x0 · en ≥ C0(n)

which implies that |x∗| ≥ C0(n). Since x∗ is the center of mass of Sh,t and 0 ∈ Sh,t
we see from John’s lemma that (1+cn)x∗ ∈ Sh,t ⊂ S1. Hence if C0(n) is sufficiently

large we can find an ellipsoid of volume 2 centered at x∗ and included in the convex

set generated by (1 + cn)x∗ and B1. This convex set is contained in S1, and this

concludes the proof of part (b). �

3. Estimates for subsolutions and supersolutions

In this section we use the scaling of the equation to derive estimates for viscosity

subsolutions and supersolutions of

(3.1) λ (detD2u)p ≤ ut ≤ Λ (detD2u)p, x ∈ Ω.

Throughout the paper we assume that u is convex in x, increasing in t and the

domain Ω is convex and bounded.

Let us now introduce the scaling of equation (3.1). Given an affine transformation

A := Rn → Rn and h > 0,m > 0 positive constants, the function

v(x, t) :=
1
h
u(Ax,m t)

is a solution of equation (3.1) provided

m =
(detA)2p

hnp−1
.

The equation is not affected by adding or subtracting a linear function in x.

For this reason we write our comparison results using constant functions instead of

linear functions.
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Lemma 3.1. Let u be a viscosity subsolution in B1 i.e.

ut ≤ Λ(detD2u)p

with

u(0, 0) ≥ −1, u(x, 0) ≤ 0 on ∂B1.

Then

u(0, t) ≥ −2 for t ≥ −c,
with c > 0 universal.

Proof. If u(0,−c) ≤ −2 then, by convexity, u at time −c is below the cone generated

by (0,−2) and ∂B1 i.e

u(x,−c) ≤ −2 + 2|x| in B1.

This implies that u ≤ w on the boundary of the parabolic cylinder B1 × [−c, 0] for

w(x, t) := m(t+ c) + 2|x|2 − 3
2

with m = Λ4np .

Since wt = Λ(detD2w)p we obtain by the maximum principle that u(0, 0) ≤ w(0, 0)

and we reach a contradiction by choosing c = 1/(4m).

�

Remark 3.2. The conclusion can be replaced by u(0, t) ≥ −(1 + δ) for t ≥ −c(δ).

The scaling of the equation and the previous lemma give the following:

Proposition 3.3. Assume that u is a viscosity subsolution in a convex set S with

center of mass 0. If

u(0, 0) ≥ −h, u(x, 0) ≤ 0 on ∂S,

then

u(0, t) ≥ −2h for t ≥ −c |S|
2p

hnp−1
,

with c universal.

Proof. From John’s lemma there exists a linear transformation A such that

B1 ⊂ A−1S with detA ≥ c(n)|S|.

The proposition follows by applying Lemma 3.1 to the rescaled solution

v(x, t) :=
1
h
u(Ax,m t), m =

(detA)2p

hnp−1
.

�
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Remark 3.4. We obtain a slightly different version of Proposition 3.3 by requiring

S to be only d-balanced around the origin and by replacing the conclusion by

u(0, t) ≥ −(1 + δ)h. In this case we need to take the constant c = c(d, δ) depending

also on d and δ as can be seen from the proofs of Lemma 3.1 and Proposition 3.3.

Remark 3.5. In general we apply Proposition 3.3 at a point (x0, t0) in an h-section

Sh = Sh(x0, t0) which is d-balanced around x0 to conclude that

u(x0, t) ≥ u(x0, t0)− h for t ≥ t0 − c |Sh|
2p

hnp−1
.

Remark 3.6. At a given point we can apply the Proposition directly in the sections

given by its tangent plane. Indeed, taking S to be the set

Sh = Sh(0, 0) := {u < h+ P (x)}, P (x) := u(0, 0) +∇u(0, 0) · x

we conclude that u(x∗, t) ≥ P (x∗)− 2h with x∗ the center of mass of Sh. This, by

John’s lemma, implies a bound in whole Sh

u(x, t) ≥ P (x)− C(n)h, for all x ∈ Sh, t ≥ −c |Sh|
2p

hnp−1
,

with C(n) depending only on the dimension.

Corollary 3.7. Assume that u is a bounded subsolution of equation (3.1) in the

cylinder Q1 := B1 × [−1, 0]. Then, u is uniformly Hölder continuous in time t on

the cylinder Q1/2 := B1/2× [−1/2, 0], namely u ∈ C1,β(Q1/2), with β = 1/(np+1).

Proof. Since u is bounded on Q1, the convexity of u(·, t) implies that |∇u| is

bounded by a constant M in Q3/4. Then, by Proposition 3.3 applied in Bh(x),

with x ∈ B1/2 and h < 1/4, we have

(3.2) −2M h ≤ u(x, t)− u(x, 0) ≤ 0 if − c |Bh(x)|2p
hnp−1

≤ t ≤ 0.

Taking t = −c1 hnp+1, we find that for all t small enough

|u(x, t)− u(x, 0)| ≤ C(M) t1/(np+1)

from which the desired result readily follows. �

As a consequence we obtain compactness of viscosity solutions.

Corollary 3.8. A sequence of bounded solutions of (3.1) in Ω × [−T, 0] has a

subsequence that converges uniformly on compact sets to a solution of the same

equation.
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Next we discuss the case of supersolutions.

Lemma 3.9. Let u be a viscosity supersolution in S ⊂ B1 i.e.

ut ≥ λ (detD2u)p

with

u(x, 0) ≥ −1 in S, u(x, 0) ≥ 0 on ∂S.

Then

u(x, t) ≥ −1
2

for t ≥ C,

with C > 0 universal.

Proof. The lemma follows by comparison of our solution u with the function

w(x, t) =
1
2

(|x|2 − 1) + λ (t− C)

on the cylinder S × [0, C]. The function w is a solution of the equation wt =

λ(detD2w)p and, since S ⊂ B1, satisfies w ≤ 0 on ∂S(0) × [0, C]. In addition, by

choosing C = 1/λ, we have w(x, 0) ≤ −1 ≤ u(x, 0) for x ∈ S. The comparison

principle implies u(x,C) ≥ w(x,C) ≥ −1/2 in S.

�

Remark 3.10. We can replace −1/2 by −δ in the lemma above by taking C = C(δ)

depending also on δ.

Remark 3.11. If we assume that S is d-balanced around 0 and u(0, 0) = −1,

u(x, 0) = 0 on ∂S, then the same conclusion holds by taking C = C(d) depending

also on d. Indeed, in this case we obtain u(x, 0) ≥ −C(d) for all x ∈ S and the

desired conclusion follows as before.

The scaling of the equation and the previous lemma give the following:

Proposition 3.12. Let u be a supersolution in Ω and assume

u(x, 0) ≥ 0, and Sh := {u(x, 0) < h} ⊂⊂ Ω.

Then

u(·, t) ≥ h

2
, for t ≥ C |Sh|

2p

hnp−1
,

with C universal.
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Proof. Let A be a linear transformation such that A−1Sh ⊂ B1 so that detA ≤
C(n)|Sh|. We then apply the previous lemma to the re-scaled solution

vh =
1
h
u(Ax,mt)− 1, m =

(detA)2p

hnp−1
.

�

Remark 3.13. In view of Remark 3.11 we obtain a version of Proposition 3.12

for sections Sh = Sh(x0, t0) which are d-balanced around x0 and are compactly

included in Ω, and conclude that

u(x0, t) ≥ u(x0, t0) + (1− δ)h for t ≥ t0 + C(δ, d)
|Sh|2p
hnp−1

.

4. Separation from constant solutions

In this section we consider the case when the solution u at the initial time t = 0

is above a given function w depending only on n − 1 variables, u and w coincide

at the origin, and u > w on ∂Ω. We investigate whether u separates from w

instantaneously for positive times, i.e u(0, t) > w(0) for all t > 0. Of particular

interest is the case of angles given by w = |xn|.
Throughout this section we assume that u(x, 0) ≥ 0. For h > 0 we will consider

the sub-level set Sh(t) of our solution u(·, t) in Ω which is defined as

Sh(t) := {x ∈ Ω : u(x, t) < h}.

We will also consider balls B′ρ ⊂ Rn−1, namely

B′ρ := {x′ = (x1, · · · , xn−1) ∈ Rn−1 : |x′| < ρ }.

Proposition 4.1. Let u be a supersolution in Ω × [0, T ] with u ≥ 0 at t = 0.

Assume that Sh(0) ∩ {xn < 2β} is compactly included in Ω and is included as well

in the cylinder {0 < xn < 2β} × S′ for a bounded domain S′ ⊂ Rn−1 and two

positive constants h > 0, β > 0. Then,

Sh/4(t0) ⊂ {xn > β}, for t0 = C
(β |S′|)2p

hnp−1
,

with C universal.

Proof. We apply Proposition 3.3 for

ũ = u+
h

2β
xn

and see that ũ ≥ u ≥ 0. Also {ũ(x, 0) < h} is compactly included in Ω and

is included in {0 < xn < 2β} × S′. We conclude that ũ(x, t0) ≥ 3
4h with t0
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given above. This implies that if xn ≤ β then u(x, t0) ≥ ũ(x, t0) − h
2 ≥ h

4 hence

Sh/4(t0) ⊂ {xn > β}. �

From Proposition 4.1 we obtain the following corollary.

Corollary 4.2. Let u be a supersolution in Ω× [0, T ] and assume that

u(x, 0) ≥ w(x′) ≥ 0, u(0, 0) = w(0) = 0, u(x, 0) > 0 on ∂Ω,

for a function w defined on Rn−1. Suppose that w satisfies

(4.1)
a2p
hj

hnp−1
j

→ 0, for a sequence hj → 0.

with

ah := |{w(x′) < h} ∩ πn(Ω)|, where πn(x) := x′.

Then,

u(0, t) > 0 for any t > 0.

Proof. Let h > 0 be small such that the sub-level sets Sh(0) of u is compactly

supported in Ω. Since u ≥ w we obtain that

Sh(0) ⊂ ({w(x′) < h} ∩ πn(Ω))× [b,∞),

for some b < 0 (since 0 ∈ Sh(0)). We apply Proposition 4.1 for hj ≤ h (hence

Shj (0) ⊂ Sh(0)), with β = −b. We conclude that

Shj/4(tj) ⊂ {xn > 0}, tj = Cβ2p
a2p
hj

hnp−1
j

,

and obtain u(0, tj) ≥ hj/4 > 0 for a sequence tj → 0. �

Remark 4.3. If p > 1/2 and the sequence above is bounded, then the conclusion of

Corollary 4.2 still holds true.

Next we investigate the case when w is identically 0.

Proposition 4.4. Let u be a supersolution in Ω × [0, T ] with p ≤ 1/n. Assume

that u ≥ 0 at t = 0 and u(x, 0) > 0 on ∂Ω. Then, u > 0 in Ω for any t > 0.

Proof. For p < 1/n the proposition follows from Corollary 4.2.

Let p = 1/n. Assume that for h > 0 small we have Sh(0) ⊂ Bρ for some ρ in

0 < ρ ≤ 1, and Sh(0) is compactly supported in Ω. We first show that for β ∈ (0, ρ]

small, we have

(4.2) Sh/4(t0) ⊂ Bρ−β(0), for t0 = C β1+ 1
n .
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To this end, we will apply Proposition 4.1 for each x0 ∈ ∂Bρ in the direction (−x0).

Let us assume for simplicity that x0 = (0, · · · , 0,−ρ). Then, since Sh(0) ⊂ Bρ, we

have

Sh(0) ∩ {−ρ < xn < −ρ+ 2β} ⊂ B′2√β × (−ρ,−ρ+ 2β).

Applying Proposition 4.1, we obtain that

Sh/4(t0) ⊂ {xn > −ρ+ β}, for t0 = C (β β
n−1

2 )2/n.

and (4.2) readily follows.

We will now use (4.2) to show that u > 0 for t > 0. Let t > 0 and fixed. Choose

β := 1/k > 0 with k the smallest integer so that C β
1
n ≤ t, with C the constant

from (4.2). Using this β we repeat the argument above k times, starting at ρ = 1,

to conclude that

Sh/4k(t0) ⊂ B1−k β , for t0 = C k β1+ 1
n .

This shows that Sh/4k(t0) = ∅, for t0 = Cβ
1
n ≤ t hence u(·, t) ≥ h/4k > 0. �

Remark 4.5. For p > 1/n there exist radial solutions with a flat side that persists

for some time.

Remark 4.6. In the proof we showed in fact that if u ≥ 0, u(x, 0) ≥ h on ∂B1 then

u(·, t) ≥ he−Ct−n

for some C universal.

In the next results we investigate the case of angles i.e when w(x) = |xn|. First

proposition shows that u separates instantly from the edge of the angle when the

exponent p ≤ 1
n−2 . The second proposition shows that this is not the case when

p > 1
n−2 .

Proposition 4.7. Assume u is a supersolution, and p ≤ 1
n−2 . If u(x, 0) ≥ |xn|

and u(x, 0) > 0 on ∂Ω, then u > 0 for any t > 0.

Proof. If p > 1
n−2 then the proposition follows from Corollary 4.2 since ah ≤ Ch.

Let p = 1
n−2 . Since u ≥ |xn| we may assume without loss of generality that

Sh(0) ⊂ B′1 × [−h, h]. For each x′0 ∈ B′1 we apply Proposition 4.1 in the direction

(−x′0), in a manner similar to that used in Proposition 4.4, to show that

Sh
4
(t0) ⊂ B′1−β × [−h/4, h/4], for t0 = C

(β |S′|)2p

hnp−1
.
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Notice that this time |S′| = h |B′′
2
√
β
|, where B′′r is an n−2 dimensional ball, hence

(since p = 1
n−2 )

t0 ≥ C (hβ
n
2 )2p

hnp−1
= Cβ

n
n−2 .

Now the proof continues as in the proof of Proposition 4.4 and we obtain

u(·, t) ≥ he−Ct−
n−2

2 .

�

Proposition 4.8. There exists a non-trivial solution u of equation

(4.3) ut = (detD2u)p, on Rn × [0,∞)

for which u(x, 0) ≥ |xn| and u(0, t) = 0, for all t ∈ [0, δ], for some δ > 0.

Proof. We will seek for a solution u of the form

(4.4) u(x, t) = f(t) v(
x

g(t)
)

for some functions f = f(t) and v = v(y). The function u satisfies (4.3) if and only

if

(−f ′)
(
x

f
∇v(

x

f
)− w

)
= f−n p (detD2v)p.

We pick a function f which satisfies

(4.5) −f ′ = f−np.

Solving (4.5) gives us

(4.6) f(t) = [(1 + n p) (T − t)] 1
1+np

for any constant T > 0. We will next show that there exists a function v = v(y)

such that

(4.7) y · ∇v − v = (detD2v)p, v(y) ≥ |yn|, v(0) = 0.

The existence of such a function v implies the claim of our proposition. To this

end, we seek for v of the form

(4.8) v(y′, yn) = ṽ(|y′|, yn) = ϕ(|y′|) g(
yn

ϕ(|y′|) ),

with g(s) ≥ |s|. A direct computation shows that,

ṽ1 = ϕ′ g − ϕ′ yn
ϕ
g′ = ϕ′ (g − s g′), ṽ2 = g′(

yn
ϕ

) = g′(s)
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with s = yn/ϕ. Also,

ṽ11 = ϕ′′ (g − s g′) + ϕ′ s g′′
yn
ϕ2

ϕ′, ṽ12 = −ϕ
′

ϕ
s g′′, ṽ22 =

1
ϕ
g′′.

Using that yn/ϕ = s, we get

y · ∇v − v = |y′|ϕ′ (g − s g′) + yn g
′ − ϕg = (|y′|ϕ′ − ϕ) (g − s g′),

and also,

detD2v =
ϕ′′

ϕ
g′′ (g − s g′)n−1

(
ϕ′

|y′|
)n−2

.

Separating the functions g and φ, we conclude that v satisfies (4.5), if

g′′ (g − s g′)n−1− 1
p = 1 and ϕ′′

(
ϕ′

|y′|
)n−2

= (|y′|ϕ′ − ϕ)
1
p ϕ.

For the second equation we seek for a solution in the form ϕ(r) = Cn,p r
β with

β > 1. We find that ϕ satisfies the above equation if

(β − 2) (n− 1) =
β

p
+ β

which after we solve for β yields to

β =
2 (n− 1)

(n− 2− 1/p)
.

Since we need β > 1, we have to restrict ourselves to the exponents p > 1
n−2 .

Next we find an even function g, convex of class C1,α, that solves the ODE for

g in the viscosity sense and for which g(s) = |s| for large values of s. Rewriting the

ODE and the conditions above in terms of the Legendre transform g∗ of g we find

(g∗)′′ = |g∗|n−1−1/p in [−1, 1], g∗(1) = g∗(−1) = 0.

The existence of g∗ follows by scaling the negative part of any even solution g̃ to

the ODE above, i.e g∗(t) = ag̃(t/b) for appropriate constants a and b. We obtain

the function g by taking the Legendre transform of g∗.

�

Remark 4.9. Proposition 4.8 shows that in the Gauss curvature flow (1.3) with

exponent p, if the initial data is a cube, then the edges (n − 1-dimensional) move

instantaneously if and only if p ≤ 1
n−2 . In the particular case of the classical Gauss

curvature flow with p = 1, the edges of the cube move instantaneously if and only

n ≤ 3.
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5. The geometry of lines

Our goal in this section is to prove Theorem 5.3, which constitutes the parabolic

version of the result of Caffarelli for Monge-Ampere equation. Theorem 5.3 deals

with extremal points of the set {u = 0 } for a nonnegative solution u of (3.1) .

We begin by giving the definition of an extremal point of a convex set (cf. in [10],

Chapter 5).

Definition 5.1. Let D be a convex subset of Rn. The point x0 ∈ ∂D is an extremal

point of D if x0 is not a convex combination of other points in D.

We now give the main results of this section. The first Theorem states that a

constant segment in time can be extended backward all the way to the initial data.

Theorem 5.2. Let u be a solution of equation (3.1) on Ω × [−T, 0]. Assume

u(0, t) = 0 for t ∈ [−δ, 0] and there exists a section Sh0(0) := {u(x, 0) < h0 +ph0 ·x}
at (0, 0) that is compactly supported in Ω. Then u(0, t) = 0 for all t ∈ [−T, 0].

The second Theorem states that if the graph of u at a given time coincides with

a tangent plane in a set D that has an extremal point in Ω, and D contains at least

a line segment, then u agrees with the initial data on D.

In other words, a line segment at a given time either originates from the boundary

data at that particular time or from the data at the initial time.

Theorem 5.3. Let u be a solution of equation (3.1) on Ω×[−T, 0], for some convex

domain Ω ⊂ Rn. Suppose that at time t = 0 we have u ≥ 0, and the set

D := {u(x, 0) = 0}

contains a line segment and D has an extremal point in Ω. Then,

u(x,−T ) = 0, for all x ∈ D.

As a consequence of the theorems above we obtain the following:

Corollary 5.4. Assume u is defined in Ω× [−T, 0] and u(x,−T ) ≥ 0 on ∂Ω. Then

u is strictly convex in x and strictly increasing in t at all points (x, t) that satisfy

u(x,−T ) < u(x, t) < 0.

We first prove Theorem 5.2.
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Proof of Theorem 5.2. By continuity of u the section

Sh0(−σ) := {u(x,−σ) < h0 + ph0 · x}

at (0,−σ) is also compactly included in Ω for a small σ ∈ [0, δ]. Let d be sufficiently

large so that Sh0(−σ) is d-balanced around 0. By Lemma 2.4, for each h ≤ h0 we

can find a section Sh(−σ) which is Cnd-balanced around 0. We apply Proposition

3.12 (see Remark 3.13) and use that u(0, 0)− u(−σ, 0) = 0 < h/2 to conclude

σ ≤ C(d)
|Sh(−σ)|2p
hnp−1

.

Assume next that u(0,−t0) = 0, for some t0 > σ. We apply Proposition 3.3 (see

Remark 3.4) at (0,−t0) in the set S := Sh(−σ) and conclude

u(0, t) ≥ −h, for t ≥ −t0 − c(d)
|Sh(−σ)|2p
hnp−1

.

Using the bound on σ we find that u(0, t) = 0 for t ≥ −t0−c(d)σ and the conclusion

follows. �

Next lemma is the key step in the proof of Theorem 5.3.

Lemma 5.5. Assume u(sen, 0) = 0 for s ∈ [0, 2], and for some t0 > 0

u(en,−t0) ≥ −h, T6h(0,−t0) ⊂ Bδ ⊂⊂ Ω,

where T6h(0,−t0) is the centered section at 0 at time −t0. Then

u(en,−Mt0) ≥ −2h, with M = 1 + cδ−2p, (c universal).

Proof. Since u(2en,−t0) ≤ u(2en, 0) = 0, the convexity of u(·,−t0) implies that

u(0,−t0) ≥ −2h. We apply Proposition 3.12 (see Remark 3.13) in the section

T6h := T6h(0,−t0) = {u(x,−t0) < u(0,−t0) + 6h+ p6h · x }

and conclude that

t0 ≤ C |T6h|2p
hnp−1

.

Indeed, otherwise we obtain u(0, 0) ≥ h which contradicts the hypothesis. Since

T6h ⊂ Bδ and has 0 as center of mass, we find

|T6h| ≤ Cδ|T ′6h|, where T ′6h := {x′ ∈ Rn−1| (x′, 0) ∈ T6h},

for some C depending only on n. Using the inequality for t0 we conclude

(5.1)
|T ′6h|2p
hnp−1

≥ cδ−2pt0.
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Now we apply Proposition 3.3 (see Remark 3.4) for the function

ũ = u− p′6h · x′ − 6h

in the convex set S which is the convex hull generated by the n− 1 dimensional set

T ′6h × {0} and the segment [0, 2en]. Notice that ũ is negative at time −t0 in S and

ũ(en,−t0) ≥ −7h. Since S is d-balanced with respect to en with d depending only

on n we conclude that

ũ(en,−t) ≥ −8h for t ≥ −t0 − c (2|T ′6h|)2p

hnp−1
,

with c universal. Using (5.1) we find u(en, t) ≥ −2h if t ≥ −t0(1 + cδ−2p).

�

Proof of Theorem 5.3. Assume for simplicity that 0 ∈ Ω is an extremal point for

D and 2en ∈ D. We want to prove that u(2en,−T ) = 0.

Fix δ > 0 small, smaller than a universal constant to be specified later. There

exists σ > 0 depending on u and δ such that

T6h(0,−t) ⊂ Bδ ⊂⊂ Ω for all h, t ∈ [0, σ].

Indeed, otherwise we can find a sequence of hn, tn tending to 0 for which the

inclusion above fails. In the limit we obtain that 0 can be written as a linear

combination of two other points in D (one of them outside Bδ) and contradict that

0 is an extremal point.

First we show that u(x,−σ) = 0 on the line segment [0, 2en]. Using the Holder

continuity of u in t at the point (en, 0) we find that for small t0 > 0,

u(en,−t0) ≥ −h := −C(u)t
1

np+1
0 .

We can apply Lemma 5.5 inductively and conclude that as long as Mk−1t0 ≤ σ,

2k−1h ≤ σ then

u(en,−Mkt0) ≥ −2kh.

We choose δ small enough so that M = 1 + cδ−2p > 4np+1. Then

2kh ≤ C(u)2−k(Mkt0)
1

np+1 ≤ C(u)2−k(Mσ)
1

np+1 .

This shows that if we start with t0 small enough then Mk−1t0 ≤ σ implies 2k−1h ≤
σ and moreover, as t0 → 0 then 2kh→ 0 as well. We conclude that u(en,−σ) = 0

hence u(x,−σ) = 0 on the line segment [0, 2en].

Now we can use Theorem 5.2 for the points (sen, 0) for small s ≥ 0 which are

included in a compact section at the origin at time t = 0. Since u(sen, t) = 0 for
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t ∈ [−σ, 0], we conclude that u(sen,−T ) = 0 for small s. Then convexity in x and

monotonicity in t imply u(x,−T ) = 0 on the segment [0, 2en].

�

6. The geometry of angles

Our goal in this section is to prove the analogue of Theorem 5.3 for angles. That

is, if u : Ω × [−T, 0] → R is a solution to (3.1) for which the graph of u at time

t = 0 has a tangent angle from below, then this angle originates either from the

initial data u(·,−T ) or from the boundary data on ∂Ω at time t = 0.

Throughout this section we will denote by x′ points x′ = (x1, · · · , xn−1) ∈ Rn−1

and by x = (x′, xn) points in Rn. Our result states as follows.

Theorem 6.1. Let u : Ω×[−T, 0]→ R be a solution of equation (3.1) with Ω ⊂ Rn.

Assume that at time t = 0, we have u(0, 0) = 0, u(x, 0) ≥ |xn| and 0 is an extremal

point for the set D := {x ∈ Ω : u(x, 0) = 0}. Then, u(x,−T ) ≥ |xn|.

The proof of Theorem 6.1 is more involved than that of Theorem 5.3. We

introduce the following convenient notation.

Definition 6.2. For negative times t ≤ 0 we say that

(h, α) ∈ At(u) ⊂ R2
+

if there exist vectors q1, q2 ∈ Rn such that

u(x, t) ≥ u(0, 0)− h+ max {q1 · x, q2 · x}

in Ω and (q1 − q2) · en ≥ α. Whenever there is no possibility of confusion we write

At instead of At(u).

Remark 6.3. The statement (h, α) ∈ At is in fact a one-dimensional condition on

u(x, t). It says that, when restricted to the line sen, we can find a certain angle

below the graph of u(·, t). The vertex of the angle is at distance h below u(0, 0) at

the origin and the difference in the slopes of the lines that form the angle is α.

Clearly, if (h, α) ∈ At1 then (h, α) ∈ At for all t ≥ t1. The statement (h, α) ∈
At remains true if we add to u a linear function in x or if we perform an affine

transformation in the x variable that leaves en invariant.

Next proposition is the key step in proving Theorem 6.1 and later for obtaining

interior C1,α estimates.
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Proposition 6.4. Let u be a solution of equation (3.1) with u(0, 0) = 0. Assume

that at time −t0, (t0 > 0) the solution u satisfies for a fixed constant C0 and a

parameter δ ≤ 1:

i. (h, α) ∈ A−t0 and (C0 h, (1 + δ)α) /∈ A−t0 , and

ii. there exists a section (at distance h from the origin)

Sh := {u(x,−t0) < h+ q · x }

of u(·,−t0) which is d-balanced with respect to the origin and is compactly

supported in Ω.

Then, (
C2

0 h,
α

1 + δ
2

)
∈ A−t, for t0 ≤ t ≤ t0 + c(d) δ−2p t0

for some c(d) > 0.

Remark 6.5. From the proof we will see that we can take the constant C0 = 100.

Proof. Since (h, α) ∈ A−t0 , we have u(x, t) ≥ −h + max {q1 · x, q2 · x}, for some

vectors q1, q2. Without loss of generality, we may assume that q1, q2 have only

components in the en direction. This reduction is possible by first subtracting the

linear map q1+q2
2 · x and then performing a linear transformation that leaves en

invariant. Thus, assume that

u(x,−t0) ≥ −h+
α

2
|xn|.

Since Sh is d-balanced, the inequality above and Remark 2.3 imply that

Sh ⊂ { |xn| < 4d
h

α
}.

Thus, if S′h := Sh ∩ {xn = 0 }, we have

|Sh| ≤ Cd h
α
|S′h|.

Since u(0, 0) = 0 and u(0,−t0) ≥ −h, Proposition 3.12 implies that

t0 ≤ C(d)
|Sh|2p
hnp−1

,

and from the previous estimate we have

(6.1) t0 ≤ C(d)
(|S′h| hα )2p

hnp−1
.
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On the other hand, since (C0 h, (1 + δ)α) /∈ A−t0 there exists s1en ∈ Ω with

s1 > 0, such that

u(s1 en,−t0) < −C0 h+
α

2
(1 + 2 δ) s1.

Otherwise the angle with vertex at −C0 and lines of slopes −α/2, α/2 + δα would

be below the graph of u(x,−t0) on the line x = sen and we reach a contradiction.

Since u(s1 en,−t0) ≥ −h+ α
2 s1, the above yields the bound

s1 ≥ (C0 − 1)h
α δ

:= s0.

Moreover, since u(0,−t0) ≤ u(0, 0) ≤ 0 and

u(s1 en,−t0) < −C0 h+
α

2
(1 + 2 δ) s1 <

α

2
(1 + 2 δ) s1

the convexity of u(·,−t0) implies that

u(s en,−t0) <
α

2
(1 + 2 δ) s, ∀s ∈ [0, s0] ⊂ [0, s1].

Hence, if s ∈ [0, s0], then

u(s en,−t0) <
α

2
s+ α δ s0 = (C0 − 1)h+

α

2
s.

Recalling that Sh := {u(x,−t0) < h + q′ · x′ + qn xn }, it follows from the above

discussion that the set

{u(x,−t0) < (C0 − 1)h+ q′ · x′ + α

2
xn }

contains the convex set S̃ which is generated by S′h := Sh ∩ {xn = 0} and the

segment [0, s0en]. It follows from the convexity of S̃ that

(6.2) |S̃| ≥ cn |S′h| s0 = cn |S′h|
(C0 − 1)h

α δ

for some universal cn > 0.

We apply Proposition 3.3 (see Remark 3.4) for S̃ which is Cd-balanced around

s0en/2 and with h̃ = C0h, δ̃ = 1/30, and find that (since C0 ≥ 100)

u(
s0 en

2
,−t) ≥ −h+

α

2
s0

2
− C0 h

30
≥ α

2
(1− δ

5
)
s0

2

for

−t0 − c(d)
|S̃|2p
hnp−1

≤ −t ≤ −t0.
Observing that a similar consideration holds for negative xn and using (6.2) we

conclude

u(±s0 en
2

,−t) ≥ α

2
(1− δ

5
)
s0

2



22 PANAGIOTA DASKALOPOULOS∗ AND OVIDIU SAVIN∗∗

for

−t0 − c(d)

(
|S′h| (C0−1)h

α δ

)2p

hnp−1
≤ −t ≤ −t0,

or, from (6.1), for

−t0 − c(d)δ−2pt0 ≤ −t ≤ −t0.

It follows that for such t we have (since u(0,−t) ≤ 0)

∇u(±s0 en
2

,−t) · (±en) ≥ α

2
(1− δ

5
).

Setting

q̃1 = ∇u(
s0 en

2
,−t) and q̃2 = ∇u(−s0 en

2
,−t)

we obtain

(q̃1 − q̃2) · en ≥ α (1− δ

5
) ≥ α

1 + δ
2

since δ ≤ 1. From the convexity of u(·,−t) and the inequalities

u(s0 en,−t) ≤ u(s0 en,−t0) ≤ α

2
s0 + (C0 − 1)h

u(
s0en

2
,−t) ≥ α

2
s0

2
− C0 − 1

20
h

we conclude that the tangent planes at ± s0 en2 for u(·,−t) are above −2C0h (and

therefore −C2
0h) at the origin. This implies that
(
C2

0 h,
α

1 + δ
2

)
∈ A−t, if t0 ≤ t ≤ t0 + c(d) δ−2p t0

which finishes the proof of the proposition.

�

Remark 6.6. If hypothesis ii) is satisfied only for a time −t̃ with t̃ ≤ t0 i.e

Sh := {u(x,−t̃) ≤ h+ q · x} ⊂⊂ Ω and Sh is d-balanced around 0,

then the same conclusion holds in the smaller time interval
(
h,

α

1 + δ
2

)
∈ A−t, for t0 ≤ t ≤ t0 + c(d) δ−2p t̃.

Indeed, the only difference appears when estimating |S′h| from below: in (6.1)

we have to replace the left hand side t0 by t̃.
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Remark 6.7. If x∗ denotes the center of mass of the d-balanced section Sh at time

−t0, then it follows from the proof of Proposition 6.4 and Remark 2.3 that

u(x,−t) ≥ u(x∗,−t0)− C(d)h+ max
i=1,2

{q̃i · (x− x∗)}

for t0 ≤ t ≤ t0 + c(d) δ−2p t0, with

(q̃1 − q̃2) · en ≥ α

1 + δ
2

, q̃i = ∇u (
s0en

2
,−t).

In other words, if ũ is the translation of u defined by

ũ(x, t) = u(x+ x∗, t− t0)− u(x∗,−t0)

then (
C(d)h,

α

1 + δ
2

)
∈ A−t(ũ), for 0 ≤ t ≤ c(d) δ−2p t0.

We will now proceed to the proof of Theorem 6.1.

Proof of Theorem 6.1. We will denote throughout the proof by u0 := u(·, 0). Since

u0 ≥ 0, and 0 is an extremal point for the set D = {u0 = 0 } we can find (as in

the proof of Theorem 5.3) σ0 := σ0(u) > 0 small, depending on u, such that if

0 ≤ h, t ≤ σ0 then the section

Th,−t := {u(x,−t) ≤ h+ q · x}

of u(·,−t) that has x = 0 as center of mass is compactly supported in Ω. Thus, by

John’s lemma Th,−t is Cn-balanced with respect to the origin.

Let 0 < δ < δ0 with δ0 small universal constant to be made precise later. Without

loss of generality we may assume that u0 is tangent to |xn| on the line x′ = 0 at

the origin, i.e. we have

(6.3) lim
xn→0+

u0(0, xn)
xn

= 1 and lim
xn→0−

u0(0, xn)
xn

= −1.

Hence, by taking σ1 = σ1(δ, u) smaller than σ0, depending also on δ, we can assume

that (
h̃, 2 (1 +

δ

2
)
)
/∈ A0, for h̃ ≤ σ1.

Choose h << σ1. Since u0 is Lipschitz in say Ba ⊂ Ω with |∇u0| < 1/a, for some

small a we find (using Proposition (3.3)) that at time −t0, given by

t0 := c(a)
hn2p

hnp−1
= c(a)hnp+1
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the we have u(x,−t0) ≥ u0(x)− h for x ∈ Ba. This easily implies

(6.4) (h, α) ∈ A−t0 , α := 2 (1− 1
a
h).

Also notice that
(
h̃, α (1 + δ)

)
/∈ A0, if h, h̃ ≤ σ2 = σ2(a, σ1).

We choose δ0 such that

M2 := c(Cn) δ−2p ≥ c(Cn) δ−2p
0 := C

10(np+1)
0

where c(d) is the constant that appears in Proposition 6.4.

Lemma 6.8. As long as Mk t0 ≤ σ0 and C3k+1
0 h ≤ σ2, there exists 0 ≤ m ≤ k

such that

(6.5)

(
C3k−m

0 h, α
1

1 + δ
2

· · · 1
1 + δ

2m

)
∈ A−Mk t0 .

Proof. We will use induction in k. When k = 0 we take m = 0 and we use (6.4).

Assume now that the statement holds for k and let m be the smallest so that (6.5)

holds. If m > 0, then
(
C

3k−(m−1)
0 h, α

1
1 + δ

2

· · · 1
1 + δ

2m−1

)
/∈ A−Mk t0 .

Combining this with (6.5), and applying Proposition 6.4 we find that
(
C3k−m+2

0 h, α
1

1 + δ
2

· · · 1
1 + δ

2m+1

)
∈ A−t, if t ≤Mk+2 t0

which proves (6.5) for the pair (k + 1,m+ 1).

If m = 0, then (C3k
0 h, α) ∈ A−Mk t0 . On the other hand, since C3k+1

0 h ≤ σ2 we

have (C3k+1
0 h, α (1 + δ)) /∈ A0, thus

(C3k+1
0 h, α (1 + δ)) /∈ A−Mk t0 .

Hence, by Proposition 6.4

(C3k+2
0 h, α

1
1 + δ

2

) ∈ A−t

for t ≤Mk+2 t0 which again proves (6.5) for the pair (k+ 1, 1). This concludes the

proof of the lemma. �
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We will now finish the proof of the theorem. Since M ≥ C
5(np+1)
0 and t0 =

c hnp+1 we see that for the last k for which Mkt0 ≤ σ0 we satisfy

C3k+1
0 h ≤ C0M

3
5

k
np+1h ≤ C(σ0)h

2
5 < σ2

if h << σ2 is sufficiently small. Also, if δ is chosen small, depending on σ0 and T ,

for the last k we also have Mk+2 t0 ≥ T . We conclude from the lemma above that

(C(σ0)h
2
5 , α e−δ) ∈ A−T

and by letting h→ 0 we obtain

(0, 2 e−δ) ∈ A−T .

Finally, letting δ → 0 we conclude that (0, 2) ∈ A−T which proves the theorem. �

7. C1,α regularity - I

In the next two sections we establish C1,α interior regularity of solutions to

(3.1). They are based on quantifying the result of Theorem 6.1. In the elliptic case

C1,α regularity is obtained by a compactness argument. However, in our setting

compactness methods would only give C1 continuity for exponents p ≤ 1
n−2 . The

reason for this is that in the parabolic setting it is more delicate to normalize a

solution in space and time.

The main result of this section is the following Theorem (see Definition 2.1).

Theorem 7.1. Let u be a solution to (3.1) in Ω× [−T, 0] and assume there exists

a section of u(x, 0) which is d-balanced around 0 and is compactly supported in Ω.

a)If the initial data u(x,−T ) is C1,β at 0 in the e direction then u(x, 0) is C1,α

at the origin in the e direction with α = α(β, d) depending on β, d and the universal

constants.

b) If u(0, 0) > u(0,−T ) then u(x, 0) is C1,α at the origin with α = α(d) depending

on d and the universal constants.

Part b) will be improved in Theorem 8.4 in which we show that α can be taken

to be a universal constant. As a consequence we obtain Theorem 1.1.

Proof of Theorem 1.1. In view of Remark 2.3, at a point (x, t) for which u(x, t) ≤
cn, with cn small depending only on n the centered section Th(x, t) at x, for small

h, is compactly supported in Ω. Clearly u(x, 0) is C1,1 at an interior point of the

set {u(x, 0) = 0}. Thus we can apply Theorem 7.1 with d depending only on n and
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β = 1 and obtain the desired result. If cn < u(x, t) < 1 then we can apply directly

Theorem 8.4 and obtain the same conclusion. The second part of the theorem

follows similarly.

�

The following simple lemma gives the relation between the sets At defined in

Definition 6.2 and C1,α regularity. Its proof is straightforward and is left to the

reader.

Lemma 7.2. Let f : R → R be a convex function with f(0) = 0 and let q be a

sub-gradient of f at x = 0. If, for some x, we have f(x)− q · x ≥ a |x|1+α, then

(7.1) (h, a
1

1+α h
α

1+α ) ∈ A(f)

with h = a |x|1+α. Conversely, if for some number h, (7.1) holds, then

f(x)− q · x ≥ a

4α+1
|x|1+α

for some x with |x| = 4 (ha )
1

α+1 .

As a consequence we obtain the following useful corollary.

Corollary 7.3. The function u(x, 0) is C1,α at 0 in the en direction if and only if

(h,Ch
α
α+1 ) /∈ A0

for some large C and for all small h.

Theorem 7.1 will follow from the following lemma.

Lemma 7.4. Assume that u : Ω × [−T, 0] → R is a solution of (3.1) such that

u(0, 0) = 0, u(x,−T ) > 1 on ∂Ω, and

(7.2) B 1
d
⊂ {u(x, 0) < 1 } ⊂ {u(x,−T ) < 1 } ⊂ B1.

Choose δ0(d) sufficiently small, so that

(7.3) c(Cnd) δ−2p
0 = C

12 (np+1)
0 := M,

where c(Cnd) and C0 are the constants from Proposition 6.4 and Cn the constant

from Lemma 2.4. Assume also that (C−k0 , (1 + δ0)−l) ∈ A−t0 , for some k ≥ 0 and

some 0 < t0 ≤ T .

There exists a constant C1(d) > 0 such that if m0 is an integer satisfying

3m0 ≤ k − l − C1(d) and Mm0 t0 ≥ T,
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then
(
C
C1(d)+l+3m0−k
0 , (1 + δ0)−l−C1(d)

)
∈ A−T .

Proof. Define η : N→ Z as

(C−k0 , (1 + δ0)−η(k)−1) ∈ A−t0 but (C−k0 , (1 + δ0)−η(k)) /∈ A−t0 .

Clearly,

i) η is nondecreasing i.e η(k + 1) ≥ η(k),

ii) η(0) ≥ −C1(d), and

iii) η(k) < l (by assumption).

For each integer m with 0 ≤ m ≤ k−l−C1(d)
3 , we define sm as the largest s, 0 ≤ s ≤ k

that satisfies

η(k − s) ≤ l + 3m− s.

Notice that we satisfy the inequality above when s = 0 and the opposite inequality

when s = k. We obtain:

(7.4) η(k − sm) = l + 3m− sm, thus sm − 3m ≤ l + C1(d).

Also, from the definition of sm we find that sm+1 ≥ sm + 3.

Claim: There exists (r1, r2, r3) ∈ Z3, ri ≥ 0, such that

(7.5)

(
Cr1−k0 , (1 + δ0)r2−l

1
(1 + δ0

2 ) · · · (1 + δ0
2r3 )

)
∈ A−tm , tm = Mmt0

with

(7.6) r1 − r2 + r3 = 3m, r3 ≤ m, r1 + r3 ≤ sm (⇔ 0 ≤ r2 ≤ sm − 3m).

Proof of Claim: In order to simplify the notation, instead of (7.5) we write

(r1, r2, r3) ∈ A−tm

We will use induction on m. For m = 0 the claim holds from our assumption

(C−k0 , (1 + δ0)−l) ∈ A−t0 , if (r1, r2, r3) = (0, 0, 0).

Assume now that the claim holds for m. Consider the pairs

(r1 + s, r2, r3 − s), if 0 ≤ s ≤ r3

(r1 + s, r2 + s− r3, 0), if s ≥ r3
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where (r1, r2, r3) comes from the induction step m. When s = 0 the first pair

belongs to A−tm , by the induction hypothesis, and when s = sm − r1 the second

pair doesn’t belong to A−tm , since for that choice of s the second pair is
(
Csm−k0 , (1 + δ0)−(l+3m−sm)

)
=
(
C
−(k−sm)
0 , (1 + δ0)−η(k−sm)

)
/∈ A−t0

from the definition of the function η given above. Note that for s = r3 the two

pairs are the same.

It follows that either there exists an s < r3 such that

(r1 + s, r2, r3 − s) ∈ A−tm and (r1 + s+ 1, r2, r3 − s− 1) /∈ A−tm

or, there exists an r3 ≤ s < sm − r1 such that

(r1 + s, r2 + s− r3, 0) ∈ A−tm and (r1 + s+ 1, r2 + s+ 1− r3, 0) /∈ A−tm .

In either case we can apply Proposition 6.4. Indeed, the hypothesis (7.2) and

Lemma 2.4 imply the existence of a section Sh of u(·, t) that satisfies ii) in Propo-

sition 6.4 for any h ≤ 1 and any t ∈ [−T, 0]. More precisely, Sh is Cnd-balanced

section around 0 and it is compactly supported in Ω. We conclude that either

(r1 + s+ 2, r2, r3− s+ 1) for some 0 ≤ s < r3 or (r1 + s+ 2, r2 + s− r3, 1) for some

s ≥ r3 belongs to A−Mtm . Notice that in both cases the sum of the first and third

component is less than sm + 3 ≤ sm+1. This concludes the proof of the claim.

The lemma follows now from the claim above. Since Mm0 t0 ≥ T and

r1 ≤ sm0 ≤ l + 3m0 + C1(d), r2 ≥ 0,

we conclude that
(
C
C1(d)+l+3m0−k
0 , (1 + δ0)−l e−δ0

)
∈ A−T .

�

Remark 7.5. If we assume that hypothesis (7.2) holds only on a smaller interval

t ∈ [−T1, 0] instead of the full interval [−T, 0] then the same conclusion holds by

replacing C1(d) with a constant C1(d, T/T1).

The only difference occurs in the inductive step that shows (r1, r2, r3) ∈ A−tm ,
and we have to distinguish whether tm ≤ T1 or tm > T1. The case when tm ≤ T1

is the same and we obtain tm+1 = Mtm as before. In the case when tm > T1 we

apply Remark 6.6 of Proposition 6.4 and obtain tm+1 = tm + MT1. This second
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case occurs at most T/(MT1) = C(d, T/T1) times and therefore we need to replace

m0 by m0 + C(d, T/T1).

Remark 7.6. If in the assumption (7.2) we have a constant a instead of 1 i.e

B 1
d
⊂ {x : u(x, 0) < a } ⊂ {x : u(x,−T ) < a } ⊂ B1

then the conclusion is the same, except that k ≥ 0 is replaced by k ≥ C(a) and

C1(d) is replaced by C1(d, a).

Indeed, ũ(x, t) := 1
a u(x, a1−np t) satisfies the assumptions of the lemma with

t̃0 = anp−1 t0 and T̃ = anp−1 T and (C−k+C(a)
0 , (1 + δ0)−l−C(a)) ∈ A−t̃0(ũ), hence

the conclusion of the lemma follows.

Next we prove Theorem 7.1.

Proof of Theorem 7.1. From the continuity of u we can assume that, after a linear

transformation, we have the following situation: u(0, 0) = 0, u(x,−T1) > 1 on ∂Ω

and

B 1
2d
⊂ {u(x, 0) < 1 } ⊂ {u(x,−T1) < 1 } ⊂ B1

for some small T1 ∈ (0, T ].

Let k ≥ 0, l be integers such that

(C−k0 , (1 + δ0)−l) ∈ A0.

In view of Corollary 7.3 it suffices to show that there exists ε := ε(d, β) small

(or ε = ε(d) for the second part) such that l ≥ εk for all large k. Assume by

contradiction that

l < εk for a sequence of k →∞.

Then, from the Lipschitz continuity of u(x, 0) in B1/4d and Proposition 3.3 we find

(as in the proof of Theorem 6.1) that
(
2C−k0 , (1 + δ0)−l − C(d)C−k0

) ∈ A−t0 or, for

k large enough

(7.7) (C1−k
0 , (1 + δ0)−l−1) ∈ A−t0 with t0 := c(d)C−k(np+1)

0 .

Now we can apply Remark 7.5 and conclude that if

3m0 ≤ k − l − C1 and Mm0t0 ≥ T

then

(CC1+3m0+l−k
0 , (1 + δ0)−l−C1) ∈ A−T with C1 = C1(d, T/T1).
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We choose m0 = [k6 ] to be the smallest integer greater than k/6. Clearly both

inequalities for m0 are satisfied for k large (we assume ε ≤ 1/6) since M = C
12(np+1)
0

and

Mm0t0 ≥ C2k(np+1)
0 t0 →∞ as k →∞.

Thus

(C−k/60 , (1 + δ0)−2εk) ∈ A−T for a sequence of k →∞.

We reached a contradiction if u(0,−T ) < 0 (we choose ε = 1/6).

If we assume that u(0,−T ) = 0 and u(x,−T ) is C1,β at 0 in the en direction

then it follows from Corollary 7.3,

logC0

6
β

β + 1
≤ 2ε log(1 + δ0)

and we reach a contradiction again by choosing ε(d, β) small. �

8. C1,α regularity - II

In this section we prove the main estimates. Let u be a solution defined in

Ω× [−T, 0] and assume that u > l(x) on ∂Ω× [−T, 0] for some linear function l(x).

We are interested in obtaining C1,α estimates in x at time t = 0 in any compact set

K included in the section {u(x, 0) < l(x)}. Theorem 7.1 gives such estimates but

with the exponent α depending also on the distance from K to ∂{u(x, 0) < l(x)}
which is not desirable.

We can assume that after rescaling we are in the following situation:

(8.1) λ (detD2u)p ≤ ut ≤ Λ (detD2u)p, in Ω× [−T, 0],

(8.2) u > 1 on ∂Ω× [−T, 0], Ω ⊂ B1(y) for some y ∈ Rn,

(8.3) u0(x) := u(x, 0) satisfies u0(0) = 0.

First two theorems deal with the case p < 1
n−2 and p = 1

n−2 . In view of

the results of Section 3, C1,α (or C1) continuity is expected for these exponents

regardless of the behavior of the initial data at time −T .

Theorem 8.1. Let u be a solution of (8.1)-(8.3) with 0 < p < 1
n−2 and T ≤ 1.

Then,

‖u0‖C1,α(K) ≤ C(K)T−γ for any set K ⊂⊂ {u0(x) < 1}.
The constants α, γ > 0 are universal (depend only on n, p, λ and Λ), and C(K)

depends on the universal constants and the distance between K and ∂{u0(x) < 1 }.
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The example in Proposition 4.8 shows that the Theorem 8.1 fails when p > 1
n−2 .

For the critical exponent p = 1
n−2 we obtain a logarithmic modulus of continuity

of the gradient.

Theorem 8.2. Under the same assumptions and notation as in Theorem 8.1, if

p = 1
n−2 , then

|∇u0(x)−∇u0(y)| ≤ C(K) | log |x− y||−α T−γ , ∀x, y ∈ K.

Next two theorems deal with the case of general exponents p > 0. First theorem

states that if the initial data u(x,−T ) is C1,β in the e direction then u(x, 0) is C1,α

in the e direction with α = α(β).

Theorem 8.3. Let u be a solution of (8.1)-(8.3) with p > 0. If

∂eu(·,−T ) ∈ Cβ(S̄), S := {u(x,−T ) < 1},

for some β > 0 small, then for any set K ⊂⊂ {u0(x) < 1}

‖∂eu0‖Cα(K) ≤ C(K)‖∂eu(·,−T )‖Cβ(S̄).

The constant α = α(β) > 0 depends on β and the universal constants.

The second Theorem is a pointwise C1,α estimate at points that separated from

the initial data at time −T .

Theorem 8.4. Let u be a solution of (8.1)-(8.3) with p > 0. If

u(0, 0)− u(0,−T ) := a > 0

then, there exists q ∈ Rn for which

|u0(x)− q · x| ≤ C(a) |x|1+α

with α universal and C(a) depends on a, the distance from 0 to ∂ {u0 < 1}) and

the universal constants.

The theorems above will follow from a refinement of Lemma 7.4. We show that

we may choose δ0 universal in Lemma 7.4 and satisfy the conclusion at a point x̃

possibly different from the origin. The key step is to use the part b) of Lemma 2.4.

Lemma 8.5. Let u : Ω × [−T, 0] → R be a solution of (3.1) such that u > 1 on

∂Ω× [−T, 0] and u(0, 0) = 0. Let E be an ellipsoid centered at the origin such that

|E| ≥ 2−j |B1| and

E ⊂ {u(x, 0) < 1 } ⊂ {u(x,−T ) < 1 } ⊂ B1(y).
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Let δ0,M be universal as they appear in Lemma 7.4 for d = Cn the constant from

Lemma 2.4. Then, there exists a constant C(j) (depending on universal constants

and j) such that if k ≥ 0, l are integers and

(C−k0 , (1 + δ0)−l) ∈ A−t0 for some t0 ∈ (0, T ]

and m0 is an integer satisfying

3m0 ≤ k − l − C(j), Mm0 t0 ≥ C(j)T,

then we can find x̃ ∈ {u(x,−T ) < 1 } such that

u(x,−T ) ≥ u(x̃,−t̃)− CC(j)+l+3m0−k
0 + max

i=1,2
{qi · (x− x̃)},

with

t̃ = T − T

C(j)
(q2 − q1) · en ≥ (1 + δ0)−l−C(j).

Remark 8.6. Another way of stating the conclusion of the lemma is that the trans-

lation

(8.4) ũ(x, t) := u(x+ x̃, t− t̃)− u(x̃,−t̃), t̃ = T − T

C(j)

satisfies (
C
C(j)+l+3m0−k
0 , (1 + δ0)−l−C(j)

)
∈ A−T/C(j)(ũ).

Proof. The proof is by induction in j.

The case j = 1 is proved in Lemma 7.4. Indeed, since B1/2 ⊂ E ⊂ B1(y) ⊂ Bd/2
we see that the hypothesis (7.2) is satisfied and the conclusion holds for x̃ = 0.

For a general j we start the proof as before. The only difference here is that we

cannot guarantee in the induction step m ⇒ m + 1 that there exists a section at

time −tm = −Mmt0 which is Cn d = C2
n balanced around the origin.

Let’s assume this fails for a first integer m. By Lemma 2.4 we can find a C1(j)-

balanced section (with C1(j) > C2
n) at the time −tm. The idea is to apply Propo-

sition 6.4 as in the induction step and then to “replace” the origin with the center

of mass x∗ of this section. To be more precise, by Remark 6.7, the translation

ũ(x, t) = u(x∗ + x, t− tm)− u(x∗,−tm)

satisfies (
C2(j)Cr1−k0 , (1 + δ0)r2−l e−δ0

)
∈ A−t̃0(ũ)

with

t̃0 := c1(j) tm = c1(j)Mm t0
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and from (7.4)-(7.6)

r1 ≤ 3m+ r2, 0 ≤ r2 ≤ l + C3(j).

Here we assumed that T > tm + t̃0, otherwise the proof is the same as before by

taking x̃ = 0, and there is no need to change the origin. Notice that m0 > m if

C(j) > 1/c1(j).

The above imply

(C−k̃0 , (1 + δ0)−l̃) ∈ A−t̃0(ũ)

with

l̃ := l − r2 + C1 and k̃ = k − (3m+ r2)− C4(j).

Now we apply the induction (j − 1)-step for ũ. First we set

m̃0 := m0 −m and T̃ := T − tm,

and we have T̃ ≥ t̃0 ≥ c1(j)tm ≥ c2(j)T .

By Lemma 2.4 the maximal ellipsoid centered at the origin and included in the set

{ ũ(x, 0) < ã} has volume greater than 2j−1 |B1|. The constant ã = 1− u(x∗,−tm)

and by Remark 2.3, c3(j) ≤ ã ≤ 1/c3(j). Thus in order to apply the rescaled

induction step for ũ we need to check that (see Remark 7.6)

k̃ ≥ C ′(j), 3m̃0 ≤ k̃ − l̃ − C ′(j), M m̃0 t̃0 ≥ T̃C ′(j)

for some large constant C ′(j).

If C(j) is sufficiently large then

M m̃0 t̃0 = Mm0−m c1(j)Mm t0 ≥ C(j)c1(j)T ≥ C ′(j) T̃ ,

and

k̃ − (l̃ + 3m̃0) = k − l − 3(m+ m̃0)− C4(j)− C1

= (k − l − 3m0)− C5(j)

≥ C(j)− C5(j) ≥ C ′(j).
(8.5)

and also,

k̃ ≥ k − (3m+ l)− C3(j)− C4(j)

≥ k − (3m0 + l)− C6(j) ≥ C(j)− C6(j) ≥ C ′(j).

From the equality in (8.5), T̃ ≥ c2(j)T and l̃ ≤ l+C1 we clearly obtain the desired

result when we apply the induction step by choosing C(j) sufficiently large. �
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Remark 8.7. If in addition to the hypothesis of the lemma we have

u(0, 0)− u(0,−T ) ≥ a,

then

u(x̃,−t̃)− u(x̃,−T ) ≥ a

C(j)
− C

C(j)+l+3m0−k
0 , for t̃ = T − T

C(j)
.

This and the conclusion of the lemma imply

a ≤ CC(j)+l+3m0−k
0 ,

with C(j) a constant larger than the previous ones.

Proof of Remark 8.7. From the proof of Lemma 8.5 we see that when for a certain

m we replace 0 with the center of mass x∗ of the section Sh := {u(x,−tm) ≤ l(x)}
(for l linear) with h = Cr1−k0 , then

u(x∗,−tm)− l(x∗) ≥ −C(j)h.

On the other hand, we have

u(0,−T )− l(0) ≤ u(0,−T )− u(0, 0) ≤ −a,

and since u(x,−T )− l(x) is negative in Sh, at x∗ we have

u(x∗,−T )− l(x) ≤ − a

C(j)
.

In conclusion

u(x∗,−tm) ≥ u(x∗,−T ) + ã, ã :=
a

C(j)
− C(j)h.

Since we perform this change of origin at most j times we obtain the desired result.

�

Proof of Theorem 8.1. Let

(C−k0 , (1 + δ0)−l) ∈ A0, for some k ≥ 0

where C0 and δ0 are the constants taken from Lemma 8.5. Let E be an ellipsoid of

volume 2−j around the origin included in the set {x : u0(x) < 1} where j depends

on dist(k, ∂ {u0(x) < 1}. In view of Lemma 7.2, it suffices to prove the existence of

constants ε0 and C1 universal and C̃(j) such that

(8.6) l ≥ ε0 (k + C1 log T )− C̃(j).
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Since our assumption (C−k0 , (1 + δ0)−l) ∈ A0 implies that l ≥ −C0(j) if k ≥ 0, it

follows that (8.6) is satisfied, for some C̃(j), if

k ≤ −C1 log T + C1(j),

where C1(j) will be specified later. Assume, by contradiction that (8.6) does not

hold. Thus, since T ≤ 1,

(8.7) ε0 k > l, for some k > −C1 log T + C1(j) ≥ C1(j).

Using the Lipschitz continuity of u0 we obtain, as in (7.7), that

(C−k0 , (1 + δ0)−l) ∈ A0 ⇒ (C−k+1
0 , (1 + δ0)−l − C(j)C−k0 ) ∈ A−t0

with t0 = c(j)C−k(np+1)
0 which implies that

(C−k+1
0 , (1 + δ0)−l−1) ∈ A−t0 .

We now apply Lemma 8.5 with m0 = [ k6 ] and check that he hypotheses are satisfied.

Recall that M = C
12(np+1)
0 hence

Mm0 t0 ≥ c(j)C(12m0−k)(np+1)
0 ≥ C(j) ≥ C(j)T.

Also, l < ε0k implies that

(8.8) k ≥ 2k
3
≥ 3m0 + l + C(j)

by choosing C1(j) sufficiently large.

Thus, Lemma 8.5 holds. Now we apply the estimate (6.1) for the translation

function ũ of (8.4) that appears in the conclusion of Lemma 8.5. In our case

h̃ = C
C(j)+3m0+l−k
0 , α̃ = (1 + δ0)−l−C(j), t̃0 =

T

C(j)
.

Since S′
h̃
⊂ B1(y) we have |S′

h̃
| ≤ C, hence

h̃1−(n−2)pα̃−2p ≥ T

C2(j)
.

Using (8.8) we have

(1− (n− 2)p)(−k
3

) logC0 + 2p l log(1 + δ0) ≥ log T − C3(j)

or

l − 2ε0 k ≥ C log T − C4(j), ε0 :=
(1− (n− 2)p) logC0

12 p log(1 + δ0)
and C universal. We obtain the inequality

ε0 k ≤ C | log T |+ C4(j)
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which contradicts our assumption (8.7) if we choose the constants C1 and C1(j)

appropriately. This concludes the proof of the theorem.

�

We will next sketch the proof of Theorem 8.2 for the case p = 1
n−2 .

Proof of Theorem 8.2. The proof is the same as above with the difference that we

need to replace k by log k in (8.6), i.e. we need to show that there exists ε0 and C1

universal such that

(8.9) l ≥ ε0 (log k + C1 log T )− C̃(j).

After we apply Lemma 8.5 we know that the translation ũ is a above an angle of

opening α̃ at time −t̃0 and it separates away from it at most a distance h̃ at time

0. Now we use the stronger estimate (rescaled) obtained in Proposition 4.7 instead

of (6.1). We find

h̃ ≥ c(j)e−Cα̃−1 t̃
−n−2

2
0 ,

hence

C
C(j)+3m0+l−k
0 ≥ e−C(j)(1+δ0)l

TC .

We obtain
k

3
≤ C(j) (1 + δ0)l

TC
,

or

l ≥ 2ε0 log k + C log T − C(j),

and we finish the proof as before. �

We will now proceed with the proof of Theorem 8.3.

Proof of Theorem 8.3. We begin by observing that since u0(0) = 0, then

T ≤ C( ‖u(·,−T )‖L∞(S̄)).

We want to prove that if (C−k0 , (1 + δ0)−l) ∈ A0, for some k ≥ 0, then

(8.10) l ≥ ε0 k + C(j, a) with a := ‖∂enu(·,−T )‖Cβ(S̄)

for some ε0 depending on β and universal constants. To show (8.10) we argue

similarly as before. If (8.10) doesn’t hold, then

ε0 k > l, for some k > C1(j, a).



C1,α REGULARITY OF SOLUTIONS TO PARABOLIC MONGE-AMPÉRE EQUATIONS 37

We set m0 = [ k6 ] and that the hypotheses of Lemma 8.5 are clearly satisfies. We

find that (
C
C(j)+3m0+l−k
0 , (1 + δ0)−l−C(j)

)
∈ A−T̃ (ũ)

from which we conclude that
(
C
− k3
0 , (1 + δ0)−l−C(j)

)
∈ A−T̃ (ũ).

Using that ∂enu(·,−T ) ∈ Cβ at x̃ we obtain

log(1 + δ0)
logC0

(l + C(j)) ≥ β

β + 1
k

3
− C(j, a)

from which we derive a contradiction if ε0(β) is chosen sufficiently small and C1(j, a)

is chosen large. This concludes the proof of our theorem. �

We finish with the proof of Theorem 8.4.

Proof of Theorem 8.4. We use the previous notation. It suffices to show that for

some ε0 universal

l ≥ ε0k − C(j, a).

From Proposition 3.12 we obtain the bound T ≤ C(j, a). Now the proof is the same

as before. In view of the Remark 8.7 our hypothesis implies that

C
C(j)+3m0+l−k
0 ≥ a,

and the conclusion clearly follows. �
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tion and their strict convexity, Ann. of Math. 131 (1990), 129-134.

[4] Caffarelli, L. A., Boundary regularity of maps with convex potentials, Comm. Pure Appl.

Math. 45 (1992), no. 9, 1141–1151.

[5] Chopp, D., Evans, L. C. and Ishii, H. , Waiting time effects for Gauss curvature flows;

Indiana Univ. Math. J. 48 (1999), 311–334.

[6] B. Chow, Deforming convex hypersurfaces by the nth-root of the Gaussian curvature; J.

Differential Geom. 22 (1985), 117–138.

[7] Daskalopoulos, P. and Hamilton R., The Free Boundary on the Gauss Curvature Flow

with Flat Sides; J. Reine Angenw. Math. 510 (1999), 187–227.

[8] Daskalopoulos, P. and Lee, K., Worn stones with flat Sides: all time regularity of the

interface; Invent. Math, 156 (2004), no. 3, 445–493.

[9] Firey, W.J., Shapes of worn stones; Mathematika 21 (1974), 1–11.
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tion; Arch. Rational Mech. Anal. 159 (2001), 137–177.

[12] Hamilton, R., Worn stones with flat sides; in a tribute to Ilya Bakelman, Discourses Math.

Appl. 3 (1993), 69–78.

[13] Huang, Q. and Lu, G., On a priori C1,α and W 2,p estimates for a parabolic Monge-Ampre

equation in the Gauss curvature flows, Amer. J. Math. 128 (2006), no. 2, 453–480.

[14] Pogorelov, A. V The Minkowski Multidimensional Problem, John Wiley Sons, Washington

DC, 1978.

[15] Tso, K., Deforming a Hypersurface by its Gauss-Kronecker Curvature; Comm. Pure and

Appl. Math. XXXVIII (1985), 867–882.

Department of Mathematics, Columbia University, New York, USA

E-mail address: pdaskalo@math.columbia.edu

Department of Mathematics, Columbia University, New York, USA

E-mail address: savin@math.columbia.edu


